
Introduction to probability

Xiaolong Han

Department of Mathematics, California State University, Northridge, CA
91330, USA

Email address : xiaolong.han@csun.edu





Contents

Preface 4

Chapter 1. Preliminaries: Sets and Combinatorics 6
1.1. Sets and functions 6
1.2. Combinatorics 8

Chapter 2. Axioms of probability 14

Chapter 3. Conditional probability and independence 19
3.1. Conditional probability 19
3.2. Independence 22
3.3. Independent trials 25

Chapter 4. Discrete random variables 28
4.1. Examples 28
4.2. Expectation 30
4.3. Variance 34
4.4. Three random variables: binomial, Poisson, and geometric 36

Chapter 5. Continuous random variables 43
5.1. Review of Calculus 43
5.2. Distribution and density functions 45
5.3. Expectation and variance 50
5.4. Normal distribution 52

Chapter 6. Jointly distributed random variables 63
6.1. Examples 63
6.2. Independent random variables 67
6.3. Expectation 70
6.4. Variance and covariance 72

Chapter 7. Limiting theorems 82
7.1. Review of Probability 82
7.2. The weak law of large numbers 85
7.3. The strong law of large numbers 88
7.4. The central limit theorem 91

3



Preface

Every branch of mathematics, whether it is geometry, algebra, or any other, comprises both
an abstract theoretical aspect and a practical applied aspect. There is a dynamic and mutually
influential relationship between these two facets. Advancements in theory often open up new
avenues for practical applications, and each fresh application gives rise to novel theoretical chal-
lenges, steering the course of ongoing research. Paradoxically, the applications of mathematics
to a wide array of different fields stems from its inherent abstraction. – Its theories are not con-
fined to any single specific application. Take, for instance, the concept of parabolas in algebra.
They can describe the arc of a baseball in flight as well as the trajectory of a spacecraft bound
for Mars, demonstrating the versatility and universality of mathematical principles.

The dynamic interaction between abstract theory and practical application is particularly
pronounced in the branch of probability, and this interaction may be even more significant here
than in geometry and algebra. The reason for this is twofold. First, probability applications have
a rich historical foundation and are pervasive in our daily lives, such as coin tossing and medical
trials. As a result, one often has formed an intuitive understanding of probability (which, I
assure the readers, is accurate) before encountering the formal theory of probability. Second,
the formal theory of probability is relatively young (comparing to, say, geometry and algebra)
and only became possible after Lebesgue’s theory of measure and integrationi. In light of these
factors, my objective in this book of Introduction to probability is to strike a delicate balance
between these two aspects: Enable readers to comprehend and apply the theory of probability
while also preserving and reinterpreting their pre-existing intuition about probability.

On the side of intuition and applications of probability, I include a diverse collection of
examples. These examples range from hands-on models like determining the probability of
getting two heads in three independent coin tosses to more general models like determining
the probability of achieving r successes in n independent medical trials. Collectively, these
examples serve as a bridge, facilitating readers in transitioning from an intuitive understanding
of probability to its formal theory. Another example is the computation of the expectation (i.e.,
mean) of test scores in a class, which is considered as a random variable. Through two curving
methods of the scores, readers can appreciate that, within the abstract probability theory, taking
expectation commutes with linear operations (e.g., curving each score by X → 0.9X + 10) but

does not commute with nonlinear operations (e.g., X →
√

100X).
On the side of abstract theory of probability, the foundation of this book follows the modern

approach established by Kolmogorovii. However, it is important to note that the level of abstrac-
tion in the theory of probability within this book remains absolutely minimal. This approach is
intentional, as it aligns with our goal of applying probability theory to practical problems while
elucidating the underlying intuition.

iHenri Lebesgue, Leçons sur l’integration et la recherche des fonctions primitives. [Lessons on integration
and analysis of primitive functions]. (1904).

iiAndrey Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung. [Foundations of the theory of proba-
bility]. (1933).
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PREFACE 5

At this minimal level of abstraction, the mathematics required (and is covered) in this book
includes the following.

• The language of sets and functions: It is indispensable for the mathematical theory
of probability. Without this language, the seemingly elementary ideas like “mutually
exclusiveness” in probability are impossible to define.
• Combinatorics (i.e., the theory of counting): It supplies the critical tools to probability

in the discrete setting.
• Integration in calculus: It supplies the critical tools to probability in the continuous

setting.

Message to Students:

k Do not get discouraged by the abstraction of abstract theories. A concept is abstract
because there is a distance to our common intuition and practical experiences. Under-
standing them is typically a graduate process that evolves as you learn a mathematical
branch. You can enhance your comprehension by studying more examples, checking
on your intuition, and gaining practical experience applying the theory. Keep simple
examples readily available as we introduce the abstract concepts.

k You can skip sections marked with stars (?) during your initial reading.
k You are entitled to a reward of one point toward a Test if you can report a mistake, a

typo, or any other inaccuracies.



CHAPTER 1

Preliminaries: Sets and Combinatorics

There are two types of mind, the mathematical, and what might be called the intuitive. The former
arrives at its views slowly, but they are firm and rigid; the latter is endowed with greater flexibility and
applies itself simultaneously to the diverse lovable parts of that which it loves.

Blaise Pascal, 1653i

In this chapter, we review the preliminaries of probability:

• Sets and functions: This is the language of mathematics, including probability.
• Combinatorics, i.e., the mathematical theory of counting: This supplies the main tools for

probability in the discrete setting.

1.1. Sets and functions

Definition (Sets).

• Given a set A, x ∈ A denotes that x is a member (or element, point) of A and x /∈ A denotes
that x is not an member of A.
• We say that two sets A and B are equal, denoted by A = B, if they have the same members.
• Given two sets A and B, we say that A is a subset of B, denoted by A ⊂ B, if each member

of A is a member of B, that is, x ∈ A implies that x ∈ B.

Remark. Given two sets A and B, A = B if and only if (denoted by “iff”) A ⊂ B and B ⊂ A.
Therefore, to show that A = B, we need to prove that, on one hand, x ∈ A implies that x ∈ B, so
A ⊂ B, and on the other hand, x ∈ B implies that x ∈ A, so B ⊂ A.

Example.

• We say that a set A is finite, if there are finite number of members of A. In this case, we use
|A| to denote the size (i.e., number of members) of A.
• N = {1, 2, 3, ...} denotes the set of natural numbers.ii

• We say that a set is countably infinite if its members can be arranged into an infinite sequence.
For example, N is countably infinite.
• We say that a set is discrete if it is finite or countably infinite.

Definition (The empty set). The set that has no members is called the empty set and is denoted
by ∅. A set that is not equal to the empty set is said to be nonempty.

Definition (A singleton set). A set that has a single member is called a singleton set.

Definition (The power set). Given a set A, the set of all the subsets of A is called the power set
of A and is denoted by P(A).

Example. Let A = {1, 2, 3}. Then

P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} .
iBlaise Pascal, Discours sur les passions de l’amour. (1653).
iiNotice that in the literature, N may refer to the set {0, 1, 2, 3, ...}.
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1.1. SETS AND FUNCTIONS 7

Remark. If A has n members, then P(A) has 2n members. This is because that each subset of
A can be constructed via a selection process through all of its members (i.e., selected or not). In the
example above, we find all the subsets of {1, 2, 3} via a selection process through members 1 (selected
or not), 2 (selected or not), and 3 (selected or not).

Definition (Union, intersection, and complement). Let A and B be two sets.

• The union of A and B is A ∪B = {x : x ∈ A or x ∈ B}.
• The intersection of A and B is A ∩ B = {x : x ∈ A and x ∈ B}. We say that A and B are

disjoint if A ∩B = ∅.
• The complement of A in B is B \ A = {x : x ∈ B and x /∈ A}, and is also denoted by B \ A.

In particular, if all the set operations are within a universal set X, then for a set A ⊂ X, we
simply call X \A the complement of A, and is denoted by Ac.

Proposition 1.1. Let A,B be sets. Then A ∪B = A ∪ (B ∩Ac).
Proof. First we show that A ∪ B ⊂ A ∪ (B ∩ Ac). Pick x ∈ A ∪ B. Then x ∈ A or x ∈ B. If

x ∈ A, then x ∈ A ∪ (B ∩ Ac); if x 6∈ A, then x ∈ B (otherwise x 6∈ A ∪ B), hence, x ∈ B ∩ Ac so
x ∈ A ∪ (B ∩Ac). Therefore, A ∪B ⊂ A ∪ (B ∩Ac).

Next we show that A ∪ (B ∩ Ac) ⊂ A ∪ B. Pick x ∈ A ∪ (B ∩ Ac). Then x ∈ A or x ∈ B ∩ Ac. If
x ∈ A, then x ∈ A∪B; if x ∈ B ∩Ac, then x ∈ B so x ∈ A∪B. Therefore, A∪ (B ∩Ac) ⊂ A∪B. �

Remark (Disjoint partition). The proposition above provides a disjoint partition of A ∪B into A
and B ∩Ac, in the sense that A and B ∩Ac are disjoint and that A∪ (B ∩Ac) = A∪B. See Figure 1.1.

X

A

A

B ∩Ac

B

A ∪B

Figure 1.1. A disjoint partition of A ∪B into A and B ∩ Ac

Such disjoint partition can be generalized: Let A1, ..., An be sets. Define

E1 = A1, E2 = A2 ∩Ac1, E3 = A3 ∩Ac1 ∩Ac2, ..., En = An ∩Ac1 ∩ · · · ∩Acn−1,
that is,

Ei = Ai ∩

i−1⋂
j=1

Acj

 .

Then E1, ..., En are pairwise disjoint and that E1 ∪ · · · ∪ En = A1 ∪ · · · ∪An.

Theorem (De Morgan’s lawsi). Let A and Bi, i ∈ N, be sets. Then

A \

( ∞⋃
i=1

Bi

)
=
∞⋂
i=1

A \Bi and A \

( ∞⋂
i=1

Bi

)
=
∞⋃
i=1

A \Bi.

iAugustus De Morgan, Formal logic: or, The calculus of inference, necessary and probable. (1847).



1.2. COMBINATORICS 8

In particular, ( ∞⋃
i=1

Bi

)c
=
∞⋂
i=1

Bc
i and

( ∞⋂
i=1

Bi

)c
=
∞⋃
i=1

Bc
i .

Definition (Functions). Let A be a set and R denote the set of real numbers. A function f : A→ R
is a correspondence that assigns to each member x ∈ A a number in R, denoted by f(x).

Definition (Inverse image). Let f : A → R. Given a subset E ⊂ R, we define f−1(E) = {x ∈ A :
f(x) ∈ E} the inverse image of E.

For a < b, we introduce the following notations.

• a < f < b denotes
f−1 ((a, b)) = {x ∈ A : a < f(x) < b}.

• a ≤ f < b denotes
f−1 ([a, b)) = {x ∈ A : a ≤ f(x) < b}.

• a < f ≤ b denotes
f−1 ((a, b]) = {x ∈ A : a < f(x) ≤ b}.

• a ≤ f ≤ b denotes
f−1 ([a, b]) = {x ∈ A : a ≤ f(x) ≤ b}.

• f > a denotes
f−1 ((a,∞)) = {x ∈ A : f(x) > a}.

• f ≥ a denotes
f−1 ([a,∞)) = {x ∈ A : f(x) ≥ a}.

• f < a denotes
f−1 ((−∞, a)) = {x ∈ A : f(x) < a}.

• f ≤ a denotes
f−1 ((−∞, a]) = {x ∈ A : f(x) ≤ a}.

• f = a denotes
f−1 ({a}) = {x ∈ A : f(x) = a}.

1.2. Combinatorics

Definition (Permutations). Let A be a discrete set. A permutation of A is an arrangement of the
members of A into a sequence.

Remark. Let A be a set of size n. Then a permutation of A is a (way of) selection of the members
of A with order. Hence, the number of permutations of A is n!, the factorial of n, which is defined as

n! = n · (n− 1) · · · · · 2 · 1.

Definition (Combinations). Let A be a set of size n. Suppose that 0 ≤ r ≤ n. A r-combination of
A is a subset of A of size r.

Remark. A r-combination of A with size n is a (way of) selection of r members out of the n
members of A (without order). Hence, the number of r-combinations of A is

(
n
r

)
, the binomial coefficient,

which is defined as (
n

r

)
=

n!

r!(n− r)!
.

See Theorem 1.4. In particular,

•
(
n
0

)
= 1, which indicates that there is only one way to select 0 member, i.e., no member is

selected.
•
(
n
n

)
= 1, which indicates that there is only one way to select n members, i.e., all members are

selected.
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•
(
n
1

)
= n, which indicates that there are n ways to select one member out of n members, i.e.,

exactly one member is selected in such a selection.
•
(
n
n−1
)

= n, which indicates that there are n ways to select n− 1 members out of n members,
i.e., exactly one member is not selected in such a selection.

Proposition 1.2. Let 0 ≤ r ≤ n. Then(
n

r

)
=

(
n

n− r

)
.

Proof.

• Analytical argument: Compute that(
n

n− r

)
=

n!

(n− r)! (n− (n− r))!
=

n!

(n− r)!r!
=

(
n

r

)
.

• Combinatorial argument: Any selection of r of the n members is equivalent to a selection of
n− r, namely, those members not selected.

�

Proposition 1.3 (Pascal’s identityi). Let 1 ≤ r ≤ n. Then(
n

r

)
=

(
n− 1

r − 1

)
+

(
n− 1

r

)
.

Proof.

• Analytical argument: Compute that(
n− 1

r − 1

)
+

(
n− 1

r

)
=

(n− 1)!

(r − 1)! ((n− 1)− (r − 1))!
+

(n− 1)!

r!(n− 1− r)!

=
(n− 1)!

(r − 1)!(n− r)!
+

(n− 1)!

r!(n− r − 1)!

=
(n− 1)!

(r − 1)! · (n− r − 1)! · (n− r)
+

(n− 1)!

(r − 1)! · r · (n− r − 1)!

=
(n− 1)!

(r − 1)!(n− r − 1)!

(
1

n− r
+

1

r

)
=

(n− 1)!

(r − 1)!(n− r − 1)!
· n

r(n− r)

=
(n− 1)! · n

(r − 1)! · r · (n− r − 1)! · (n− r)

=
n!

r!(n− r)!

=

(
n

r

)
.

• Combinatorial argument: Consider the selections of r members from a set of size n.
On one hand, the number of the selections is

(
n
r

)
.

On the other hand, fix our attention on one member, say a, from the set. There are
(
n−1
r−1
)

selections such that a is selected, each of which corresponds to a selection of r − 1 of the
remaining n − 1 members of the set; there are

(
n−1
r

)
selections such that a is not selected,

each of which corresponds to a selection of r of the remaining n− 1 members of the set. The
equation therefore follows.

�

iBlaise Pascal, Traité du triangle arithmétique. (1665).
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Remark (Pascal’s triangle). Pascal’s identity is a mathematical formulation of the famous Pascal’s
triangle (or pyramid), a triangular arrangement of numbers that gives the coefficients in the expansion
of the binomial expression (x+ y)n:

(x+ y)0 = 1,

(x+ y)1 = x+ y,

(x+ y)2 = x2 + 2xy + y2,

(x+ y)3 = x3 + 3x2y + 3xy2 + y3,

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4,

(x+ y)5 = x5 + 5x4y + 10x2y3 + 10x3y3 + 5xy4 + y5,

(x+ y)6 = x6 + 6x5y + 15x2y4 + 20x3y3 + 15x4y2 + 6xy5 + y6.

· · · .

The coefficients are given by

n = 0 : 1
n = 1 : 1 1
n = 2 : 1 2 1
n = 3 : 1 3 3 1
n = 4 : 1 4 6 4 1
n = 5 : 1 5 10 10 5 1
n = 6 : 1 6 15 20 15 6 1

Every term in the expansion of (x + y)n is a product of n factors, each of which is either x or y.
Therefore, the number of terms which contains r factors of x (and n − r factors of y) is given by

(
n
r

)
.

It is thus called the binomial coefficient. Indeed, the above triangle in the binomial form is(
0
0

)
(
1
0

) (
1
1

)
(
2
0

) (
2
1

) (
2
2

)
(
3
0

) (
3
1

) (
3
2

) (
3
3

)
(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
(
5
0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)
(
6
0

) (
6
1

) (
6
2

) (
6
3

) (
6
4

) (
6
5

) (
6
6

)
Zooming in one of the smallest triangles as shown above, we see Pascal’s identity that(

n−1
r−1
) (

n−1
r

)
(
n
r

)
In fact, we use Pascal’s identity to prove the important binomial theorem:
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Theorem 1.4 (Binomial theorem).

(x+ y)n =
n∑
i=0

(
n

i

)
xiyn−i.

Proof. We prove by mathematical induction on n. If n = 1, then

1∑
i=0

(
1

i

)
xiyn−i =

(
1

0

)
x0y1 +

(
1

1

)
x1y0 = y + x = (x+ y)1.

Assume the theorem for n− 1, i.e.,

(x+ y)n−1 =
n−1∑
i=0

(
n− 1

i

)
xiyn−1−i.

Then

(x+ y)n = (x+ y)(x+ y)n−1

= (x+ y)

(
n−1∑
i=0

(
n− 1

i

)
xiyn−1−i

)

= x ·
n−1∑
i=0

(
n− 1

i

)
xiyn−1−i + y ·

n−1∑
i=0

(
n− 1

i

)
xiyn−1−i

=
n−1∑
i=0

(
n− 1

i

)
xi+1yn−1−i +

n−1∑
i=0

(
n− 1

i

)
xiyn−i

=
n∑
j=1

(
n− 1

j − 1

)
xjyn−j +

n−1∑
j=0

(
n− 1

j

)
xjyn−j

= xn +

n−1∑
j=1

((
n− 1

j − 1

)
+

(
n− 1

j

))
xjyn−j + yn

= xn +
n−1∑
j=1

(
c

j

)
xjyn−j + yn

=
n∑
j=0

(
n

j

)
xjyn−j ,

in which we used Pascal’s identity in Proposition 1.3. �

Corollary 1.5.
n∑
i=0

(
n

i

)
xiyn−i = 2n.

Proof.

• Analytical argument: Set x = y = 1 in the binomial theorem. Then

2n = (1 + 1)n =

n∑
i=0

(
n

i

)
1i1n−i =

n∑
i=0

(
n

i

)
.

• Combinatorial argument: Consider the number of subsets of a set of size n.
On one hand, the number the subsets is 2n, since each member either belongs to a subset

or does not.
On the other hand, for each 0 ≤ i ≤ n, there are

(
n
i

)
subsets of size i. The equation

therefore follows by summing
(
n
i

)
with respect to i = 0, ..., n.
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�

Remark (Partition a collection of identical objects into sub-collections). Let X be a collection of
k identical objects. Consider a partition of X into n sub-collections, which are allowed to be empty.
To this end, list k + n − 1 stars in a sequence. Select n − 1 stars and change them to bars, which
then separate the remaining k stars (i.e., the original k objects) into n sub-collections. Therefore, the
number of partitions of X into n sub-collections is(

k + n− 1

n− 1

)
=

(
k + n− 1

k

)
.

For example, to obtain a partition of six objects by four sub-collections, among a total 6 + 4 − 1 = 9
stars, select 4− 1 = 3 ones and change them to bars. See below for the partition by sub-collections of
one object, two objects, no object, and three objects.

? ? ? ? ? ? ? ? ?
? | ? ? | | ? ? ?

Homework Assignment .

Question 1.1. Let A ⊂ B. Show that Bc ⊂ Ac.

Proof. Pick x ∈ Bc. Then x 6∈ B. Hence, x 6∈ A (otherwise, x ∈ A so x ∈ B, because A ⊂ B).
Therefore, x ∈ Ac so Bc ⊂ Ac. �

Question 1.2. Show that A = (A ∩B) ∪ (A ∩Bc).

Proof. First we show that A ⊂ (A ∩ B) ∪ (A ∩ Bc). Pick x ∈ A. If x ∈ B, then x ∈ A ∩ B; if
x 6∈ B, then x ∈ Bc so x ∈ A ∩Bc. Therefore, A ⊂ (A ∩B) ∪ (A ∩Bc).

Next we show that (A ∩ B) ∪ (A ∩ Bc) ⊂ A. Pick x ∈ (A ∩ B) ∪ (A ∩ Bc). Then x ∈ A ∩ B or
x ∈ A∩Bc. If x ∈ A∩B, then x ∈ A; if x ∈ A∩Bc, then x ∈ A. Therefore, (A∩B)∪ (A∩Bc) ⊂ A. �

Question 1.3. Let 0 ≤ k ≤ n. Determine the number of vectors (x1, ..., xn) such that each xi is
either 0 or 1, and the following inequality is true.

n∑
i=1

xi ≥ k.

Answer. Each vector (x1, ..., xn) such that xi is either 0 or 1, and that x1+· · ·+xn = k, corresponds
to a selection of r of its n components (and assign them as 1’s). There are

(
n
k

)
such vectors. Therefore,

the number of vectors (x1, ..., xn) such that each xi is either 0 or 1, and that x1 + · · ·+ xn ≥ k, is(
n

k

)
+

(
n

k + 1

)
+ · · ·+

(
n

n

)
=

n∑
i=k

(
n

i

)
.

Question 1.4. Show that
n∑
i=0

(−1)i
(
n

i

)
= 0.

Proof. Set x = −1 and y = 1 in the binomial theorem. Then

0 = (−1 + 1)n =
n∑
i=0

(
n

i

)
(−1)i1n−i =

n∑
i=0

(−1)i
(
n

i

)
.

�

Question 1.5. Use a combinatorial argument to show that(
n+m

r

)
=

(
n

0

)(
m

r

)
+

(
n

1

)(
m

r − 1

)
+ · · ·+

(
n

r − 1

)(
m

1

)
+

(
n

r

)(
m

0

)
=

r∑
i=0

(
n

i

)(
m

r − i

)
.
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Proof. Select r members from a group which is consisted of n men and m women.
On one hand, the number of selections is

(
n+m
r

)
.

On the other hand, for each 0 ≤ i ≤ r, there are
(
n
i

)(
m
r−i
)

selections for which i men and r−i women

are selected. The equation therefore follows by summing
(
n
i

)(
m
r−i
)

with respect to i = 0, ..., r. �

Question 1.6. Consider a smooth function f(x1, ..., xn) of n variables. Find the number of partial
derivatives of f of order k.

Answer. Each partial derivative of order k corresponds to a partition of a collection of k objects
(i.e., orders here) into n sub-collections (which are allowed to be empty). Therefore, the number of
partial derivatives of f of order k is (

k + n− 1

n− 1

)
.

For example, the partition of six objects into four sub-collections of one object, two objects, no objects,
and three objects, as demonstrated above, gives a sixth order partial derivative ∂x1∂

2
x2∂

3
x4f of a function

f(x1, x2, x3, x4) of four variables.

Question 1.7. Determine the number of vectors (x1, ..., xn) such that each xi is a non-negative
integer, and the following inequality is true.

n∑
i=1

xi ≤ k.

Answer. Each vector (x1, ..., xn) such that xi is a non-negative integer, and that x1 + · · ·+xn = k,

corresponds to a partition of a collection of k objects (1’s here) into n sub-collections. There are
(
k+n−1
n−1

)
such vectors. Therefore, the number of vectors (x1, ..., xn) such that each xj is a non-negative integer,
and that x1 + · · ·+ xn ≤ k, is(

n− 1

n− 1

)
+

(
1 + n− 1

n− 1

)
+ · · ·+

(
k + n− 1

n− 1

)
=

k∑
i=0

(
i+ n− 1

n− 1

)
=

k∑
i=0

(
i+ n− 1

i

)
.



CHAPTER 2

Axioms of probability

The theory of probability, as a mathematical discipline, can and should be developed from axioms
in exactly the same way as Geometry and Algebra. This means that after we have defined the elements
to be studied and their basic relations, and have stated the axioms by which these relations are to be
governed, all further exposition must be based exclusively on these axioms, independent of the usual
concrete meaning of these elements and their relations.

Andrey Kolmogorov, 1933i

All possible definitions of probability fall short of the actual practice.

William Feller, 1968ii

The history of probability (and of mathematics in general) shows a stimulating interplay of theory
and applications: progress in theory opens new fields of applications, and each new application creates
new theoretical problems and influences the direction of research. Today applications of the theory
of probability extend over many fields of different natures, and the number of applications is fast
increasing. Only a general mathematical theory is flexible enough to provide proper tools for such a
variety of problems, and we must withstand the temptation (and the pressure) to keep our notions,
pictures, and terms too close to one particular field of experience. We require a rigorous mathematical
theory proceeding along the lines which are generally accepted in Geometry and Algebra.

We study in Geometry the idealized and abstract shapes such as triangles, and the theories that
govern the relations among the geometric quantities such as the Pythagorean theorem. The power of
Geometry lies in the fact that the shapes and theories are not tied with a particular field of applications,
say, building a bridge. Though the example of building a bridge certainly helps us understand a triangle,
and also convinces us the usefulness of Geometry.

We study in Algebra the idealized and abstract variables, and the theories that govern the relations
among the variables such as the quadratic formula. The power of Algebra lies in the fact that the
variables and formulas are not tied with a particular field of applications, say, throwing a baseball.
Though the example of throwing a baseball certainly helps us understand a parabola as the curve of a
quadratic function, and also convinces us the usefulness of Algebra.

The modern mathematical theory of probability is concerned with one particular aspect of “chance”.
In a rough way, we may characterize this aspect by the probabilities of possible outcomes of “a con-
ceptual experiment”, such as tossing a coin. At the outset, we must agree on the possible outcomes of
this experiment (i.e., the sample space) and the probabilities associated with them.

The power of Probability lies in the fact that the outcomes, sample spaces, and probabilities are not
tied with a particular field of applications, say, counting heads in coin tosses. Though the example of
coin tosses certainly helps us understand these concepts. We therefore begin from introducing several
examples, through which the intuition of the axioms of probability that are defined later.

Example (Toss a coin). Consider the experiment of tossing a coin. Then the sample space S =
{h, t} is the set of two possible outcomes of heads (h) and tails (t). Therefore, the probability that

iAndrey Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung. [Foundations of the theory of proba-
bility]. (1933).

iiWilliam Feller, An introduction to probability theory and its applications. (1968).
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the experiment lands on heads or on tails is 1 = 100%. Moreover, if the probability of the experiment
landing on heads is p ∈ [0, 1], then the one on tails is 1− p. This indicates that, if we toss the coin for
a great many timesi, then the percentage of landing on heads in these experiments tends to p, and the
one of landing on tails tends to 1− p. We say that the coin is fair if p = 1

2 and is unfair if p 6= 1
2 .

The coin toss can be considered as an idealized model of experiments with only two outcomes,
whose probabilities of occurrence are p and 1− p, respectively. Such examples, in addition to the coin
toss, include success or failure of a medicine trial, win or loss of a sport game, pass or fail in a course,
etc. Models with more than two outcomes include the die rolls.

Example (Roll a die). Consider the experiment of rolling a die. Then the sample space S =
{1, 2, 3, 4, 5, 6} is the set of six possible outcomes. Therefore, the probability that the experiment lands
on one of the six numbers is 1. We say that the die is fair if the probability that the experiment lands on
each number is 1

6 . This indicates that, if we roll a fair die for a great many times, then the percentage

of rolls which land on any one number among 1, 2, 3, 4, 5, 6 in these experiments tends to 1
6 .

In this setup, we can compute the probability of any event. It is represented by a subset of S,
which should always have probability bounded between 0 and 1. For example, the event that the die
lands on an even number is represented by E = {2, 4, 6}, which has a probability of 3

6 = 1
2 ; whereas

the event that the die lands on a number smaller than 4 is represented by F = {1, 2, 3}, which also
has a probability of 3

6 = 1
2 . However, the event E ∪ F , i.e., that the die lands on an even number or

a number smaller than 4, is represented by {1, 2, 3, 4, 6}, which has a probability of 5
6 6=

1
2 + 1

2 . These
examples show that the probability is not additive in general, and is so if the events in question are
mutually exclusive.

Definition (Probability spaces). A probability space is a set S which is equipped with a function
P : P(S) → [0, 1] such that the following conditions hold. (Here, P(S) is the power set of S, i.e., the
set of all subsets of S, see Chapter 1.)

(i). For each E ⊂ S, 0 ≤ P (E) ≤ 1.
(ii). P (S) = 1.

(iii). If E1, E2, ... are pairwise disjoint, then

P

( ∞⋃
i=1

Ei

)
=
∞∑
i=1

P (Ei) .

We call S the sample space, s ∈ S an outcome, and E ⊂ S an event and P (E) the probability that E
occurs.

The following table demonstrates the correspondence of languages in the set theory and in the
probability theory.

iStrictly speaking, we would need to assume that these experiments are independent, see Chapter 3 for the
formal discussion of independence in probability. Moreover, the percentage of tosses which land on heads in
these experiments tends to p is a phenomenon of “the law of large numbers”, that is, the average of the results
obtained from a large number of independent and identical experiments should be close to the expected value
and tends to become closer to the expected value as more experiments are performed.
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Set theory Probability theory
S the universal set the sample space

s ∈ S s is a member or an element. s is an outcome.
E ⊂ S E is a subset. E is an event.
{s} ⊂ S {s} is a singleton set. {s} is a sample point.
E ⊂ F E is a subset of F . If E has occurred, then F occurs.
E ∩ F the intersection of E and F . the event that both E and F occur

E ∩ F = ∅ E and F are disjoint. E and F are mutually exclusive.
E ∪ F the union of E and F . the event that either E or F occurs
E \ F the complement of F in E. the event that E occurs and F does not occur
Ec the complement of E. the event that E does not occur

Definition (Almost surely events). Let S be a probability space with a probability P . We say that
an event E ⊂ S occurs almost surely if P (E) = 1.

Remark (Discrete probability space). In this book, our main focus is on the discrete probability
spaces, that is, the sample space S = {s1, ..., sn} for some n ∈ N or S = {s1, s2, ...}. In this chapter, all
examples, except the last one, are discrete.

Remark (Finite probability space with equally likely outcomes). Let S = {s1, ..., sn} be a finite
probability space such that each sample point has the same probability, i.e., all outcomes are equally
likely to occur. Since S = {s1} ∪ · · · ∪ {sn} is a disjoint union,

1 = P (S) = P ({s1}) + · · ·+ P ({sn}) = n · P ({s1}) .
which implies that

P ({s1}) = · · · = P ({sn}) =
1

n
.

Therefore, given E ⊂ S,

P (E) =
|E|
n
.

Example. Suppose that the sample space S is the College of Mathematics and Computer Science
(CS) consisted of 100 students. Equip S with a probability P such that each outcome has the same
probability (of 1

100). This indicates that, if we perform an experiment of drawing a student from the
College according to the probability P , then each student has an equal chance of being chosen.

Assume that 20 students in the College are mathematics-majored. Denote this set by E. Then
P (E) = 20

100 = 1
5 . This indicates that, if we perform such experiments for a great many times, then the

percentage of meeting a mathematics-majored student in these experiments tends to 1
5 .

Proposition 2.1. Let S be a probability space with probability P . Suppose that E,F ⊂ S.

(i). P (Ec) = 1− P (E).
(ii). P (∅) = 0.

(iii). P (E) = P (E ∩ F ) + P (E ∩ F c).
(iv). If E ⊂ F , then P (E) = P (F )− (F ∩ Ec), in particular, P (E) ≤ P (F ).

Proof.

(i). Since S = E ∪ Ec is a disjoint union,

1 = P (S) = P (E ∪ Ec) = P (E) + P (Ec) .

Hence,
P (Ec) = 1− P (E).

(ii). Take E = S in (i). Since Sc = ∅,
P (∅) = P (Sc) = 1− P (S) = 0.
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(iii). Since E = (E ∩ F ) ∪ (E ∩ F c) is a disjoint union,

P (E) = P ((E ∩ F ) ∪ (E ∩ F c)) = P (E ∩ F ) + (E ∩ F c) .
(iv). Since E ⊂ F , F ∩ E = E. By (iii),

P (F ) = P (F ∩ E) + P (F ∩ Ec) = P (E) + P (F ∩ Ec) .
Hence,

P (E) = P (F )− P (F ∩ Ec) ≤ P (F ),

because (F ∩ Ec) ≥ 0.

�

Example. Consider the length of calls (in minutes) a call center receives in a day. Then the sample
space is S = (0,∞). For a < b, (a, b) ⊂ S denotes the event that the length of calls is between a minutes
and b minutes. Let

P ((a, b)) =

∫ b

a
e−x dx.

Then P defines a probability on S. For example,

(a). The probability that the length of calls is shorter than two minutes is

P ((0, 2)) =

∫ 2

0
e−x dx = 1− e−2 ≈ 0.865.

(b). The probability that the length of calls is shorter than three minutes is

P ((0, 3)) =

∫ 3

0
e−x dx = 1− e−3 ≈ 0.950.

(c). The probability that the length of calls is between two and three minutes is

P ((2, 3)) =

∫ 3

2
e−t dt = e−2 − e−3 ≈ 0.086.

Homework Assignment .

Question 2.1. Let E, F , and G be three events. Find expressions for the events so that, of E, F ,
and G,

(a). only E occurs;
(b). both E and G, but not F , occur;
(c). at least one of the events occurs;
(d). at least two of the events occur;
(e). all three events occur;
(f). none of the events occurs;
(g). at most one of the events occurs;
(h). at most two of the events occur;
(i). exactly two of the events occur.

Answer.

(a). E ∩ F c ∩Gc;
(b). E ∩ F c ∩G;
(c). E ∪ F ∪G;
(d). (E ∩ F ) ∪ (E ∩G) ∪ (F ∩G);
(e). E ∩ F ∩G;
(f). Ec ∩ F c ∩Gc(= (E ∪ F ∪G)c);
(g). (E ∩ F c ∩Gc) ∪ (Ec ∩ F ∩Gc) ∪ (Ec ∩ F c ∩G) ∩ (Ec ∩ F c ∩Gc);
(h). (E ∩ F ∩G)c(= Ec ∪ F c ∪Gc);
(i). (Ec ∩ F ∩G) ∪ (E ∩ F c ∩G) ∪ (E ∩ F ∩Gc).



2. AXIOMS OF PROBABILITY 18

Question 2.2. Let S be a probability space with probability P . Suppose that E,F ⊂ S. Show
that P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ).

Proof. Since E ∪ F = E ∪ (F ∩ Ec), the latter of which is a disjoint union,

P (E ∪ F ) = P (E ∪ (F ∩ Ec)) = P (E) + P (F ∩ Ec) = P (E) + P (F )− P (F ∩ E),

Here, we used the fact that
P (F ∩ Ec) = P (F )− P (F ∩ E),

by (iii) in Proposition 2.1 that P (F ) = P (F ∩ E) + P (F ∩ Ec). �

Question 2.3. Let S be a probability space with probability P . Suppose that E,F ⊂ S. Describe
the event that exactly one of E or F occurs, and find the probability of such event.

Answer. The event that exactly one of E or F occurs is (E ∩F c)∪ (F ∩Ec). It is a disjoint union.
Hence,

P ((E ∩ F c) ∪ (F ∩ Ec)) = P ((E ∩ F c)) + P ((F ∩ Ec))
= P (E)− P (E ∩ F ) + P (F )− P (F ∩ E)

= P (E) + P (F )− 2P (E ∩ F ).



CHAPTER 3

Conditional probability and independence

It seems that to make a correct conjecture about any event whatever, it is necessary to calculate
exactly the number of possible cases and then to determine how much more likely it is that one case
will occur than another.

Jacob Bernoulli, 1713i

The concept of “Events occur independently with each other” has its intuitive meaning in practice.
In fact, we have already encountered this concept in Chapter 2, for example, perform two “independent”
experiments of coin tosses, the intuitive meaning of such is that the outcomes of landing on heads and
on tails in the first experiment do not change the chances of the outcomes in the second experiment.
In other words, on the condition that the first experiment lands on heads or on tails, the probability
of landing on heads or on tails in the second experiment stays the same (as if the first experiment has
not been performed). This, in turn, demands an introduction of conditional probability, which is itself
an intuitive concept but can be clumsy in terminology.

Let S be a probability space with a probability P throughout the chapter.

3.1. Conditional probability

Definition (Conditional probability). Let E,F ⊂ S and P (F ) > 0. Then the conditional proba-
bility of E for given F (also called the conditional probability that E occurs given that F has occurred)
is defined as

P (E|F ) =
P (E ∩ F )

P (F )
.

Remark. The assumption that P (F ) > 0 in the definition of conditional probability is only a
technical one, since it appears in the denominator.

The conditional probability for given an event F can be understood as the probability in which F
is regarded as the new sample space. All events E are now considered in this sample space so E ∩ F ,
and we then need to rescale P by a factor P (F ).

Example. Suppose that the College of Mathematics and Computer Science (CS) is consisted of
20 mathematics-majored students and 80 CS-majored students. Equip this sample space S with a
probability P such that each sample point has the same probability (of 1

100). Let E be the set of
mathematics-majored students and F = Ec be the set of CS-majored students.

Suppose that the class of Introduction to Probability is consisted of four mathematics-majored
students and six CS-majored students, denoted by the set G. Then

(a).

P (E|G) =
P (E ∩G)

P (G)
=
|E ∩G|
|G|

=
4

10
= 0.4,

which indicates that on the condition that a student enrolls the class, the conditional probability
that she is mathematics-majored is 0.4. Equivalently, the class G is now the new sample space and

iJacob Bernoulli, Ars Conjectandi. (1713).

19
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the conditional probability of E is basically the probability that a student is mathematics-majored
in this sample space.

(b).

P (F |G) =
P (F ∩G)

P (G)
=
|F ∩G|
|G|

=
6

10
= 0.6,

which indicates that on the condition that a student enrolls the class, the conditional probability
that she is CS-majored is 0.6. Equivalently, the class G is now the new sample space and the
conditional probability of F is basically the probability that a student is CS-majored in this
sample space.

(c).

P (G|E) =
P (G ∩ E)

P (E)
=
|G ∩ E|
|E|

=
4

20
= 0.2,

which indicates that on the condition that a student is mathematics-majored, the conditional
probability that she enrolls the class is 0.2. Equivalently, the mathematics department E is now
the new sample space and the conditional probability of G is basically the probability that a
student enrolls the class in this sample space.

(d).

P (G|F ) =
P (G ∩ F )

P (F )
=
|G ∩ F |
|F |

=
6

80
= 0.075,

which indicates that on the condition that a student is CS-majored, the probability that she
enrolls the class is 0.075. Equivalently, the CS department F is now the new sample space and
the conditional probability of G is basically the probability that a student enrolls the class in this
sample space.

Remark. Let E ⊂ F such that P (F ), P (F c) > 0. Since E ∩ F = E,

P (F |E) =
P (F ∩ E)

P (E)
=
P (E)

P (E)
= 1,

that is, the conditional probability of F given that E has occurred is 1. This is natural since E ⊂ F
means that if E has occurred, then F occurs.

On the other hand, since E ∩ F c = ∅,

P (E|F c) =
P (E ∩ F c)
P (F c)

=
P (∅)
P (F c)

= 0,

that is, the conditional probability of E occurs given that F c has occurred (i.e., F has not occurred) is
0. This is again natural since E ⊂ F , F c ⊂ Ec. So if F c has occurred, then Ec occurs, hence E does
not occur.

Proposition 3.1. Let E,F ⊂ S. Then

P (E ∩ F ) = P (E|F )P (F ).

More generally, for E1, ..., En ⊂ S,

P (E1 ∩ · · · ∩ En) = P (E1)P (E2|E1)P (E3|E1 ∩ E2) · · ·P (En|E1 ∩ · · · ∩ En−1) .

This proposition offers a useful method to compute probabilities, especially in the case when the
sample space is difficult to determine, but the conditional probabilities can be found more easily (be-
cause the new sample spaces in the conditional probability are easy to describe.)

Example. Four of the eight teams in the quarterfinal round of the 2023 European Champions
League Football tournament were the acknowledged strong teams Real Madrid, Bayern Munich, Milan,
and Inter. All possible pairings in this round are equally likely. Find the probability that none of the
strong teams play each other.
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• Method I without conditional probability: Let a1, a2, a3, a4, b1, b2, b3, b4 denote the eight teams,
in which a1, a2, a3, a4 are the strong teams and b1, b2, b3, b4 are the weak teams. Let S be the sample
space of outcomes. Each outcome is an arrangement of the eight teams into four pairs:

x1 x2 x3 x4
l l l l
y1 y2 y3 y4

in which x1, x2, x3, x4, y1, y2, y3, y4 are placeholders that are taken by the eight teams.
To determine an outcome, we first select four teams to occupy x1, x2, x3, x4, which are

(
8
4

)
ways,

then we select their opponents (i.e., to occupy y1, y2, y3, y4), which are 4! ways. But there are 24 ways
to produce the same outcome in pairing, each of which corresponds to a switch of places between x1
and y1, x2 and y2, x3 and y3, x4 and y4. Therefore, the number of outcomes in the sample space S is

|S| =
(
8
4

)
· 4!

24
= 105.

Let E be the event that strong teams do not play each other, i.e., strong teams play weak teams. To
determine an outcome in E, we let x1 = a1, x2 = a2, x3 = a3, and x4 = a4, then we select their
opponents from the four weak teams (i.e., to occupy y1, y2, y3, y4), which corresponds to a permutation
of four objects. Hence, there are 4! = 24 outcomes in E. Therefore,

P (E) =
|E|
|S|

=
24

105
=

8

35
≈ 0.229.

• Method II with conditional probability: For i = 1, 2, 3, 4, let Ei be the event that the strong team
ai plays one of the four weak teams. Then the event that strong teams do not play each other, i.e.,
strong teams play weak teams, is E1 ∩ E2 ∩ E3 ∩ E4. Hence,

P (E1 ∩ E2 ∩ E3 ∩ E4)

= P (E1)P (E2|E1)P (E3|E1 ∩ E2)P (E4|E1 ∩ E2 ∩ E3)

=
4

7
· 3

5
· 2

3
· 1

1

=
8

35
,

which follows by examining the conditional probabilities.

(a). Since there are four weak teams out of seven (i.e., the eight teams minus a1), the probability
P (E1) = 4

7 .
(b). On the condition that a1 has been assigned a weak team, there are three weak teams out of five (i.e.,

the eight teams minus a1 and its opponent, and a2). The conditional probability P (E2|E1) = 3
5 .

(c). On the condition that a1 and a2 have been assigned two weak teams, there are two weak teams
out of three (i.e., the eight teams minus a1 and its opponent, a2 and its opponent, and a3). The
conditional probability P (E3|E1 ∩ E2) = 2

3 .
(d). On the condition that a1, a2, a3 have been assigned three weak teams, there is one weak team out

of one (i.e., the eight teams minus a1 and its opponent, a2 and its opponent, a3 and its opponent,
and a4). The conditional probability P (E4|E1 ∩ E2 ∩ E3) = 1

1 .

Theorem 3.2 (Bayes’ formulai). Let E,F ⊂ S such that P (F ), P (F c) > 0. Then

P (E) = P (E|F )P (F ) + P (E|F c)P (F c) = P (E|F )P (F ) + P (E|F c) (1− P (F )) ,

that is, the probability of E is the sum of the conditional probability of E for given F and the conditional
probability of E for given F c.

iThomas Bayes, An essay towards solving a problem in the doctrine of chances. (1763).
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Proof. Since E is a disjoint union of E ∩ F and E ∩ F c,
P (E) = P (E ∩ F ) + P (E ∩ F c)

= P (E|F )P (F ) + P (E|F c)P (F c)

= P (E|F )P (F ) + P (E|F c) (1− P (F )) .

�

3.2. Independence

Definition (Independence). Let E,F ⊂ S such that P (F ) > 0. We say that E is independent of
F , if

P (E|F ) = P (E),

or equivalently,
P (E ∩ F ) = P (E)P (F ).

Remark. If E is independent of F and P (E) > 0, then P (E ∩ F ) = P (E)P (F ) so

P (F |E) =
P (F ∩ E)

P (E)
=
P (F )P (E)

P (E)
= P (F ),

which means that F is independent of E. Therefore, we can say that E and F are independent.

Proposition 3.3. Let E and F be independent. Then E and F c are independent.

Proof. Since E is a disjoint union of E ∩ F and E ∩ F c,
P (E) = P (E ∩ F ) + P (E ∩ F c)

= P (E)P (F ) + P (E ∩ F c) ,
in which we used the fact that E and F are independent so P (E ∩ F ) = P (E)P (F ). Therefore,

P (E ∩ F c) = P (E)− P (E)P (F ) = P (E) (1− P (F )) = P (E)P (F c) ,

which means that E and F c are independent. �

Remark. Let E,F ⊂ S such that E is independent of F . Then it follows that E and F are
independent, E and F c are independent, and Ec and F c are independent. That is, knowing that E has
occurred (or has not) occurred does not change the probability of occurrence of F (or F c), and vice
versa. This explains the meaning of “Two events occur independently.”

Remark. Independence and mutual exclusiveness are different concepts. On one hand, two mutu-
ally exclusive events are dependent. Indeed, knowing that one event has occurred changes the proba-
bility of the occurrence of the other to 0, since they are mutually exclusive.

On the other hand, two independent events E and F are in general not mutually exclusive. Indeed,
since E ∩ F = ∅, we have that P (E ∩ F ) = P (E)P (F ) only if P (E) = 0 or P (F ) = 0.

Example. Suppose that the College of Mathematics and Computer Science (CS) is consisted of
20 mathematics-majored students and 80 CS-majored students. Equip this sample space S with a
probability P such that each sample point has the same probability (of 1

100). Let E be the set of
mathematics-majored students and F = Ec be the set of CS-majored students. Then

P (E) =
|E|
|S|

=
20

100
= 0.2 and P (F ) =

|F |
|S|

=
80

100
= 0.8.

Notice that since E ∩ F = ∅, E and F are mutually exclusive, and P (E|F ) = P (E∩F )
P (F ) = 0, which does

not equal P (E) = 0.2. This indicates that E and F are dependent. Indeed, knowing that a student is
CS-majored changes the probability of she being mathematics-majored (from 0.2) to 0, and vice versa.
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Situation I. Suppose that the class of Introduction to Probability is consisted of two mathematics-
majored students and eight CS-majored students, denoted by the set G. Then

P (G) =
|G|
|S|

=
10

100
= 0.1.

(a).

P (E|G) =
P (E ∩G)

P (G)
=
|E ∩G|
|G|

=
2

10
= 0.2 = P (E),

which indicates that E is independent of G. That is, knowing that a student enrolls the class does
not change the probability of she being mathematics-majored (in the College).

(b).

P (F |G) =
P (F ∩G)

P (G)
=
|F ∩G|
|G|

=
8

10
= 0.8 = P (F ),

which indicates that F and G are independent. That is, knowing that a student enrolls the class
does not change the probability of she being CS-majored (in the College).

(c).

P (G|E) =
P (G ∩ E)

P (E)
=
|G ∩ E|
|E|

=
2

20
= 0.1 = P (G),

which indicates that G is independent of E. That is, knowing that a student is mathematics-
majored does not change the probability of she enrolling the class.

(d).

P (G|F ) =
P (G ∩ F )

P (F )
=
|G ∩ F |
|F |

=
8

80
= 0.1 = P (G),

which indicates that G is independent of E. That is, knowing that a student is CS-majored does
not change the probability of she enrolling the class.

In Situation I, we also verify Bayes’ formula, noting that Ec = F :

P (G) = P (G|E)P (E) + P (G|F )P (F ) = 0.1 · 0.2 + 0.1 · 0.8 = 0.1.

Situation II. Suppose that the class of Introduction to Probability is consisted of four mathematics-
majored students and six CS-majored students, denoted by the set G. Then

P (G) =
|G|
|S|

=
10

100
= 0.1.

(a).

P (E|G) =
P (E ∩G)

P (G)
=
|E ∩G|
|G|

=
4

10
= 0.4 6= P (E) = 0.2,

which indicates that E is dependent of G. That is, knowing that a student enrolls the class changes
the probability of she being mathematics-majored. Indeed, this knowledge increases the probability
from 0.2 to 0.4, i.e., a student in the class is more likely mathematics-majored (compared with a
student from the College).

(b).

P (F |G) =
P (F ∩G)

P (G)
=
|F ∩G|
|G|

=
6

10
= 0.6 6= P (F ) = 0.8,

which indicates that F and G are dependent. That is, knowing that a student enrolls the class
changes the probability of she being CS-majored. Indeed, this knowledge reduces the probability
from 0.8 to 0.6, i.e., a student in the class is less likely CS-majored (compared with a student from
the College).
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(c).

P (G|E) =
P (G ∩ E)

P (E)
=
|G ∩ E|
|E|

=
4

20
= 0.2 6= P (G) = 0.1,

which indicates that G is dependent of E. That is, knowing that a student is mathematics-majored
changes the probability of she enrolling the class. Indeed, this knowledge increases the probability
from 0.1 to 0.2, i.e., a mathematics-majored student is more likely to enroll the class (compared
with a student from the College).

(d).

P (G|F ) =
P (G ∩ F )

P (F )
=
|G ∩ F |
|F |

=
6

80
= 0.075 6= P (G) = 0.1,

which indicates that G is dependent of E. That is, knowing that a student is CS-majored changes
the probability of she enrolling the class. Indeed, this knowledge reduces the probability from 0.1
to 0.075, i.e., a CS-majored student is less likely to enroll the class (compared with a student from
the College).

In Situation II, we also verify Bayes’ formula, noting that Ec = F :

P (G) = P (G|E)P (E) + P (G|F )P (F ) = 0.2 · 0.2 + 0.075 · 0.8 = 0.1.

Definition. Let E,F,G ⊂ S. We say that E,F,G are pairwise independent if

P (E ∩ F ) = P (E)P (F ), P (E ∩G) = P (E)P (G), P (F ∩G) = P (F )P (G),

and if, in addition,
P (E ∩ F ∩G) = P (E)P (F )P (G).

then we say that they are independent.

Example. Consider two independent tosses of a fair coin. Then the sample space is

S = {(h, h), (h, t), (t,h), (t, t)} .
Let A be the event that the first toss results in heads, let B be the event that the second toss results
in heads, and let C be the event that in both tosses the coin lands on the same side. Then

A = {(h,h), (h, t)} , B = {(h, h), (t,h)} , C = {(h,h), (t, t)} ,
each of which has probability 1

2 . In addition,

A ∩B = {(h,h)} , A ∩ C = {(h,h)} , B ∩ C = {(h,h)} .
each of which has probability 1

4 . This shows that A,B,C are pairwise independent. However,

A ∩B ∩ C = {(h,h)} ,
whose probability is 1

4 , and is not equal to

P (A)P (B)P (C) =
1

2
· 1

2
· 1

2
=

1

8
.

This shows that A,B,C are dependent. This is reflected in the fact that knowing A and B changes the
probability of C (to 1).

The concept of independence can be generalized to any collection of events:

Definition. Let E1, ..., En ⊂ S. We say that E1, ..., En are pairwise independent if

P (Ei ∩ Ej) = P (Ei)P (Ej) for all i, j = 1, ..., n.

If for each sub-collection of sets Ei1 , ..., Eik ,

P (Ei1 ∩ · · · ∩ Eik) = P (Ei1) · · ·P (Eik) .

then we say that they are independent.
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3.3. Independent trials

The notion of independence enables us to formulate analytically the intuitive concept of “indepen-
dent experiments”.

Example. Consider two experiments, first of which is a toss of a fair coin and second is a roll of a
fair die. Then the probability space for the first experiment is S1 = {h, t} equipped with a probability
P1 that P1({h}) = P1({t}) = 1

2 and the second is S2 = {1, 2, 3, 4, 5, 6} equipped with a probability P2

that P2({1}) = P2({2}) = P2({3}) = P2({4}) = P2({5}) = P2({6}) = 1
6 . Hence, the sample space for

two experiments is

S = {(s1, s2) : s1 ∈ {h, t}, s2 ∈ {1, 2, 3, 4, 5, 6}} = S1 × S2.
The two experiments are independent, if the outcomes of the first experiment do not change the chances
of the outcomes in the second one, and vice versa. Hence, as an example, the event that that the first
toss lands on heads and the second lands on 1 is represented by {(h, 1)}, which has probability 1

2 ·
1
6 = 1

12 .

Indeed, we say that the two experiments are independent if S is equipped with a probabilityi P
that is defined by

P ({s1, s2}) = P1 ({s1})P2 ({s2}) =
1

12
for all s1 ∈ S1, s2 ∈ S2.

In particular, the probabilities of the events in each experiment stay the same, independent of the other
one, for instance,

E = {(h, 1), (h, 2), (h, 3), (h, 4), (h, 5), (h, 6)}
represents the event that the first experiment lands on heads. It has probability P (E) = 6

12 = 1
2 , which

coincides with the one in the single-round experiment of tossing a fair coin.

We make a direct generalization of the example above: For each i = 1, ..., n, perform an experiment
with outcomes in a finite probability space Si equipped with a probability Pi. Consider the sample
space

S = {(s1, ..., sn) : s1 ∈ S1, ..., sn ∈ Sn} = S1 × · · · × Sn.
We say that the experiments are independent if S is equipped with a probability P that is defined by

P ({s1, ..., sn}) = P1 ({s1}) · · ·Pn ({sn}) for all s1 ∈ S1, ..., sn ∈ Sn.
If Si and Pi are identical for all i = 1, ..., n, then the experiments are said to be independent trials.

Proposition 3.4. Suppose that n independent experiments are performed with respect to probability
spaces Si equipped with probabilities Pi, i = 1, ..., n. Assume that Ei is an event that only depends on
the i-th experiment, i = 1, ..., n. Then E1, ..., En are independent.

Example (Independent tosses of a coin). Consider n independent tosses of a coin, which lands on
heads with probability p. Then the sample space

S = {(s1, ..., sn) : s1, ..., sn ∈ {h, t}}
is equipped with a probability P such that

P ({s1, ..., sn}) = P ({s1}) · · ·P ({sn}) for all s1, ..., sn ∈ {h, t}.
Here, P ({si}) = p if si = h and P ({si}) = 1− p if si = t. We can then derive the probabilities of any
event in these experiments. For example, let E be the event that exactly r heads are obtained. Then

P (E) =

(
n

r

)
pr(1− p)n−r.

Indeed, each outcome in E corresponds to a selection of r members out of s1, ..., sn, in which heads are
obtained so the remaining ones obtain tails. There are

(
n
r

)
such outcomes, each of which has a chance

of pr(1− p)n−r, since there are r heads and n− r tails.

iStrictly speaking, we would need to verify that the function here indeed defines a probability, that is, it
satisfies the three axioms in Chapter 2.
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Remark (Bernoulli trialsi). The coin toss above is an example of Bernoulli trials: Repeated in-
dependent trials such that there are only two possible outcomes for each trial and their probability
remain the same throughout the trials. Such examples, in addition to the coin toss, include success or
failure of a medicine trial, boy or girl of a newborn, etc.

Homework Assignment .

Question 3.1. The probability that a new car battery functions for more than 10,000 miles is 0.8,
the probability that it functions for more than 20,000 miles is 0.4, and the probability that it functions
for more than 30,000 miles is 0.1. If a new car battery is still working after 10,000 miles, what is the
probability that

(a). its total life will exceed 20,000 miles?
(b). its additional life will exceed 20,000 miles?

Answer. Let E denote the event that a new car battery functions for more than 10,000 miles, F
denote the event that a new car battery functions for more than 20,000 miles, and G denote the event
that a new car battery functions for more than 30,000 miles. Then P (E) = 0.8, P (F ) = 0.4, and
P (G) = 0.1.

(a). The required is the conditional probability

P (F |E) =
P (F ∩ E)

P (E)
=
P (F )

P (E)
=

0.4

0.8
=

1

2
,

in which we used the fact that F ⊂ E.
(b). The required is the conditional probability

P (G|E) =
P (G ∩ E)

P (E)
=
P (G)

P (E)
=

0.1

0.8
=

1

8
,

in which we used the fact that G ⊂ E.

Question 3.2. As a simplified model for weather forecasting, suppose that the weather (either wet
or dry) tomorrow will be the same as the weather today with probability p. Suppose that is dry on
January 1.

(a). Show that Pn, the probability that it will be dry n days later, satisfies p0 = 1 and

Pn = (2p− 1)Pn−1 + (1− p) for n ≥ 1.

(b). Using Part (a) and by mathematical induction, show that

Pn =
1

2
+

1

2
(2p− 1)n for n ≥ 0.

Answer. (a). On the condition that n−1 days later is dry (with probability Pn−1), the conditional
probability that the n days later is dry is p; on the condition that n − 1 days later is wet (with
probability 1− Pn−1), the conditional probability that the n days later is dry is 1− p. Hence, by
Bayes’ formula,

Pn = p · Pn−1 + (1− p) · (1− Pn−1) = (2p− 1)Pn−1 + (1− p).
(b). To prove the formula for Pn by mathematical induction, first notice that when n = 0,

P0 =
1

2
+

1

2
(2p− 1)0 =

1

2
+

1

2
= 1.

Assume the formula for n− 1. Then

Pn = (2p− 1)Pn−1 + (1− p)

= (2p− 1)

(
1

2
+

1

2
(2p− 1)n−1

)
+ (1− p)

iJacob Bernoulli, Ars Conjectandi. (1713).
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=
1

2
(2p− 1) +

1

2
(2p− 1)n + (1− p)

=
1

2
+

1

2
(2p− 1)n .

Question 3.3. Consider n independent tosses of a coin, which lands on heads with probability p.
How large need n be so that the probability of obtaining at least one head is at least 1

2?

Answer. The probability that there is no heads in n independent tosses is (1−p)n. Therefore, the
probability of obtaining at least one head is 1− (1− p)n. It is at least 0.5, if

1− (1− p)n ≥ 1

2
,

which solves to

n ≥ − log 2

log(1− p)
.

Question 3.4. Independent trials that result in a success with probability p are successively per-
formed for n times. Let 0 ≤ r ≤ n. Find the probability that exactly r successes are obtained.

Answer. There are r successes and n− k failures. Therefore, the required probability is(
n

r

)
pr(1− p)n−r.

Question 3.5. Independent trials that result in a success with probability p are successively per-
formed until a total of r successes is obtained.

(a). Find the probability that exactly n trails are required.
(b). Find the probability that r successes occur before m failures.

Answer.

(a). In order for it to take n trails to obtain r successes, the n-th trial must be a success, and there
must be r − 1 successes and (n− 1)− (r − 1) = n− r failures in the first n− 1 trials. Therefore,
the probability is

p ·
(
n− 1

r − 1

)
pr−1(1− p)n−r =

(
n− 1

r − 1

)
pr(1− p)n−r.

(b). To have r successes before m failures, the minimal number of trials to run is r (i.e., there are no
failures), while the maximal number of trials is m + r − 1 (i.e., there are r successes and m − 1
failures). Therefore, the required probability is

m+r−1∑
n=r

(
n− 1

r − 1

)
pr(1− p)n−r.



CHAPTER 4

Discrete random variables

La vie n’est bonne qu’à deux choses: découvrir les mathématiques et enseigner les mathématiques.
[Life is good for only two things: discovering mathematics and teaching mathematics.]

Siméon Denis Poisson (1781–1840)

In this chapter, we define the random variables, the basic object in the probability theory. Through
the discrete random variables we introduce the most fundamental concepts in the probability theory:
expectation (i.e., mean), median, variance, standard deviation, and moments. These quantities provide
the information on the statistical analysis of a random variable, in terms of the distribution of the
values.

Three important random variables are discussed: binomial, Poisson, and geometric. These random
models have a great variety of applications to a diverse fields. Provided certain parameters, the expec-
tation, median, variance, standard deviation, moments, and their value distribution can be completely
determined, which then supply critical information in the applications.

Definition (Random variables). A random variable is a function on a probability space.

Let S be a discrete probability space with a probability P throughout this chapter. Then any
random variable on S can only take a discrete set of possible values, that is, it is a discrete random
variable.

4.1. Examples

Example. Suppose that the class of Introduction to Probability is consisted of 10 students. Equip
this sample space S with a probability P such that each sample point has the same probability (of
1
10). Let X denote the score a student obtained in Test 1. Then X is a random variable tak-
ing one of the values in {0, ..., 40}. (The full score is 40.) Assume that the scores of Test 1 are
33, 17, 32, 38, 32, 23, 32, 38, 40, 23. Then

P (X = 17) =
1

10
= 0.1,

P (X = 23) =
2

10
= 0.2,

P (X = 32) =
3

10
= 0.3,

P (X = 33) =
1

10
= 0.1,

P (X = 38) =
2

10
= 0.2,

P (X = 40) =
1

10
= 0.1,

and P (X = i) = 0 for i 6= 17, 23, 32, 33, 38, 40. Notice that

40∑
i=0

P (X = i) = 1,

28
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in which X = i, i ∈ N, provide a disjoint partition of the sample space S.

Remark. Recall that for a function X : S → R, X = i denotes the inverse image of {x}, i.e.,
X−1({i}) = {s ∈ S : X(s) = i}, see Chapter 1.

Definition (Probability mass function). Let X be a random variable on S. The probability mass
function of X is defined as

p(x) = P (X = x).

Example. Consider three independent tosses of a fair coin. Then the sample space

S = {(s1, s2, s3) : s1, s2, s3 ∈ {h, t}}
has size eight. Let X denote the number of heads that appear. Then X is a random variable taking
one of the values 0, 1, 2, 3 with probabilities

p(0) = P (X = 0) = P ({(t, t, t)}) =
1

8
,

p(1) = P (X = 1) = P ({(h, t, t), (t,h, t), (t, t, h)}) =
3

8
,

p(2) = P (X = 2) = P ({(t,h,h), (h, t,h), (h,h, t)}) =
3

8
,

p(3) = P (X = 3) = P ({(h, h, h)}) =
1

8
.

Notice that

p(0) + p(1) + p(2) + p(3) = P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) = 1,

in which X = i, i = 0, 1, 2, 3, provide a disjoint partition of the sample space S.

Example (Binomial random variable). Consider n independent tosses of a coin, which lands on
heads with probability p. Then the sample space

S = {(s1, ..., sn) : s1, ..., sn ∈ {h, t}} .
Let X denote the number of heads that appear. Then X is a random variable taking one of the values
0, 1, ..., n with probabilities

p(i) = P (X = i) =

(
n

i

)
pi(1− p)n−i, i = 0, 1, ..., n.

Notice that
n∑
i=0

p(i) =

n∑
i=0

P (X = i) =

n∑
i=0

(
n

i

)
pi(1− p)n−i = (p+ (1− p))n = 1,

in which X = i, i = 0, 1, ..., n, provide a disjoint partition of the sample space S. Here, we used the
binomial formula in Theorem 1.4 that

(x+ y)n =

n∑
i=0

(
n

i

)
xiyn−i,

in which we set x = p and y = 1− p in the formula.

Example (Poisson random variablei). Set λ > 0. We say that X is a Poisson random variable with
parameter λ, if

p(i) = P (X = i) =
λie−λ

i!
for all i = 0, 1, ...

iSiméon Denis Poisson, Recherches sur la probabilité des jugements en matière criminelle et en matière civile.
[Research on the probability of judgments in criminal and civil matters]. (1837).
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Notice that
∞∑
i=0

p(i) =

∞∑
i=0

P (X = i) = e−λ
∞∑
i=0

λi

i!
= e−λ · eλ = 1.

Here, we used the Taylor expansion of eλ that

eλ =

∞∑
i=0

λi

i!
.

Example (Geometric random variable). Consider independent tosses of a coin, which lands on
heads with probability p. Let X denote the number of times the coin is tossed until the a head occurs.
Then X is a random variable on the sample space

S = {(s1), (s1, s2), (s1, s2, s3), ... : s1, s2, .... ∈ {h, t}} .
For i = 1, ..., n, X takes value i with probabilities

p(i) = P (X = i) = (1− p)i−1p.
Notice that

∞∑
i=1

p(i) =
∞∑
i=1

P (X = i) = p
∞∑
i=1

(1− p)i−1 = p · 1

1− (1− p)
= 1,

in which X = i, i ∈ N, provide a disjoint partition of the sample space S. Here, we used the summation
formula for a geometric series that

∞∑
i=1

ri =
1

1− r
,

in which we set r = 1− p.

4.2. Expectation

Definition (Expectation). Let X be a random variable on S. Then the expectation (or expected
value, mean) of X is defined as

E[X] =
∑
s∈S

X(s) · P ({s}) =
∑

x∈X(S)

x · p(x).

Remark. The first summation above is with respect to all sample points {s} ⊂ S, while the second
one all possible values of the random variable x ∈ X(S). Notice that {s}, s ∈ S, provide a disjoint
partition of S, and X = x, x ∈ X(S), also provides a disjoint partition of S. Hence,∑

s∈S
P ({s}) =

∑
x∈X(S)

p(x) = P (S) = 1.

Moreover, one only needs to include the terms in the summations which have non-zero probabilities:

E[X] =
∑

P ({s})>0

X(s) · P ({s}) =
∑
p(x)>0

y · p(x).

Proposition 4.1. Let X be a random variable on a finite probability space S. Then

min
s∈S
{X(s)} ≤ E[X] ≤ max

s∈S
{X(s)}.

Proof. Write M = maxs∈S{X(s)}. Then

E[X] =
∑

x∈X(S)

x · p(x) ≤
∑

x∈X(S)

M · p(x) = M
∑

x∈X(S)

x · p(x) = M.

Similarly, write m = mins∈S{X(s)}. Then

E[X] =
∑

x∈X(S)

x · p(x) ≥
∑

x∈X(S)

m · p(x) = m
∑

x∈X(S)

x · p(x) = m.
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�

Remark. We point out that E[X] = min iff X = min almost surely, i.e., X = min except possibly
on a subset with probability 0. Similarly, E[X] = max iff X = max almost surely.

Definition (Median). Let X be a random variable on a probability space S. We say that m ∈ R
is a median of X, if

P (X ≥ m) ≥ 1

2
and P (X ≤ m) ≥ 1

2
.

Notice that a median of a random variable is also bounded between the maximal and minimal
values. It equals the maximal or minimal value iff the random variable is almost surely constant.
However, it may not be unique. See below.

Example. Suppose that the class of Introduction to Probability is consisted of 10 students. Equip
this sample space S with a probability P such that each sample point has the same probability (of
1
10). Assume that the scores of Test 1 are 33, 17, 32, 38, 32, 23, 32, 38, 40, 23. Let X denote the score a
student obtained in Test 1. Then X is a random variable whose expectation

E[X] =
∑
s∈S

X(s) · P ({s})

= 33 · 1

10
+ 17 · 1

10
+ 32 · 1

10
+ 38 · 1

10
+ 32 · 1

10

+23 · 1

10
+ 32 · 1

10
+ 38 · 1

10
+ 40 · 1

10
+ 23 · 1

10

=
33 + 17 + 32 + 38 + 32 + 23 + 32 + 38 + 40 + 23

10
= 30.8.

On the other hand, X takes values in 17, 23, 32, 33, 38, 40. So

E[X] =
∑

x∈X(S)

x · p(x)

= 17 · 1

10
+ 23 · 2

10
+ 32 · 3

10
+ 33 · 1

10
+ 38 · 2

10
+ 40 · 1

10
= 30.8.

In this model, the expectation is simply the mean. To find a median, we arrange the values of X in
the increasing order: 17, 23, 23, 32, 32, 32, 33, 38, 38, 40. Then the median is 32 (and is unique).

Example (Constant random variable). Suppose that the class of Introduction to Probability is
consisted of 10 students. Equip this sample space S with a probability P such that each sample point
has the same probability (of 1

10). Assume each student attempted all eight questions in Test 1. Let
X denote the score a student obtained in Test 1. Then X is a random variable whose expectation
E[X] = 8, and so is the median. They equal the maximal value 8 of X and X(s) = 8 for all s ∈ S.
This is an example of a constant random variable that it takes only one value.

Example. Consider three independent tosses of a fair coin. Then the sample space

S = {(s1, s2, s3) : s1, s2, s3 ∈ {h, t}}
has size eight. Let X denote the number of heads that appear. Then X is a random variable whose
expectation

E[X] =
∑
s∈S

X(s) · P ({s})

= 0 · 1

8
+ 1 · 1

8
+ 1 · 1

8
+ 1 · 1

8
+ 2 · 1

8
+ 2 · 1

8
+ 2 · 1

8
+ 3 · 1

8
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=
0 + 1 + 1 + 1 + 2 + 2 + 2 + 3

8

=
3

2
.

On the other hand, X takes values in 0, 1, 2, 3. So

E[X] =
∑

x∈X(S)

x · p(x)

= 0 · P (X = 0) + 1 · P (X = 1) + 2 · P (X = 2) + 3 · P (X = 3)

= 0 · 1

8
+ 1 · 3

8
+ 2 · 3

8
+ 3 · 1

8

=
3

2
.

To find a median, we arrange the values of X in the increasing order: 0, 1, 1, 1, 2, 2, 2, 3. Then any
number m ∈ [1, 2] is a median (and is not unique), e.g., 1, 1.4, 1.5, 1.6, 2.

Example. Casino offers a game of three independent tosses of a fair coin. It takes one dollari to
play a round, after which the player gets a reward of six dollars if three heads appear and nothing
otherwise. Let X denote the number of dollars the player gets. Then X is a random variable taking
one of values 0, 6 with probabilities p(0) = 7

8 , p(6) = 1
8 . The expectation

E[X] = 0 · p(0) + 6 · p(6) =
6

8
= 0.75.

Therefore, if the game is played for a great many rounds, say n rounds, then the casino makes a profit
which tends to n− 0.75n = 0.25n dollars.

Example. Consider n independent tosses of a fair coin. Let X denote the number of heads that
appear. Then X is a random variable whose expectation

E[X] =
n∑
i=0

i · p(i)

=
n∑
i=0

i

(
n

i

)(
1

2

)i(
1− 1

2

)n−i
=

(
1

2

)n n∑
i=1

n!

(i− 1)!(n− i)!

= n

(
1

2

)n n−1∑
j=0

(n− 1)!

j!(n− 1− j)!

= n

(
1

2

)n n−1∑
j=0

(
n− 1

j

)

= n

(
1

2

)n
· 2n−1

=
n

2
.

Proposition 4.2. Let X be a random variable on S. Suppose that a, b ∈ R. Then aX + b is also
a random variable on S, whose expectation

E[aX + b] = aE[X] + b.

iWe can interpret the number of dollar the player pays as a constant random variable which take only one
value of 1.
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Proof. Compute that

E[aX + b] =
∑
s∈S

(aX + b)(x) · P ({s})

= a
∑
s∈S

X(s) · P ({s}) + b
∑
s∈S

P ({s})

= aE[X] + b.

�

Example. Suppose that the class of Introduction to Probability is consisted of 10 students. Equip
this sample space S with a probability P such that each sample point has the same probability (of
1
10). Assume that the scores of Test 1 are 33, 17, 32, 38, 32, 23, 32, 38, 40, 23. Let X denote the score a
student obtained in Test 1. Then X is a random variable with expectation E[X] = 30.8.

(a). 0.9X + 4 is a random variable whose expectation

E[0.9X + 4] = (0.9 · 33 + 4) · 1

10
+ (0.9 · 17 + 4) · 1

10
+ (0.9 · 32 + 4) · 1

10

+(0.9 · 38 + 4) · 1

10
+ (0.9 · 32 + 4) · 1

10
+ (0.9 · 23 + 4) · 1

10

+(0.9 · 32 + 4) · 1

10
+ (0.9 · 38 + 4) · 1

10
+ (0.9 · 40 + 4) · 1

10

+(0.9 · 23 + 4) · 1

10

=
33.7 + 19.3 + 32.8 + 38.2 + 32.8 + 24.7 + 32.8 + 38.2 + 40 + 24.7

10
= 31.72,

which coincides with
0.9E[X] + 4 = 0.9 · 30.8 + 4 = 31.72.

(b).
√

40X is a random variable whose expectation

E
[√

40X
]

=
√

40 · 33 · 1

10
+
√

40 · 17 · 1

10
+
√

40 · 32 · 1

10
+
√

40 · 38 · 1

10
+
√

40 · 32 · 1

10

+
√

40 · 23 · 1

10
+
√

40 · 32 · 1

10
+
√

40 · 38 · 1

10
+
√

40 · 40 · 1

10
+
√

40 · 23 · 1

10

=
36.3 + 26.1 + 35.8 + 39.0 + 35.8 + 30.3 + 35.8 + 39.0 + 40 + 30.3

10
= 34.8.

But √
40 · E[X] =

√
40 · 30.8 ≈ 35.1.

Example. Consider three independent tosses of a fair coin. Then the sample space

S = {(s1, s2, s3) : s1, s2, s3 ∈ {h, t}}
has size eight. Let X denote the number of heads that appear. Then X is a random variable with
expectation 3

2 . Now X2 is a random variable whose expectation

E
[
X2
]

= 02 · p(0) + 12 · p(1) + 22 · p(2) + 32 · p(3)

= 0 · 1

8
+ 1 · 3

8
+ 4 · 3

8
+ 9 · 1

8
= 3.
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But

E[X]2 =

(
3

2

)2

=
9

4
.

Remark. The proposition and examples above indicate that taking the expectation E commutes
with linear operators X → aX + b. However, it does not commute with nonlinear operators such as
X →

√
X and X → X2.

4.3. Variance

Definition (Variance). Let X be a random variable. Write µ = E[X]. The variance of X is defined
as

Var[X] = E
[
(X − µ)2

]
,

which is usually denoted by σ2. The standard derivation is defined as σ =
√

Var[X].

Remark. The variance is the expectation of the square of the distance between values of a random
variable and its expectation. Therefore, the variance, as well as the standard deviation, measure how
much “on average” the values deviates from the expectation. In particular, Var[X] ≥ 0 and Var[X] = 0
iff X = µ almost surely.

Notice that taking expectation does not commute with taking squares:

E
[
(X − µ)2

]
6= E[X − µ]2.

Indeed, compute that

Var[X] = E
[
(X − µ)2

]
= E

[
X2 − 2µX + µ2

]
= E

[
X2
]
− 2µE[X] + E

[
µ2
]

= E
[
X2
]
− 2µ2 + µ2

= E
[
X2
]
− µ2.

Definition (Moments). Let X be a random variable. For n ∈ N, the n-th moment of X is defined
as E[Xn]. In particular, the first moment E[X] = µ is the expectation and the second moment E[X2]
is related to the variance Var[X] = σ2 via

E
[
X2
]

= σ2 + µ2.

Remark. Similar to the variance, the n-th moment of a random variable measures how much “on
average” its values deviate from the origin 0, weighted according to the n-th power of the distance with
0. These moments provide quantitative estimate of the deviation, in particular, higher the moments,
more weighted toward the values which are further deviated from 0.

Proposition 4.3. Let X be a random variable. Suppose that a, b ∈ R. Then aX + b is also a
random variable, whose variance is given by

Var[aX + b] = a2Var[X].

Proof. We know that E[aX + b] = aE[X] + b. Compute that

Var[aX + b] = E
[
((aX + b)− E[aX + b])2

]
= E

[
((aX + b)− (aE[X] + b))2

]
= E

[
(aX − aE[X])2

]
= a2E[(X − E[X])2]

= a2Var[X].

�
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Example. Suppose that the class of Introduction to Probability is consisted of 10 students. Equip
this sample space S with a probability P such that each sample point has the same probability (of
1
10). Assume that the scores of Test 1 are 33, 17, 32, 38, 32, 23, 32, 38, 40, 23. Let X denote the score a
student obtained in Test 1. Then X is a random variable whose expectation µ = E[X] = 30.8. On one
hand,

Var[X] = E
[
(X − µ)2

]
= (17− 30.8)2 · 1

10
+ (23− 30.8)2 · 2

10
+ (32− 30.8)2 · 3

10

+(33− 30.8)2 · 1

10
+ (38− 30.8)2 · 2

10
+ (40− 30.8)2 · 1

10
= 50.96.

On other other hand,

E
[
X2
]

= 172 · 1

10
+ 232 · 2

10
+ 322 · 3

10
+ 332 · 1

10
+ 382 · 2

10
+ 402 · 1

10
= 999.6.

So the variance of X
Var[X] = E

[
X2
]
− µ2 = 999.6− 30.82 = 50.96.

The standard deviation is
√

Var[X] ≈ 7.139. Moreover, the probability that the random variable X is

in the range E[X]±
√

Var[X], 30.8± 7.13, is 0.8.

Example. Consider three independent tosses of a fair coin. Let X denote the number of heads
that appear. Then X is a random variable with expectation µ = E[X] = 3

2 .

Var[X] = E
[
(X − µ)2

]
=

(
0− 3

2

)2

· 1

8
+

(
1− 3

2

)2

· 3

8
+

(
2− 3

2

)2

· 3

8
+

(
3− 3

2

)
· 1

8

=
3

4
.

On the other hand,

E
[
X2
]

= 02 · 1

8
+ 12 · 3

8
+ 22 · 3

8
+ 32 · 1

8
= 3.

So the variance of X

Var[X] = E
[
X2
]
− µ2 = 3−

(
3

2

)2

=
3

4
.

The standard deviation is
√

Var[X] ≈ 0.866. Moreover, the probability that the random variable X is

in the range E[X]±
√

Var[X], 1.5± 0.866, is 6
8 = 0.75.

Example. Consider n independent tosses of a fair coin. Let X denote the number of heads that
appear. Then X is a random variable with expectation µ = E[X] = n

2 . While

E
[
X2
]

=
n∑
i=0

i2 · p(i)

=
n∑
i=0

i2
(
n

i

)(
1

2

)i(
1− 1

2

)n−i
=

n∑
i=1

i · n!

(i− 1)!(n− i)!

(
1

2

)i(
1− 1

2

)n−i
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= n

n−1∑
j=0

(j + 1) · (n− 1)!

j!(n− 1− j)!

(
1

2

)j+1(
1− 1

2

)n−1−j

=
n

2

n−1∑
j=0

(j + 1) ·
(
n− 1

j

)(
1

2

)j (
1− 1

2

)n−1−j

=
n

2

n−1∑
j=0

(j + 1) · Pn−1(X = j)

=
n

2
En−1[X + 1]

=
n

2
(En−1[X] + 1)

=
n

2

(
n− 1

2
+ 1

)
=

n(n+ 1)

4
.

Hence, the variance of X

Var[X] = E
[
X2
]
− µ2 =

n(n+ 1)

4
−
(n

2

)2
=
n

4
.

4.4. Three random variables: binomial, Poisson, and geometric

In this section, we derive the expectations and variances of three important random variables:

Table 4.1. Table of expectations and variances of three discrete random variables
Random variable Probability mass function Expectation Variance

Binomial with parameter (n, p) p(i) =
(
n
i

)
pi(1− p)n−i for i = 0, ..., n np np(1− p)

Poisson with parameter λ p(i) = λie−λ

i! for i = 0, 1, ... λ λ

Geometric with parameter p p(i) = p(1− p)i−1 for i = 1, 2, ... 1
p

1−p
p2

In general, the variance of a random variable is more difficult to calculate than the expectation. –
It often requires an inductive argument on the parameters or on the moments. But the argument is not
unique. Indeed, in Chapter 6, we use a different (and much more simpler) argument involving multiple
(independent) random variables to derive expectation and variance of the binomial random variables,
see Propositions 6.7 and 6.13.

To simplify the notations, we denote
q = 1− p.

4.4.1. Binomial random variable. Consider n independent tosses of a coin, which lands on
heads with probability p. Let X denote the number of heads that appear. Then X is a binomial
random variable that

p(i) =

(
n

i

)
pi(1− p)n−i =

(
n

i

)
piqn−i for i = 0, ..., n.

Compute the expectation of X that

E[X] =
n∑
i=0

i · p(i)

=
n∑
i=0

i

(
n

i

)
piqn−i
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=
n∑
i=1

n!

(i− 1)!(n− i)!
piqn−i

= np
n∑
i=1

(n− 1)!

(i− 1)!(n− i)!
pi−1qn−i

= np
n−1∑
j=0

(
n− 1

j

)
pjqn−1−j

= np(p+ q)n−1

= np.

Compute the second moment of X that

E
[
X2
]

=

n∑
i=0

i2 · p(i)

=

n∑
i=0

i2
(
n

i

)
piqn−i

=

n∑
i=1

i · n!

(i− 1)!(n− i)!
· piqn−i

= n

n−1∑
j=0

(j + 1) · (n− 1)!

j!(n− 1− j)!
pj+1qn−1−j

= np
n−1∑
j=0

(j + 1) ·
(
n− 1

j

)
pjqn−1−j

= np

n−1∑
j=0

(j + 1) · Pn−1(X = j)

= npEn−1[X + 1]

= np (En−1[X] + 1)

= np ((n− 1)p+ 1)

= np(np− p+ 1).

Here, Pn−1 and En−1 refer to the probability and the expectation, respectively, of the binomial random
variable with parameter (n− 1, p).

Hence, the variance of X is given by

Var[X] = E
[
X2
]
− E[X]2 = np(np− p+ 1)− (np)2 = np(1− p).

4.4.2. Poisson random variable. Set λ > 0. Consider the Poisson random variable X with
parameter λ, that is,

p(i) =
λie−λ

i!
for i = 0, 1, ...

Compute the expectation of X that

E[X] =

∞∑
i=0

i · p(i)

=

∞∑
i=1

i · λ
ie−λ

i!
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= e−λ
∞∑
i=1

λi

(i− 1)!

= e−λ
∞∑
j=0

λj+1

j!

= λe−λ
∞∑
j=0

λj

j!

= λe−λ · eλ

= λ.

Compute the second moment of X that

E
[
X2
]

=
∞∑
i=0

i2 · p(i)

=
∞∑
i=1

i2 · λ
ie−λ

i!

= e−λ
∞∑
i=1

iλi

(i− 1)!

= e−λ
∞∑
j=0

(j + 1)λj+1

j!

= λ

 ∞∑
j=0

j · λ
je−λ

j!
+
∞∑
j=0

λje−λ

j!


= λ (E[X] + 1)

= λ(λ+ 1).

Hence, the variance of X is given by

Var[X] = E
[
X2
]
− E[X]2 = λ(λ+ 1)− λ2 = λ.

The Poisson random variable has a tremendous range of applications in diverse areas, because it can
be used as an approximation for a binomial random variable X with parameter (n, p) when is n large
and p is small enough so that λ = np is of moderate size. To see this,

P (X = 0) =

(
n

0

)
pn =

(
1− λ

n

)n
≈ e−λ = P (X = 0).

Since p ≈ 0 and q = 1− p ≈ 1,

P (X = i)

P (X = i− 1)
=

(
n
i

)
piqn−i(

n
i−1
)
pi−1qn−i+1

=
np− (i− 1)p

iq
≈ λ

i
.

Hence,

P (X = i) ≈ P (X = 0) · λ
1
· λ

2
· · · · λ

i
=
λie−λ

i!
.

We mention some examples of random variable that generally obey the Poisson probability law.

(a). The number of persons with the same birthday in a large group.
(b). The number of misprints on a page of a book.
(c). The number of people in a community who survive to an advanced age, say, 100.
(d). The number of customers entering a post office on a day.
(e). The number of α-particles discharged in a period of time from some radioactive material.
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We discuss the example of birthdays in more details.

Example. Suppose that the College of Mathematics and Computer Science is consisted of 500
students. Assume that there are 365 possible birthdays. We find the probability that exactly k students
have birthdays on February 26, using the binomial random variable with parameter (500, 1

365). Then

we find the approximation by the Poisson random variable with parameter 500
365 .

If the 500 people are chosen at random, we may apply the scheme of 500 Bernoulli trials with
probability of success p = 1

365 ≈ 0.00274 and probability of failure q = 1 − p = 364
365 ≈ 0.997, i.e.,

whether a person has birthday on February 26 or not.
On one hand, using the binomial random variable with parameters n = 500 and p, we derive the

required probability that exactly k have birthdays on February 26:(
n

k

)
pkqn−k.

On the other hand, using the Poisson approximation with parameter λ = np ≈ 1.370, we derive the
approximation:

λke−λ

k!
.

The following table describes the probability and its Poisson approximation that exactly k have birth-
days on February 26 for small k.

k 0 1 2 3 4 5 6
Binomial 0.2537 0.3484 0.2388 0.1089 0.0372 0.0101 0.0023
Poisson 0.2541 0.3481 0.2385 0.1089 0.0373 0.0102 0.0023

Figure 4.1. The binomial random variable with parameter (500, 1
365

) and its

Poisson approximation with parameter λ = 500
365

. Notice that the probability
achieves the maximal value at k = 1, which is the closest to the expectation
λ = np ≈ 1.370.

4.4.3. Geometric random variable?. Consider independent tosses of a coin, which lands on
heads with probability p. Let X denote the number of times the coin is tossed until the a head occurs.
Then X is a geometric random variable that

p(i) = p(1− p)i−1 = pqi−1 for i = 1, 2, ...

Compute the expectation of X that

E[X] =

∞∑
i=1

i · p(i)

=

∞∑
i=1

i · pqi−1

=

∞∑
i=1

(i− 1 + 1) · pqi−1

=
∞∑
i=1

(i− 1) · pqi−1 +

∞∑
i=1

pqi−1

=
∞∑
i=0

(i− 1) · pqi−1 + 1
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=
∞∑
j=1

j · pqj + 1

= q

∞∑
j=1

j · pqj−1 + 1

= qE[X] + 1,

which implies that

E[X] =
1

1− q
=

1

p
.

Compute the second moment of X that

E
[
X2
]

=
∞∑
i=1

i2 · p(i)

=
∞∑
i=1

(i− 1 + 1)2 · pqi−1

=
∞∑
i=1

(i− 1)2 · pqi−1 + 2
∞∑
i=1

(i− 1) · pqi−1 +
∞∑
i=1

pqi−1

=
∞∑
i=0

(i− 1)2 · pqi−1 + 2
∞∑
i=0

(i− 1) · pqi−1 + 1

=
∞∑
j=1

j2 · pqj + 2
∞∑
j=1

j · pqj + 1

= q
∞∑
j=1

j2 · pqj−1 + 2q
∞∑
j=1

j · pqj−1 + 1

= qE
[
X2
]

+ 2qE[X] + 1

= qE
[
X2
]

+
2q

p
+ 1,

which implies that

E
[
X2
]

=
2q + p

p2
.

Hence, the variance of X is given by

Var[X] = E
[
X2
]
− E[X]2 =

2q + p

p2
−
(

1

p

)2

=
2(1− p) + p− 1

p2
=

1− p
p2

.

Homework Assignment .

Question 4.1. Find the minimal number of people such that the probability that at least one of
them has the same birthday as you is greater than 0.1. (Assume that there are 365 possible birthdays.)

Answer. Suppose that there are n people. Then the probability that all of them have birthdays
different from me, i.e., in the remaining 364 days, is(

364

365

)n
.

The probability that at least one of them has the same birthday as me is greater than 0.1, if

1−
(

364

365

)n
>

1

10
,
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which implies that (
364

365

)n
<

9

10
.

Hence,

n >
log 9

10

log 364
365

≈ 38.4.

Therefore, the minimal number required is 39.

Question 4.2. Consider independent tosses of two coins, the first of which lands on heads with
probability 0.9 and the second with probability 0.3. Let X be the total number of heads that appear.

(a). Find P (X = 1).
(b). Find E[X].

Answer. The sample space is

S = {(h,h), (h, t), (t,h), (h,h)} ,
in which

P ({(h,h)}) = 0.27, P ({(h, t)}) = 0.63, P ({(t,h)}) = 0.03, P ({(t, t)}) = 0.07.

(a).

p(0) = P (X = 0) = P ({(t, t)}) = 0.07,

p(1) = P (X = 1) = P ({(h, t), (t,h)}) = 0.66,

p(2) = P (X = 2) = P ({(h,h)}) = 0.27.

(b).
E[X] = 0 · p(0) + 1 · p(1) + 2 · p(2) = 0 · 0.07 + 1 · 0.66 + 2 · 0.27 = 1.2.

Question 4.3. Casino offers a game of three independent tosses of a fair coin. It takes one dollar
to play a round, after which the player gets a reward of six dollars if three heads appear, r dollars if
two heads appear, and nothing otherwise. Find the largest reward r so that the casino would make a
profit in a long run.

Answer. Let X denote the number of dollars the player gets. Then X is a random variable taking
one of values 0, r, 6 with probabilities p(0) = 4

8 , p(r) = 3
8 , p(6) = 1

8 . The expectation

E[X] = 0 · p(0) + r · p(r) + 6 · p(6) =
3

8
r +

6

8
< 1,

if r < 2
3 . Therefore, the largest reward required is 2

3 ≈ 0.667 dollar.

Question 4.4. Let X be a random variable on a probability space. Suppose that E[X] = 1 and
Var[X] = 4.

(a). Find E[(5 +X)2].
(b). Find Var[2 + 3X].

Answer. The second moment

E
[
X2
]

= Var[X] + E[X]2 = 5.

(a).
E
[
(5 +X)2

]
= E

[
25 + 10X +X2

]
= 25 + 10 · E[X] + E

[
X2
]

= 25 + 10 + 5 = 40.

(b). Firstly,
E[2 + 3X] = 2 + 3 · E[X] = 5.

Then

E
[
(2 + 3X)2

]
= E

[
4 + 12X + 9X2

]
= 4 + 12 · E[X] + 9 · E

[
X2
]

= 4 + 12 + 45 = 61.
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Hence,
Var[2 + 3X] = E

[
(2 + 3X)2

]
− E[2 + 3X]2 = 61− 25 = 36.

Question 4.5. Let X be a random variable on a probability space with expectation µ and variance
σ2. Find the expectation and variance of X = X−µ

σ .

Answer. Compute that

E[X] = E
[
X − µ
σ

]
=

1

σ
E[X]− µ

σ
=
µ

σ
− µ

σ
= 0.

Since the second moment E[X2] = Var[X] + E[X]2 = σ2 + µ2,

E
[
X2
]

= E

[(
X − µ
σ

)2
]

=
1

σ2
E
[
X2 − 2µX − µ2

]
=

1

σ2
(
E
[
X2
]
− 2µE[X]− µ2

)
=

1

σ2
(
σ2 + µ2 − 2µµ− µ2

)
= 1.

Hence,
Var[X] = E

[
X2
]
− E[X]2 = 1.



CHAPTER 5

Continuous random variables

There is a story about two friends, who were classmates in high school, talking about their jobs. One
of them became a statistician and was working on population trends. He showed a reprint to his former
classmate. The reprint started, as usual, with the Gaussian distribution and the statistician explained to
his former classmate the meaning of the symbols for the actual population, for the average population,
and so on. His classmate was a bit incredulous and was not quite sure whether the statistician was
pulling his leg. “How can you know that?” was his query. “And what is this symbol here?” “Oh,”
said the statistician, “this is π.” “What is that?” “The ratio of the circumference of the circle to its
diameter” “Well, now you are pushing your joke too far,” said the classmate, “surely the population
has nothing to do with the circumference of the circle.”

Eugene Wigner, 1960i

In this chapter, we introduce the random variables whose sets of possible values are uncountable,
such as the length of calls received by a call center that is considered in Chapter 2. We study the
expectation (i.e., mean), median, variance, standard deviation, moments, in the continuous setting,
which draw clear comparison with their counterparts in the discrete setting of Chapter 4. Three
important random variables are discussed: uniform, exponential, and normal (i.e., Gaussian).

Let S be a probability space with a probability P throughout this chapter.
Calculating the expectations and variances for continuous random variables require evaluation of

integrals (of the probability density functions). We therefore recall the basic limit and integration
formulas in Calculus.

5.1. Review of Calculus

5.1.1. Limits.

• For any n ∈ N,

lim
x→−∞

1

xn
= 0 and lim

x→∞

1

xn
= 0.

•
lim

x→−∞
ex = 0 and lim

x→∞
ex =∞.

5.1.2. Indefinite integrals.

• ∫
xn dx =

xn+1

n+ 1
+ c.

• ∫
ex dx = ex + c and

∫
1

x
dx = ln |x|+ c.

• Integration by parts: ∫
u dv = uv −

∫
v du.

iEugene Wigner, The unreasonable effectiveness of mathematics in the natural sciences. (1960).

43
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5.1.3. Definite integrals. The definite integral of a function f on [a, b] is given by∫ b

a
f(x) dx

which represents the (signed) area of the region between the graph of f(x) and the interval [a, b] on the
x-axis.

Example. Consider a constant function f(x) = L for some L ∈ R. Then∫ b

a
Ldx = L(b− a).

See Figure 5.1 below.

x

L

a b

Figure 5.1. The integral
∫ b
a
Ldx equals the (signed) area of a rectangle with

base b− a and height L.

• Fundamental theory of calculus: Suppose that F ′(x) = f(x) on [a, b]. Then∫ b

a
f(x) dx = F (b)− F (a).

• The integral of an (integrable) odd function is 0: Suppose that f(−x) = −f(x) on [−a, a].
Then

∫ a
−a f = 0. For example, assume that n is odd. Then∫ a

−a
xn dx = 0 for each a > 0.

Moreover, noticing that xne−x
2

is odd (and is integrable),∫ ∞
−∞

xne−x
2
dx = 0.

• Integration by parts: ∫ b

a
u dv = uv

∣∣∣b
a
−
∫ b

a
v du.

Lemma 5.1. ∫ ∞
−∞

e−
1
2
x2 dx =

√
2π.

Proof. On R2 = {(x, y) : x, y ∈ R}, change the variables such that (x, y) = (r cos θ, r sin θ) with
r > 0 and θ ∈ [0, 2π). Then

x2 + y2 = r2 and
∂(x, y)

∂(r, θ)
= r.
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Hence, ∫ ∞
−∞

∫ ∞
−∞

e−
1
2
x2e−

1
2
y2 dxdy

=

∫ ∞
−∞

∫ ∞
−∞

e−
1
2(x2+y2) dxdy

=

∫ ∞
0

∫ 2π

0
e−

1
2
r2r drdθ

= 2π

∫ ∞
0

e−
1
2
r2r dr

= 2π

∫ ∞
0

e−
1
2
r2 d

(
1

2
r2
)

= 2π

∫ ∞
0

e−u du

= 2π ·
(
−e−u

) ∣∣∣∞
0

= 2π.

This means that∫ ∞
−∞

∫ ∞
−∞

e−
1
2
x2e−

1
2
y2 dxdy =

∫ ∞
−∞

e−
1
2
x2 dx ·

∫ ∞
−∞

e−
1
2
y2 dy =

(∫ ∞
−∞

e−
1
2
x2 dx

)2

= 2π,

which implies that ∫ ∞
−∞

e−
1
2
x2 dx =

√
2π.

�

5.2. Distribution and density functions

Definition (Continuous random variables). A continuous random variable X : S → R is defined by
a non-negative integrable function f on R, called a probability density function, such that

∫∞
−∞ f = 1

and

P (X ∈ I) =

∫
I
f(x) dx for each interval I ⊂ R.

In particular,

F (a) = P (X ∈ (−∞, a)) = P (X < a) =

∫ a

−∞
f(x) dx

is called the (cumulative) distribution function.

Remark. Let X be a random variable with probability density function f .

• The probability that X takes values in an interval I is given by
∫
I f(x) dx, i.e., the area

between the graph of f(x) and the interval I on the x-axis.
• Since the random variable X always takes values in R,

P (−∞ < X <∞) = P ((−∞,∞)) =

∫ ∞
−∞

f(x) dx = 1,

which is the condition in the definition. This also means that the total area below the graph
of f(x) on R is 1.
• For any a < b,

P (a < X < b) = P (a ≤ X < b) = P (a < X ≤ b) = P (a ≤ X ≤ b) =

∫ b

a
f(x) dx.

That is, the probability does not see the difference between open and closed intervals.
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• For any a ∈ R,
P (X = a) = P (X ≤ a)− P (X < a) = 0.

That is, the probability that X takes any one value is always zero.

Example. Suppose that a passenger arrives at a specified stop at a time that is uniformly dis-
tributed between 7 and 7:30 AM. Let X be the number of minutes past 7 that she arrives at the stop.
This means that X is a random variable with probability density function

f(x) =

{
1
30 if 0 < x < 30,

0 otherwise.

For example,

(a). The probability that she arrives at the stop between 7:10 and 7:20 (i.e., X is between 10 and 20)
is

P (10 < X < 20) =

∫ 20

10
f(x) dx =

∫ 20

10

1

30
dx =

10

30
=

1

3
.

(b). The probability that she arrives at the stop between 7:25 and 7:35 (i.e., X is between 25 and 35)
is

P (25 < X < 35) =

∫ 35

25
f(x) dx =

∫ 30

25

1

30
dx =

5

30
=

1

6
.

(c). The probability that she arrives at the stop between 7:40 and 7:50 (i.e., X is between 40 and 50)
is

P (40 < X < 50) =

∫ 50

40
f(x) dx = 0.

Definition (Uniform random variables). Let α < β. We say that X is a uniform random variable
on (α, β), if the probability density function of X is given by

f(x) =

{
1

β−α if α < x < β,

0 otherwise.

x

1
β−α

α β

Figure 5.2. The probability density function of the uniform random variable on (α, β)

Notice that f is integrable, which satisfies that∫ ∞
−∞

f(x) dx =

∫ β

α

1

β − α
dx = (β − α) · 1

β − α
= 1.

It indicates that the area of the gray area in Figure 5.2 is 1.

Remark. Given any interval I ⊂ (α, β), the probability

P (X ∈ I) =

∫
I

1

β − α
dx =

|I|
β − α

,
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which is the ratio of the length of I in the interval (α, β). In particular,

P (α < X < β) = 1.

In general, for any interval I ⊂ R,

P (X ∈ I) =
|I ∩ (α, β)|
β − α

.

Example. Buses arrive at a specified stop at 15-minute intervals staring at 7 AM. That is, they
arrive at 7, 7:15, 7:30, 7:45, and so on. Suppose that a passenger arrives at the stop at a time that is
uniformly distributed between 7 and 7:30. Let X be the number of minutes past 7 that she arrives at
the stop. Then X is a random variable on (0, 30) with probability density function

f(x) =

{
1
30 if 0 < x < 30,

0 otherwise.

(a). We find the probability that she waits less than five minutes for a bus. To this end, she must arrive
at the stop between 7:10 and 7:15 (i.e., X is between 10 and 15), or between 7:25 and 7:30 (i.e.,
X is between 25 and 30). Hence, the desired probability is

P (10 < X < 15) + P (25 < X < 30) =

∫ 15

10

1

30
dx+

∫ 30

25

1

30
dx =

1

3
.

It is represented by the area of the green region below.

x

f(x)

1
30

0 10 15 25 30

(b). We find the probability that she waits more than 10 minutes for a bus. To this end, she must
arrive at the stop between 7 and 7:05 (i.e., X is between 0 and 5), or between 7:15 and 7:20 (i.e.,
X is between 15 and 20). Hence, the desired probability is

P (0 < X < 5) + P (15 < X < 20) =

∫ 5

0

1

30
dx+

∫ 20

15

1

30
dx =

1

3
.

It is represented by the area of the red region below.

x

f(x)

1
30

0 5 15 20 30
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Remark. Notice that the probabilities of the events of “she waits less than five minutes for a
bus” and of “she waits more than 10 minutes for a bus” are the same. A similar argument shows
that, for any given 0 < a < 15, the probabilities of the events of “she waits less than a minutes
for a bus” and of “she waits more than 15− a minutes for a bus” are also the same. For example,
there is an equal chance for her to get on a bus within one minute or to wait for the bus more than
14 minutes. This may explain the perception that one has equal chance to get on a bus shortly
after arriving at a stop or to wait for a bus at the stop for a long time.

(c). We find the probability that she waits more than five minutes for a bus. To this end, she must
arrive at the stop between 7 and 7:10 (i.e., X is between 0 and 10), or between 7:15 and 7:25 (i.e.,
X is between 15 and 25). Hence, the desired probability is

P (0 < X < 10) + P (15 < X < 25) =

∫ 10

0

1

30
dx+

∫ 25

15

1

30
dx =

2

3
.

It is represented by the area of the yellow region below. It is exactly the complement of the
green region in (1) under the graph of f(x), which indicates that the events of “she waits less
than (or equal to) five minutes for a bus” and of “she waits more than five minutes for a bus” are
complement to each other. Therefore, their probabilities sum to 1. We generalize this phenomenon
in the following proposition.

x

f(x)

1
30

0 10 15 25 30

Proposition 5.2. Let X be a random variable. For any (measurable) E ⊂ R,

P (X ∈ Ec) = P (X 6∈ E) = 1− P (X ∈ E).

Definition (Exponential random variables). Let λ > 0. We say that X is an exponential random
variable with parameter λ, if the probability density function of X is given by

f(x) =

{
λe−λx if x > 0,

0 otherwise.

x

f(x)

0

λ

λe−λx

Figure 5.3. The probability density function of an exponential random variable
with parameter λ
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Notice that f is integrable, which satisfies that∫ ∞
−∞

f(x) dx =

∫ ∞
0

λe−λx = −e−λx
∣∣∣∞
0

= − lim
x→∞

e−λx −
(
−e−λ·0

)
= 1.

It indicates that the area of the gray area in Figure 5.3 is 1.

Example. A customer calls a service line. Suppose that the waiting time in minutes is an expo-
nential random variable with parameter λ = 1

10 . Let X be the number of minutes she has to wait.
Then X is a random variable with the probability density function

f(x) =

{
1
10e
− x

10 if x > 0,

0 otherwise.

(a). The probability that she has to wait less than 10 minutes is

P (X < 10) =

∫ 10

−∞
f(x) dx =

∫ 10

0

1

10
e−

x
10 dx ≈ 0.632.

It is represented by the area of the green region below. Notice that P (X < 10) is the distribution
function F at 10.

x

f(x)

0

1
10

1
10e
− 1

10
x

10

(b). The probability that she has to wait more than 10 minutes is

F (10) = P (X > 10) =

∫ ∞
10

f(x) dx =

∫ ∞
10

1

10
e−

x
10 dx ≈ 0.368.

It is represented by the area of the red region below. Notice that that the probabilities of X > 10
and of X < 10 sum to 1. This follows from the fact that the events of X ≥ 10 and of X < 10 are
complement to each other, so P (X ≥ 10) + P (X < 10) = 1. But P (X ≥ 10) = P (X > 10).

x

f(x)

0

1
10

1
10e
− 1

10
x

10

(c). The probability that she has to wait between 10 and 20 minutes is

P (10 < X < 20) =

∫ 20

10
f(x) dx =

∫ 20

10

1

10
e−

x
10 dx ≈ 0.233.

It is represented by the area of the yellow region below.
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x

f(x)

0

1
10

1
10e
− 1

10
x

10 20

5.3. Expectation and variance

Definition (Expectation and variance). Let X be a random variable with probability density
function f . Then the expectation of X is defined as

µ = E[X] =

∫ ∞
−∞

x · f(x) dx,

and the variance of X is defined as

σ2 = Var[X] = E
[
(X − µ)2

]
=

∫ ∞
−∞

(x− µ)2 · f(x) dx.

The standard derivation is defined as σ =
√

Var[X].

Similar to the case in the discrete setting, taking expectation commutes with linear operations:
Let X be a random variable. Suppose that a, b ∈ R. Then aX + b is also a random variable, whose
expectation E[aX + b] = aE[X] + b and variance Var[aX + b] = a2Var[X].

Remark (Moments). Let X be a random variable with probability density function f . Then

Var[X] = E
[
(X − µ)2

]
=

∫ ∞
−∞

(x− µ)2 · f(x) dx

=

∫ ∞
−∞

(
x2 − 2µx+ µ2

)
f(x) dx

=

∫ ∞
−∞

x2f(x) dx− 2µ

∫ ∞
−∞

xf(x) dx+ µ2
∫ ∞
−∞

f(x) dx

= E
[
X2
]
− µ2.

Hence,
E
[
X2
]

= σ2 + µ2,

which is called the second moment of X. More generally, for n ∈ N, we call E[Xn] the n-th moment of
X.

Proposition 5.3. Let α < β and X be a uniform random variable on (α, β). Then

E[X] =
β + α

2
and Var[X] =

(β − α)2

12
.

Proof. See Question 5.4 for the expectation. Compute that

E
[
X2
]

=

∫ β

α
x2 · 1

β − α
dx

=
1

β − α

(
1

3
β3 − 1

3
α3

)
=

β3 − α3

3(β − α)
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=
β2 + βα+ α2

3
.

Hence, the variance

Var
[
X2
]

= E
[
X2
]
− µ2

=
β2 + βα+ α2

3
−
(
β + α

2

)2

=
β2 + βα+ α2

3
− β2 + 2βα+ α2

4

=
β2 − 2βα+ α2

12

=
(β − α)2

12
.

�

Proposition 5.4. Let λ > 0 and X be an exponential random variable with parameter λ. Then

E[X] =
1

λ
and Var[X] =

1

λ2
.

Proof. See Question 5.6 for the expectation. Using integration by parts,

E
[
X2
]

=

∫ ∞
0

x2 · λe−λx dx

=

∫ ∞
0

x2 d
(
−e−λx

)
= −x2e−λx

∣∣∣∞
0
−
∫ ∞
0

(
−e−λx

)
d
(
x2
)

= 2

∫ ∞
0

x · e−λx dx

=
2

λ

∫ ∞
0

x · λe−λx dx

=
2

λ
E[X]

=
2

λ2
.

Hence, the variance

Var
[
X2
]

= E
[
X2
]
− µ2

=
2

λ2
− 1

λ2

=
1

λ2
.

�

Remark (Infinite expectation and variance). We shall point out that expectation and variance of
a random variable may be infinite. For example, let r > 1, consider the function

f(x) =

{
r−1
xr if x > 1,

0 otherwise.

Since ∫ ∞
−∞

f(x) dx = (r − 1)

∫ ∞
1

x−r dx = (r − 1)x1−r
∣∣∣∞
1

= 1,
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f defines a probability density function of a random variable, denoted by X.

Example. Set r ∈ (1, 2). Then the expectation

E[X] =

∫ ∞
−∞

x · f(x) dx = (r − 1)

∫ ∞
1

x1−r dx = (r − 1)x2−r
∣∣∣∞
1

=∞.

Example. Set r ∈ (2, 3). Then the expectation

E[X] =

∫ ∞
−∞

x · f(x) dx = (r − 1)

∫ ∞
1

x1−r dx = (r − 1)x2−r
∣∣∣∞
1

= r − 1.

However, the second moment

E
[
X2
]

=

∫ ∞
−∞

x2 · f(x) dx = (r − 1)

∫ ∞
1

x2−r dx = (r − 1)x3−r
∣∣∣∞
1

=∞.

Hence, the variance
Var[X] = E

[
X2
]
− E[X]2 =∞.

We summarize the expectations and variances of the continuous random variables, in which the
normal random variable is discussed in the next section.

Table 5.1. Table of expectations and variances of three continuous random variables
Random variable Probability density function Expectation Variance

Uniform on (α, β) f(x) = 1
β−α on (α, β) and = 0 otherwise β+α

2
(β−α)2

12

Exponential with parameter λ f(x) = λe−λx on (0,∞) and = 0 otherwise 1
λ

1
λ2

Standard normal φ(x) = 1√
2π
e−

1
2
x2 0 1

5.4. Normal distribution

Gaussi coined the term “normal” in the normal random variable and distribution, which are now
also commonly called “Gaussian”.

Definition (Standard normal random variable). We say that X is a standard normal random
variable, if the probability density function of X is given by

φ(x) =
1√
2π
e−

1
2
x2 for all x ∈ R.

The standard normal distribution is

Φ(a) = P (X < a) =

∫ a

−∞
φ(x) dx =

1√
2π

∫ a

−∞
e−

1
2
x2 dx.

iCarl Friedrich Gauss, Theoria combinationis observationum erroribus minimis obnoxiae. [Theory of the
combination of observations least subject to errors]. (1823).
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x

φ(x)

1√
2π
e−

1
2
x2

1√
2π
≈ 0.399

0 1 2 3 4−1−2−3−4

0.1

0.2

0.3

0.4

0.5

0.68

0.95

0.997

Figure 5.4. The probability density function of the standard normal random
variable and the 68-95-99.7 rule

Notice that f is integrable, which satisfies that∫ ∞
−∞

φ(x) dx =
1√
2π

∫ ∞
−∞

e−
1
2
x2 dx = 1.

Proposition 5.5 (Symmetry of the standard normal random variable). Let X be a standard normal
random variable.

(i). The probability density function of the standard normal random variable is even, that is, φ(−x) =
φ(x) for all x ∈ R.

(ii). For each a ∈ R, P (X > a) = P (X < −a). In particular, P (X > 0) = P (X < 0) = 1
2 .

(iii). For each a ∈ R, Φ(−a) = 1− Φ(a).
(iv). For each a > 0, P (−a < X < a) = 2Φ(a)− 1.

Proof. (i) and (ii) are obvious since f(x) is even.

(iii).
Φ(−a) = P (X < −a) = 1− P (X > −a) = 1− P (X < a) = 1− Φ(a).

(iv).

P (−a < X < a) = P (X < a)− P (X < −a) = Φ(a)− Φ(−a) = Φ(a)− (1− Φ(a)) = 2Φ(a)− 1.

�

Remark. In Table 5.2, we provide the approximation of Φ(a) for certain values of a > 0. Because
of the symmetry in (iii) above, the distribution Φ(a) for a < 0 follows.

Example. Let X be the standard normal random variable.

(a).

P

(
−1

3
< X <

2

3

)
= P

(
X <

2

3

)
− P

(
X < −1

3

)
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= Φ

(
2

3

)
−
[
1− Φ

(
1

3

)]
≈ 0.7486− (1− 0.6293)

= 0.3779.

(b).
P (X > −1) = P (X < 1) = Φ(1) ≈ 0.8413.

(c).

P (|X| > 2) = 1− P (|X| < 2) = 1− (2Φ(2)− 1) = 2− 2Φ(2) ≈ 2− 2 · 0.9772 = 0.0456.

Theorem 5.6. Let X be a standard normal random variable. Then E[X] = 0 and Var[X] = 1.

Proof. Notice that φ is even on R. Then xφ(x) is odd on R, so

µ = E[X] =

∫ ∞
−∞

x · φ(x) dx = 0.

Using integration by parts,

E
[
X2
]

=

∫ ∞
−∞

x2 · φ(x) dx

=
1√
2π

∫ ∞
−∞

x2 · e−
1
2
x2 dx

=
1√
2π

∫ ∞
−∞

xd
(
−e−

1
2
x2
)

=
1√
2π

(
−xe−

1
2
x2
∣∣∣∞
−∞
−
∫ ∞
−∞

(
−e−

1
2
x2
)
dx

)
=

1√
2π

∫ ∞
−∞

e−
1
2
x2 dx

= 1.

Hence, Var[X] = E[X2]− µ2 = 1. �
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Table 5.2. Table of the standard normal distribution Φ(a) for 0 ≤ a ≤ 3.09
a 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

Remark (The 68-95-99.7 rule). Using the table in Table 5.2, we compute the probabilities of X
taking values within 1, 2, and 3 (standard deviations).

• P (−1 < X < 1) = 2Φ(1)− 1 ≈ 2 · 0.8413− 1 ≈ 0.68.
• P (−2 < X < 2) = 2Φ(2)− 1 ≈ 2 · 0.9772− 1 ≈ 0.95.
• P (−3 < X < 3) = 2Φ(3)− 1 ≈ 2 · 0.9987− 1 ≈ 0.997.

Definition (Normal random variables). Let µ, σ ∈ R. We say that X is an exponential random
variable with parameters µ and σ2, if the probability density function of X is given by

f(x) =
1

σ
√

2π
e−

1
2(x−µσ )

2

for all x ∈ R.

The normal distribution is

F (a) = P (X < a) =

∫ a

−∞
f(x) dx =

1

σ
√

2π

∫ a

−∞
e−

1
2(x−µσ )

2

dx.
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Suppose that X is a normal random variable with expectation µ and variance σ2. Let Y = X−µ
σ ,

i.e, X = σY + µ. Then X is a standard random variable, that is, the expectation is 1 and variance is
1. See Question 4.5.

x

√
2
πe
−2(x−1)2

µ = 1, σ = 1
2

√
2
π ≈ 0.7978

0 1 2 3 4−1−2−3−4
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Figure 5.5. The probability density function of the standard normal random
variable and the 68-95-99.7 rule

Remark (The 68-95-99.7 rule). Let X be the normal random variable with expectation µ and

variance σ2. Then Y = X−µ
σ is the standard normal random variable with expectation 1 and variance

1, i.e., X = σY + µ. Hence,

P (|X − µ| < kσ) = P (|(σY + µ)− µ| < kσ) = P (|Y | < k).

Letting k = 1, 2, 3, we have the following 68-95-99.7 rule for X:

• P (|X − µ| < σ) = P (|Y | < 1) ≈ 0.68.
• P (|X − µ| < 2σ) = P (|Y | < 2) ≈ 0.95.
• P (|X − µ| < 3σ) = P (|Y | < 3) ≈ 0.997.

Example. Let X be the normal random variable with expectation µ = 3 and variance σ2 = 9.
Then Y = X−3

3 is the standard normal random variable, that is, X = 3Y + 3.

(a).

P (2 < X < 5) = P (2 < 3Y + 3 < 5)
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= P

(
−1

3
< Y <

2

3

)
= Φ

(
Y <

2

3

)
− Φ

(
−1

3

)
= Φ

(
2

3

)
−
[
1− Φ

(
1

3

)]
≈ 0.7486− (1− 0.6293)

= 0.3779.

(b).
P (X > 0) = P (3Y + 3 > 0) = P (Y > −1) = P (Y < 1) = Φ(1) ≈ 0.8413.

(c).

P (|X − 3| > 6) = P (|(3Y + 3)− 3| > 6)

= P (|Y | > 2)

= 1− P (|Y | < 2)

= 1− (2Φ(2)− 1)

= 2− 2Φ(2)

≈ 2− 2 · 0.9772

= 0.0456.

Example. Suppose that the height of the adult men in the world is distributed as a normal
distribution with an expectation of 171 cm and a standard deviation of 7 cm. Let X be the normal
random variable with expectation µ = 171 and standard derivation 7. Then Y = X−171

7 is the standard
normal random variable, that is, X = 7Y + 171. Compute that

P (X < 176) = P (7Y + 171 < 176) ≈ P (Y < 0.71) ≈ 0.7611,

that is, a man with a height of 176 cm (i.e., 5 feet and 9 inches) is taller than 0.7611 of the adult men.

Example. Suppose that the height of the adult men in the Netherlands is distributed as a normal
distribution with an expectation of 183 cm and a standard deviation of 10.3 cm. Let X be the normal
random variable with expectation µ = 3 and standard deviation σ = 10.3. Then Y = X−183

10.3 is the
standard normal random variable, that is, X = 10.3Y + 183. Compute that

P (X > 176) = P (10.3Y + 183 > 176) ≈ P (Y > −0.68) = P (Y < 0.68) ≈ 0.7517,

that is, a man with a height of 176 cm is shorter than 0.7517 of the adult men in the Netherlands, i.e.,
he is taller than 0.2483 of them.

Example. Suppose that the height of the adult men in the US is distributed as a normal distribution
with an expectation of 70 inches and a standard deviation of 3 inches. Let X be the normal random
variable with expectation µ = 70 and standard deviation σ = 3. Then Y = X−70

3 is the standard
normal random variable, that is, X = 3Y + 70. Note that Michael Jordan has a height of 6 feet and 6
inches, i.e., 78 inches. Compute that

P (X < 78) = P (3Y + 70 < 78) ≈ P (Y < 2.67) ≈ 0.9962,

that is, he is taller than 0.9962 of the adult men in the US, i.e., he is shorter than 0.0038 of them.
Given that the population of adult men in the US is approximately 130 million, approximately 494,000
adult men are taller than Michael Jordan.
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5.4.1. The normal approximation to the binomial distribution. The normal random vari-
ables and distributions were first introduced by de Moivrei, who used it to approximate probabilities
associated with binomial random variables when the parameter n is large and p = 1

2 . This result was

later extended by Laplaceii to general p. The following DeMoivre-Laplace limit theorem states that, the
binomial random variable X with parameters n and p, can be approximated by the normal distribution
with expectation np and variance np(1− p) as n→∞. That is,

X − np√
np(1− p)

can be approximated by the standard normal random variable.

Theorem 5.7 (The De Moivre-Laplace limit theorem). Let X be the binomial random variable with
parameters n and p. Then for each interval I ⊂ R,

lim
n→∞

P

(
X − np√
np(1− p)

∈ I

)
=

∫
I
φ(x) dx.

This is a special case of the central limit theorem, which is proved later in the book.

Example. Consider 100 independent tosses of a fair coin. Let X denote the number of heads that
appear. Then X is a binomial random variable with parameters n = 100 and p = 0.5. It can be
approximated by the normal random variable with expectation np = 50 and variance np(1 − p) = 25.
Hence,

Y =
X − 50

5
can be approximated by the standard normal random variable. That is,

X = 5Y + 50

(a). The probability that more than 60 heads appear is

P (X > 60) = P (5Y + 50 > 60)

= P (Y > 2)

= 1− P (Y < 2)

= 1− Φ(2)

≈ 1− 0.9772

= 0.0228.

(b). The probability that fewer than 35 heads appear is

P (X < 35) = P (5Y + 50 < 35)

= P (Y < −3)

= 1− P (Y > −3)

= 1− Φ(3)

≈ 1− 0.9987

= 0.0013.

(c). According to the 68-95-99.7 rule, the probability that the number of heads that appear is between
45 and 55 (i.e., 50±5) is approximately 0.68, is between 40 and 60 (i.e., 50±2 ·5) is approximately
0.95, and is between 35 and 65 (i.e., 50± 3 · 5) is approximately 0.997.

Homework Assignment .

iAbraham de Moivre, The doctrine of chances. (1738).
iiPierre-Simon Laplace, Mémoire sur la probabilité des causes par les événements. [Memoir on the probability

of the causes of events]. (1774).
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Question 5.1. Suppose that the lifetime of a certain type of electronic device (measured in hours)
is a random variable X whose probability density function

f(x) =

{
1
x2

if x > 1,

0 otherwise.

(a). Find P (X > 4).
(b). Find the distribution function F (a).
(c). Find the probability that four independent such type devices, at least two function more than four

hours.

Answer.

(a). Compute that

P (X > 4) =

∫ ∞
4

f(x) dx =

∫ ∞
4

1

x2
dx =

1

4
.

(b). The distribution function F (a) =
∫ a
−∞ f(x) dx = 0 if a ≤ 1, and if a > 1, then

F (a) = P (X < a) =

∫ a

−∞
f(x) dx =

∫ a

1

1

x2
dx = 1− 1

a
.

(c). The probability that one such device functions at least four hours is given by P (X > 4) = 1
4 , while

the probability that one such device functions less than four hours is given by P (X < 4) = 3
4 .

Hence, the required probability is given by(
4

2

)(
1

4

)2(3

4

)2

+

(
4

3

)(
1

4

)3(3

4

)1

+

(
4

4

)(
1

4

)4

=
31

64
.

Question 5.2. A Bus arrives at a specified stop at a time that is uniformly distributed between 7
and 7:30 AM. Suppose that a passenger arrives at the stop at 7.

(a). Find the probability that she will have to wait more than 14 minutes?
(b). Suppose that at 7:15 the bus has not yet arrived. Find the probability that she will have to wait

more than an additional seven minutes?

Answer. Let X be the number of minutes past 7 that the bus arrives at the stop. This means that
X is a random variable with probability density function

f(x) =

{
1
30 if 0 < x < 30,

0 otherwise.

(a). We find the probability that she waits more than 14 minutes for a bus. To this end, the bus
must arrive at the stop between 7:14 and 7:30 (i.e., X is between 14 and 30). Hence, the desired
probability is

P (14 < X < 30) =

∫ 30

14

1

30
dx =

8

15
.

(b). Let E be the event that at 7:15 the bus has not yet arrived, which means that the bus arrives at
the stop between 7:15 and 7:30 (i.e., X is between 15 and 30). Then

P (E) = P (15 < X < 30) =

∫ 30

15

1

30
dx =

15

30
.

Let F be the event that she will have to wait more than an additional 7 minutes, which means
that the bus arrives at the stop between 7:22 and 7:30 (i.e., X is between 22 and 30). Then

P (F ) = P (0 < X < 22) =

∫ 30

22

1

30
dx =

8

30
.
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Notice that F ⊂ E. Hence, the desired conditional probability is

P (F |E) =
P (F ∩ E)

P (E)
=
P (F )

P (E)
=

8

15
.

Question 5.3. Let X be a random variable X whose probability density function

f(x) =

{
3
x4

if x > 1,

0 otherwise.

(a). Find the expectation µ = E[X].
(b). Find the variance Var[X].

Answer.

(a). Compute that

µ = E[X]

=

∫ ∞
−∞

x · f(x) dx

=

∫ ∞
1

x · 3

x4
dx

=

∫ ∞
1

3

x3
dx

=

(
−3

2
x−2

) ∣∣∣∞
1

=
3

2
.

(b). Compute that

E
[
X2
]

=

∫ ∞
−∞

x2 · f(x) dx

=

∫ ∞
1

x2 · 3

x4
dx

=

∫ ∞
1

3

x2
dx

=
(
−3x−1

) ∣∣∣∞
1

= 3.

Hence, the variance

Var[X] = E
[
X2
]
− µ2 = 3−

(
3

2

)2

=
27

4
.

Question 5.4. Let α < β and X be a uniform random variable on (α, β). Find the expectation
µ = E[X].

Answer. Compute that

µ = E[X]

=

∫ β

α
x · 1

β − α
dx

=
1

β − α
·
(

1

2
β2 − 1

2
α2

)
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=
β2 − α2

2(β − α)

=
β + α

2
.

Question 5.5. Let α < β and X be a uniform random variable on (α, β) such that the expectation
E[X] = 10 and the variance Var[X] = 48. Find α and β.

Answer. From
β + α

2
= 10 and

(β − α)2

12
= 48,

we have that
β + α = 20 and β − α = 24.

Hence,
β = 22 and α = −2.

Question 5.6. Let λ > 0 and X be an exponential random variable with parameter λ. Find the
expectation µ = E[X].

Answer. Using integration by parts,

µ = E[X]

=

∫ ∞
0

x · λe−λx dx

=

∫ ∞
0

x d
(
−e−λx

)
= −xe−λx

∣∣∣∞
0
−
∫ ∞
0

(
−e−λx

)
dx

=

∫ ∞
0

e−λx dx

=
1

λ
.

Question 5.7. Suppose that the probability that an offer sent by a university is accepted by
the student is 0.8. Assume that 10,000 offers have been sent in 2023 and each student’s decision of
acceptance is independent of others.

(a). Find the approximate probability that the new enrollment is larger than 8,100.
(b). Find the approximate probability that the new enrollment is smaller than 7,950.

Answer. Let X be the new enrollment in 2023, i.e., the number of students who accepted the offer.
Then X is a binomial random variable with parameters n = 10000 and p = 0.8. It can be approximated
by the normal random variable with expectation np = 8000 and variance np(1− p) = 1600. Hence,

Y =
X − 8000

40
can be approximated by the standard normal random variable. That is,

X = 40Y + 8000.

(a). The probability that the new enrollment is larger than 8,100 is

P (X > 8100) = P (40Y + 8000 > 8100)

= P (Y > 2.5)

= 1− P (Y < 2.5)

≈ 1− Φ(2.5)

≈ 1− 0.9938
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= 0.0062.

(b). The probability that the new enrollment is smaller than 7,950 is

P (X < 7950) = P (40Y + 8000 < 7950)

≈ P (Y < −1.25)

= 1− P (Y > −1.25)

≈ 1− Φ(1.25)

≈ 1− 0.8944

= 0.1056.

In fact, according to the 68-95-99.7 rule, the probability that the new enrollment is between 8,040
and 7,960 (i.e., 8000 ± 40) is approximately 0.68, is between 8,080 and 7,920 (i.e., 8000 ± 2 · 40) is
approximately 0.95, and is between 8, 120 and 7, 880 (i.e., 8000± 3 · 40) is approximately 0.997.



CHAPTER 6

Jointly distributed random variables

In everyday life we feel, and justifiably feel, irritated with the man who is perpetually asking us to
define the words we use.

Karl Pearson, 1941i

Thus far, we have concerned ourselves only with probability distributions for single random variables
(discrete in Chapter 4 and continuous in Chapter 5). However, we are often interested in probability
statements concerning two or more random variables. For example, the grade a student obtained in
the prerequisite and the score she obtains in a course can be both regarded as random variables (on the
sample space of the class). How do we determine whether they are independent, i.e., the performance
a student in a course is independent of her prerequisite?

In this chapter, we introduce the jointly distributed random variables and then the important
concept of independent random variables. For simplicity, we only discuss the discrete case. Let S be a
discrete probability space with a probability P throughout the chapter.

6.1. Examples

Suppose thatX is a random variable with probability mass function pX . That is, pX(x) = P (X = x)
provides the probability that X takes the value x. Suppose that Y be a random variable with probability
mass function pY . That is, pY (y) = P (Y = y) provides the probability that Y takes the value y.

Then (X,Y ) defines a joint discrete random variable, for which the joint probability mass function
of X and Y is defined as

p(x, y) = P (X = x, Y = y).

Next, we define conditional probability mass function and independence of random variables. To this
end, we recall these concepts for events: Let E,F ⊂ S and P (F ) > 0. Then the conditional probability
of E for given F (also called the conditional probability that E occurs given that F has occurred) is
defined as

P (E|F ) =
P (E ∩ F )

P (F )
.

We say that E and F are independent, if P (E|F ) = P (E), that is, P (E ∩ F ) = P (E)P (F ).
Switching to random variables X and Y , we replace the events E and F above by X = x and Y = y

for values of x and y:

Definition (Conditional probability mass function and independence). LetX and Y be two random
variables with probability mass functions pX and pY , respectively. Suppose that p is the joint probability
density function of X and Y . Then the conditional probability mass function pX|Y is defined as

pX|Y (x|y) = P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
=
p(x, y)

pY (y)
for pY (y) > 0.

We say that X and Y are independent, if

pX|Y (x|y) = pX(x) for all x, y,

iKarl Pearson, The laws of chance, in relation to thought and conduct. (1941).

63
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that is, p(x, y) = pX(x)pY (y) for all x, y.

Remark. If two random variables X and Y are independent, then knowing that X takes a value
does not change the probability distribution of Y , vice versa.

Example. Suppose that the class of Introduction to Probability is consisted of 10 students. Equip
this sample space S with a probability P such that each sample point has the same probability (of 1

10).
Let X denote the grade (out of A,B) a student obtained in the prerequisite Calculus and Y denote the
score (out of 1, 0.8, 0.6, 0.4, 0.2, 0) a student obtained in Introduction to Probability. Then X and Y are
two random variables. Assume that the grades and scores of the students are (A, 1), (A, 1), (A, 0.8),
(A, 0.4), (B, 1), (B, 0.8), (B, 0.6), (B, 0.6), (B, 0.6), (B, 0.2). The joint probability mass function p of
X and Y is given by

(X,Y ) 1 0.8 0.6 0.4 0.2 0

A 2
10

1
10 0 1

10 0 0

B 1
10

1
10

3
10 0 1

10 0

(a). The sum in each row provides the probability mass function pX :

pX(A) =
4

10
and pX(B) =

6

10
,

which then sum to 1.
The sum in each column provides the probability mass function pY :

pY (1) =
3

10
, pY (0.8) =

2

10
, pY (0.6) =

3

10
, pY (0.4) =

1

10
, pY (0.2) =

1

10
, pY (0) = 0,

which also sum to 1.
(b). Compute that

pX|Y (A|1) =
2

3
and pX|Y (B|0.4) = 0.

Compute also that

pY |X(1|A) =
1

2
and pY |X(0.4|B) = 0.

(c). Notice that
p(A, 1) 6= pX(A)pY (1).

Therefore, X and Y are dependent. Indeed, knowing that the random variable X takes the value
of A changes the probability that the random variable Y takes the value of 1 to PY |X(1|A) = 1

2 ,

from pY (1) = 3
10 in the case when X is not known.

Proposition 6.1. Let X and Y be two random variables with probability mass functions pX and
pY , respectively. Suppose that p is the joint probability density function of X and Y . Then

pX(x) =
∑
y

p(x, y) and pY (y) =
∑
x

p(x, y).

Moreover, ∑
x,y

p(x, y) =
∑
x

pX(x) =
∑
y

pY (y) = 1.

Example. Under the same setup as the example as before, assume that the grades and scores of
the students are (A, 1), (A, 1), (A, 0.6), (A, 0.6), (B, 1), (B, 1), (B, 1), (B, 0.6), (B, 0.6), (B, 0.6). The
joint probability mass function p of X and Y is given by

(X,Y ) 1 0.8 0.6 0.4 0.2 0

A 2
10 0 2

10 0 0 0

B 3
10 0 3

10 0 0 0
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(a). The sum in each row provides the probability mass function pX :

pX(A) =
4

10
and pX(B) =

6

10
,

which then sum to 1.
The sum in each column provides the probability mass function pY :

pY (1) =
5

10
, pY (0.8) = 0, pY (0.6) =

5

10
, pY (0.4) = 0, pY (0.2) = 0 pY (0) = 0,

which also sum to 1.
(b). Compute that

pX|Y (A|1) =
2

5
, pX|Y (B|1) =

3

5
, pX|Y (A|0.6) =

2

5
, pX|Y (B|0.6) =

3

5
.

Compute also that

pY |X(1|A) =
1

2
, pY |X(0.6|A) =

1

2
, pY |X(1|B) =

1

2
, pY |X(0.6|B) =

1

2
.

(c). Compute that
p(A, 1) = pX(A)pY (1), p(A, 0.6) = pX(A)pY (0.6),

p(B, 1) = pX(B)pY (1), p(B, 0.8) = pX(B)pY (0.8).

Therefore, X and Y are independent.

Example. Consider three independent tosses of a fair coin. Then the sample space

S = {(s1, s2, s3) : s1, s2, s3 ∈ {h, t}}
has size eight. Let X denote the number of heads that appear and Y denote the number of tails that
appear. Then X and Y are two random variables. The joint probability mass function p of X and Y
is given by

(X,Y ) 0 1 2 3

0 0 0 0 1
8

1 0 0 3
8 0

2 0 3
8 0 0

3 1
8 0 0 0

(a). The sum in each row provides the probability mass function pX :

pX(0) =
1

8
, pX(1) =

3

8
, pX(2) =

3

8
, pX(3) =

1

8
,

which then sum to 1. The sum in each column provides the probability mass function pY :

pY (0) =
1

8
, pY (1) =

3

8
, pY (2) =

3

8
, pY (3) =

1

8
,

which also sum to 1.
(b). The conditional probability mass function

pX|Y (x|y) =

{
1 if x+ y = 3,

0 otherwise.

(c). Notice that
p(0, 0) 6= pX(0)pY (0).

Therefore, X and Y are dependent. Indeed, knowing that the random variable X takes a value x
(i.e., the number of heads that appear) changes the probability that Y takes a value y (i.e., the
number of tails that appear), in fact, Y can only take a unique value 3− x, from all four possible
values in the case when X is not known.
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Example. Consider two independent rolls of a fair die. Then the sample space

S = {(s1, s2) : s1, s2 ∈ {1, 2, 3, 4, 5, 6}} ,
which has size 36. Let X = s1 + s2 (i.e., the sum of the two numbers) and Y = s1 − s2 (i.e., the
difference of the second number from the first one). Then X and Y are two random variables. To find
the joint probability mass function p of X and Y , notice that

s1 =
X + Y

2
and s2 =

X − Y
2

.

They must have integer solutions in {1, 2, 3, 4, 5, 6} for the p(s1, s2) to be non-zero, and if so, s1 and s2
is uniquely determined by X and Y . Hence,

(X,Y ) −5 −4 −3 −2 −1 0 1 2 3 4 5

2 0 0 0 0 0 1
36 0 0 0 0 0

3 0 0 0 0 1
36 0 1

36 0 0 0 0

4 0 0 0 1
36 0 1

36 0 1
36 0 0 0

5 0 0 1
36 0 1

36 0 1
36 0 1

36 0 0

6 0 1
36 0 1

36 0 1
36 0 1

36 0 1
36 0

7 1
36 0 1

36 0 1
36 0 1

36 0 1
36 0 1

36
8 0 1

36 0 1
36 0 1

36 0 1
36 0 1

36 0

9 0 0 1
36 0 1

36 0 1
36 0 1

36 0 0

10 0 0 0 1
36 0 1

36 0 1
36 0 0 0

11 0 0 0 0 1
36 0 1

36 0 0 0 0

12 0 0 0 0 0 1
36 0 0 0 0 0

(a). The sum in each row provides the probability mass function pX :

pX(2) =
1

36
, pX(3) =

2

36
, pX(4) =

3

36
, pX(5) =

4

36
, pX(6) =

5

36
, pX(7) =

6

36
,

pX(12) =
1

36
, pX(11) =

2

36
, pX(10) =

3

36
, pX(9) =

4

36
, pX(8) =

5

36
,

which then sum to 1.
The sum in each column provides the probability mass function pY :

pY (−5) =
1

36
, pY (−4) =

2

36
, pY (−3) =

3

36
, pY (−2) =

4

36
, pY (−1) =

5

36
, pY (0) =

6

36
,

pY (5) =
1

36
, pY (4) =

2

36
, pY (3) =

3

36
, pY (2) =

4

36
, pY (1) =

5

36
,

which also sum to 1.
(b). Compute that

pX|Y (2|0) =
1

6
and pX|Y (5|1) =

1

4
.

(c). Compute that

pY |X(0|2) = 1 and pY |X(1|5) =
1

4
.

(d). Notice that
p(2,−5) 6= pX(2)pY (−5).

Therefore, X and Y are dependent. Indeed, knowing that the random variable X (i.e., the sum
of two numbers) take a value of 2 determines that they must be the two numbers are 1, 1, which
then changes the probability that the random variable Y (i.e., their difference) takes a value of −5
to 0, from pY (−5) = 1

36 in the case when X is not known.

The concepts discussed in this section can be generalized to any collection of random variables:
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Definition. Let X1, ..., Xn be random variables with probability mass functions p1, ..., pn, respec-
tively. Then (X1, ..., Xn) defines a joint discrete random variable, for which the joint probability mass
function of X1, ..., Xn is defined as

p (x1, ..., xn) = P (X1 = x1, ..., Xn = xn) .

• We say that X1, ..., Xn are pairwise independent if Xi and Xj are independent for all i, j =
1, ..., n, that is,

P (Xi = xi, Xj = xj) = P (Xi = xi)P (Xj = xj) for all xi, xj .

As a consequence,

P (Xi ∈ Ai, Xj ∈ Aj) = P (Xi ∈ Ai)P (Xj ∈ Aj) for all Ai, Aj .

• We say that X1, ..., Xn are independent if Xi1 , ..., Xik are independent for all possible collec-
tions i1, ..., ik = 1, ..., n, that is,

P (Xi1 = xi1 , ..., Xik = xik) = P (Xi1 = xi1) · · ·P (Xik = xik) for all xi1 , ..., xik .

As a consequence,

P (Xi1 ∈ Ai1 , ..., Xik ∈ Aik) = P (Xi1 ∈ Ai1) · · ·P (Xik ∈ Aik) for all Ai1 , ..., Aik .

6.2. Independent random variables

From the discussion in the previous section, multiple random variables being independent is a rather
restrictive condition. However, it can be guaranteed in the following situation.

Theorem 6.2. Consider n independent trials. Suppose that the random variable Xi only depends
on the i-th trial for i = 1, ..., n. Then X1, ..., Xn are independent.

Example. Consider four independent tosses of a fair coin. Then the sample space

S = {(s1, s2, s3, s4) : s1, s2, s3, s4 ∈ {h, t}}
has size 16. Let X denote the number of heads that appear in the first two tosses and Y denote the
number of heads that appear in the last two tosses. Then X and Y are two binomial random variables
with parameters (2, 12) and (2, 12). The joint probability mass function p of X and Y is given by

(X,Y ) 0 1 2

0 1
16

2
16

1
16

1 2
16

4
16

2
16

2 1
16

2
16

1
16

(a). The sum in each row provides the probability mass function pX :

pX(0) =
1

4
, pX(1) =

1

2
, pX(2) =

1

4
,

which then sum to 1.
The sum in each column provides the probability mass function pY :

pY (0) =
1

4
, pY (1) =

1

2
, pY (2) =

1

4
,

which also sum to 1.
(b). We verify that X and Y are independent:

p(0, 0) = pX(0)pY (0), p(0, 1) = pX(0)pY (1), p(0, 2) = pX(0)pY (2),

p(1, 0) = pX(1)pY (0), p(1, 1) = pX(1)pY (1), p(1, 2) = pX(1)pY (2),

p(2, 0) = pX(2)pY (0), p(2, 1) = pX(2)pY (1), p(2, 2) = pX(2)pY (2).
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(c). Let Z = X + Y . Then Z is a random variable with probability mass function pZ as follows.

pZ(0) = P (X + Y = 0) = P (X = 0, Y = 0)

= p(0, 0) =
1

16
,

pZ(1) = P (X + Y = 1) = P (X = 0, Y = 1) + P (X = 1, Y = 0)

= p(0, 1) + p(1, 0) =
4

16
,

pZ(2) = P (X + Y = 2) = P (X = 0, Y = 2) + P (X = 1, Y = 1) + P (X = 2, Y = 0)

= p(0, 2) + p(1, 1) + p(2, 0) =
6

16
,

pZ(3) = P (X + Y = 3) = P (X = 1, Y = 2) + P (X = 2, Y = 1)

= p(1, 2) + p(2, 1) =
4

16
,

pZ(4) = P (X + Y = 4) = P (X = 2, Y = 2)

= p(2, 2) =
1

16
.

Observe that Z denotes the number of heads that appear in the four independent tosses of a fair
coin, which is therefore a binomial random variable with parameter (4, 12). The above computation
verifies this fact.

More generally, consider n+m independent tosses of a coin, which lands on heads with probability
p. Let X denote the number of heads in the first n tosses and Y denote the number of heads in the
last m tosses. Then X and Y are independent binomial random variables with parameters (n, p) and
(m, p), respectively. Observe that X + Y counts the number of heads in the n+m independent tosses,
which is a binomial random variable with parameter (n+m, p).

Proposition 6.3. Let X be a binomial random variable with parameters (n, p). Let Y be a binomial
random variable with parameters (m, p). Suppose that X and Y are independent. Then Z = X + Y is
a binomial random variable with parameter (n+m, p).

Proof. The probability mass functions pX and pY of X and Y , respectively, are given by

pX(i) =

(
n

i

)
pi(1− p)i for 0 ≤ i ≤ n

and

pY (j) =

(
m

j

)
pj(1− p)m−j for 0 ≤ j ≤ m.

Compute the probability mass function pZ of Z for 0 ≤ r ≤ n+m:

pZ(r) = P (X + Y = r)

=

r∑
i=0

P (X = i, Y = r − i)

=
r∑
i=0

P (X = i)P (Y = r − i)

=
r∑
i=0

pX(i)pY (r − i)

=
r∑
i=0

(
n

i

)
pi(1− p)i

(
m

r − i

)
pr−i(1− p)m−(r−i)
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=
r∑
i=0

(
n

i

)(
m

r − i

)
pr(1− p)(n+m)−r

= pr(1− p)(n+m)−r
r∑
i=0

(
n

i

)(
m

k

)
=

(
n+m

r

)
pr(1− p)(n+m)−r,

in which we used a combinatorial identity in Question 1.5 that
r∑
i=0

(
n

i

)(
m

r − i

)
=

(
n+m

r

)
.

�

Remark. We saw that the sum of two independent binomial random variables with parameters
(n, p) and (m, p) is still binomial. In the following proposition, we prove that the sum of two independent
Poisson random variables is still Poisson.

However, we shall point out that this phenomenon is rather uncommon, that is, the sum of two
random variables of the same type is in general not of the same type. For example, the sum of two
independent geometric random variables is no longer a geometric random variable.

Proposition 6.4. Let X be a Poisson random variable with parameters λ1. Let Y be a Poisson
random variable with parameters λ2. Suppose that X and Y are independent. Then Z = X + Y is a
Poisson random variable with parameter λ1 + λ2.

The probability mass functions pX and pY of X and Y , respectively, are given by

pX(i) = e−λ1
λi1
i!

for i = 0, 1, 2, ...

and

pY (j) = e−λ2
λj2
j!

for j = 0, 1, 2, ...

Then we establish the probability mass function pZ of Z = X+Y similarly as above. See Question 6.3.

Remark. Recall that a Poisson random variable with parameter λ is an approximation for a
binomial random variable X with parameter (n, p) when is n large and p is small enough so that
λ = np is of moderate size, see Section 4.4.2. We use this intuition to interpret the proposition above.

The probability that a person has birthday on a given day, say, February 26, is p = 1
365 ≈ 0.00274.

(Assume that there are 365 possible birthdays.)
Consider a group of n people. Then the number of people with birthday at February 26 is a binomial

random variable with parameter (n, p). It can be approximated by a Poisson random variable X with
parameter λ1 = np.

Consider another group of m people. Then the number of people with birthday at February 26
is a binomial random variable with parameter (m, p). It can be approximated by a Poisson random
variable X with parameter λ2 = mp.

Now the Poisson random variable Z = X+Y approximates the total number of people with birthday
at February 26 among the n+m ones. Hence, the parameter of Z must be

(n+m)p = np+mp = λ1 + λ2.

Definition (Independent and identically distributed (iid) random variables). We say that a collec-
tion of random variables are independent and identically distributed if they are independent and have
the same probability distribution.

Example. Consider n independent tosses of a coin, which lands on heads with probability p. Let
Xi, i = 1, ..., n, denote the number of heads in the i-th toss, i.e., Xi(1) = p and Xi(0) = 1 − p. Then
Xi are iid random variables.
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6.3. Expectation

In Section 4.2, we defined the expectation of a random variable X : S → R with probability mass
function pX :

E[X] =
∑
s∈S

X(s) · P ({s}) =
∑

x∈X(S)

x · pX(x).

We established several properties of expectation, for example, it is always bounded between the maximal
value and minimal value of X. Moreover, taking expectation commutes with linear operations:

E[aX + b] = aE[X] + b,

but it does not commute with nonlinear operations such as X → X2 and X →
√
X. In particular, if

µ = E[X], then
E[X − µ] = 0.

In this section, we investigate the expectations involving multiple random variables.

Proposition 6.5. Let X,Y : S → R be random variables. Suppose that X ≥ Y , i.e., X(s) ≥ Y (s)
for all s ∈ S. Then E[X] ≥ E[Y ].

Proof. Compute that

E[X] =
∑
s∈S

X(s) · P ({s}) ≤
∑
s∈S

Y (s) · P ({s}) = E[Y ].

�

Theorem 6.6. Let X1, ..., Xn : S → R be random variables and X = X1 + · · ·+Xn. Then

E[X] = E [X1] + · · ·+ E [Xn] .

Proof. Compute that

E[X] = E [X1 + · · ·+Xn]

=
∑
s∈S

(X1(s) + · · ·+Xn(s)) · P ({s})

=
∑
s∈S

X1(s) · P ({s}) + · · ·+
∑
s∈S

Xn(s) · P ({s})

= E [X1] + · · ·+ E [Xn] .

�

Example. Consider three independent tosses of a fair coin. Let X denote the number of heads
that appear and Y denote the number of tails that appear. Then X and Y are two random variables,
both of which have expectations E[X] = E[Y ] = 3

2 .
Consider Z = X + Y , that is, the sum of the number of heads and the number of tails. Hence,

E[Z] = E[X] + E[Y ] = 3.

This also follows from the fact that Z is the number of tosses, i.e., a constant random variable of 3.
Notice that the random variables X and Y are dependent as shown in Section 6.1.

Example. Suppose that n people throw their hat and each person randomly selects one. We find
the expectation of the number of the people who select their own hats. To this end, for i = 1, ..., n,
define

Xi =

{
1 if i selects her own hat,

0 otherwise.

Then

E [Xi] = 0 · P (Xi = 0) + 1 · P (Xi = 1) =
1

n
.



6.3. EXPECTATION 71

Consider X = X1 + · · ·+Xn. Then X is the number of people who select their own hats. Hence,

E[X] = E [X1 + · · ·+Xn] = n · 1

n
= 1.

Notice that the random variables X1, ...., Xn are dependent. Indeed, knowing that the random variable
X1 = · · · = Xn−1 = 1 determines that all people except n select their own hats, which then changes
the probability that the random variable Xn takes a value of 1 (i.e., n selects her own hat) to 1, from
1
n in the case when X1, ..., Xn−1 are not known.

In Section 4.4.1, we calculated the expectation of a binomial random variable X with parameter
(n, p): E[X] = np. In the following, we establish this fact by considering X as a sum of iid binomial
random variables with parameter (1, p).

Proposition 6.7 (Expectation of binomial random variables). Let X be a binomial random variable
X with parameter (n, p). Then the expectation E[X] = np.

Proof. Let X1, ..., Xn be iid binomial random variables with parameter (1, p). That is, Xi denotes
the number of heads that appear in one toss of a coin, which lands on heads with probability p. Then

E [Xi] = 0 · P (Xi = 0) + 1 · P (Xi = 1) = p.

Then X = X1 + · · ·+Xn, i.e., the binomial random variable with parameter (n, p). Hence,

E[X] = E [X1 + · · ·+Xn] = E [X1] + · · ·+ E [Xn] = np.

�

Example. We say that a changeover occurs in coin tosses if an outcome differs with the one
preceding it. For instance, there are three changeovers in h,h, t,h, t. We find the expectation of the
number of changeovers in n independent tosses of a coin, which lands on heads with probability p. To
this end, notice that sample space is

S = {(s1, ...., sn) : s1, ..., sn ∈ {h, t}} .
For i = 1, ..., n− 1, define

Xi =

{
1 if si 6= si+1,

0 if si = si+1.

That is, Xi = 1 if a changeover occurs from the i-th toss to the following one and Xi = 0 otherwise.
Then

E [Xi] = 0 · P (si = h, si+1 = h) + 0 · P (si = t, si+1 = t)

+1 · P (si = h, si+1 = t) + 1 · P (si = t, si+1 = h)

= 2p(1− p).
Consider X = X1 + · · ·+Xn−1. Then X denotes the number of changeovers. Hence,

E[X] = E [X1 + · · ·+Xn−1] = 2(n− 1)p(1− p).

Remark. We shall point out that that

E [X1 + · · ·+Xn] = E [X1] + · · ·+ E [Xn]

is always valid, and does not require that the random variables X1, ..., Xn are independent. This is
essentially because taking expectation commutes with taking sum (a linear operation). Since taking
expectation does not commute with nonlinear operations, E[XY ] may be different from E[X]E[Y ].

For example, consider one toss of a fair coin. Let X = 1 if it lands on heads and X = −1 if it
lands on tails. Let Y = −1 if it lands on heads and Y = 1 if it lands on tails. Clearly, X and Y are
dependent random variables. Compute that E[X] = E[Y ] = 0. But E[XY ] = 1 since XY = 1 is a
constant random variable.
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However, the following proposition states that E[XY ] = E[X]E[Y ] holds for independent random
variables X and Y .

Proposition 6.8. Let X,Y : S → R be independent random variables. Then

E[XY ] = E[X]E[Y ].

More generally, if X1, ..., Xn : S → R are independent random variables, then

E [X1 · · ·Xn] = E [X1] · · ·E [Xn] .

Proof. Since X,Y are independent, the joint probability mass function p(X,Y ) = pX(x)pY (y) for
all x, y. Here, pX and pY are the probability mass functions of X and of Y , respectively. Hence,

E[XY ] =
∑
x,y

xy · p(x, y)

=
∑
x,y

xy · pX(x)pY (y)

=

(∑
x

x · pX(x)

)(∑
y

y · pY (y)

)
= E[X]E[Y ].

�

6.4. Variance and covariance

In Section 4.3, we defined the variance of a random variable X: Write E[X] = µ. Then

Var[X] = E
[
(X − µ)2

]
= E

[
X2
]
− µ2,

in which E[X2] is the second moment.
We established several properties of expectation, for example, Var[X] ≥ 0 and equals 0 iff X = µ

almost surely. Moreover, under the linear operations, we have that

Var[aX + b] = a2Var[X].

In particular, if the standard deviation σ =
√

Var[X] > 0, then

Var

[
X

σ

]
= 1.

In this section, we investigate the (co-)variance involving multiple random variables.

Definition (Covariance). Let X,Y : S → R be random variables. The covariance of X and Y is
defined as

Cov[X,Y ] = E[(X − µ)(Y − ν)],

in which µ = E[X] and ν = E[Y ].

Remark. Compute that

Cov[X,Y ] = E[(X − µ)(Y − ν)]

= E[XY − µY − νY + µν]

= E[XY ]− µE[Y ]− νE[X] + µν

= E[XY ]− µν − νµ+ µν

= E[XY ]− µν
= E[XY ]− E[X]E[Y ].

Proposition 6.9. Let X,Y : S → R be random variables.

(i). Cov[Y,X] = Cov[X,Y ].



6.4. VARIANCE AND COVARIANCE 73

(ii). Cov[X,X] = Var[X].
(iii). If X and Y are independent, then Cov[X,Y ] = 0.
(iv). Let a ∈ R. Then Cov[aX, Y ] = aCov[X,Y ]. In particular, Cov[−X,X] = −Var[X].

Proof.

(i). Obvious.
(ii). Denote µ = E[X]. Then

Cov[X,X] = E[(X − µ)(X − µ)] = E
[
(X − µ)2

]
= Var[X].

(iii). Cov[Y,X] = Cov[X,Y ].
(iv). If X and Y are independent, then E[XY ] = E[X]E[Y ] by Proposition 6.8. Hence,

Cov[X,Y ] = E[XY ]− E[X]E[Y ] = 0.

(v). Compute that

Cov[aX, Y ] = E[aXY ]− E[aX]E[Y ] = a(E[XY ]− E[X]E[Y ]) = aCov[X,Y ].

�

Definition (Correlated and uncorrelated random variables). Let X,Y : S → R be random vari-
ables.

• If Cov[X,Y ] > 0, then X and Y are said to be positively correlated.
• If Cov[X,Y ] = 0, then X and Y are said to be uncorrelated.
• If Cov[X,Y ] < 0, then X and Y are said to be negatively correlated.

Remark. If Cov[X,Y ] 6= 0, then the random variables X and Y are said to be correlated. The
sign of Cov[X,Y ] then indicates the direction of their correlation.

In the case when Cov[X,Y ] > 0, if X increases, then Y is likely to increase.
In the case when Cov[X,Y ] < 0, if X increases, then Y is likely to decrease.

Remark (Correlation and independence). As a consequence of (iii) above, if X and Y are inde-
pendent, then Cov[X,Y ] = 0, i.e., X and Y are uncorrelated. However, Cov[X,Y ] = 0 does not imply
that X and Y are independent. For example, let X be a random variable that

P (X = 0) = P (X = −1) = P (X = 1) =
1

3
.

Let Y = 1 if X 6= 0 and Y = 1 if X = 0. Since XY = 0 and E[X] = 0,

Cov[X,Y ] = E[XY ]− E[X]E[Y ] = 0.

But clearly, X and Y are dependent.

Definition (Correlation coefficients). Let X,Y : S → R be random variables. The correlation
coefficient of X and Y is defined as

ρ[X,Y ] =
Cov[X,Y ]√
Var[X]Var[Y ]

=
Cov[X,Y ]

σXσY
,

if the standard deviations σX =
√

Var[X] > 0 and σY =
√

Var[Y ] > 0.

Remark. The correlation coefficient of two random variables X and Y , as the correlation after
normalization by the standard deviations of X and of Y , is always bounded between −1 and 1, see
Theorem 6.11. It quantifies the degree of the correlation of X and Y . For example,

Cov[X,X] =
Cov[X,X]√
Var[X]Var[X]

= 1 and Cov[−X,X] =
Cov[−X,X]√
Var[−X]Var[X]

= −1.

This indicates that X is positively correlated with itself and is negatively correlated with −X (unless
X is constant almost surely so Var[X] = 0), both of which are at the maximal degree.
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Example. Consider three independent tosses of a fair coin. Let X denote the number of heads
that appear and Y denote the number of tails that appear. Then X and Y are two random variables.
The joint probability mass function p of X and Y is given by

(X,Y ) 0 1 2 3

0 0 0 0 1
8

1 0 0 3
8 0

2 0 3
8 0 0

3 1
8 0 0 0

(a). Compute that

E[XY ] =
∑
xy 6=0

xy · P (X = x, Y = y) = 2 · p(1, 2) + 2 · p(2, 1) =
3

2
.

(b). Compute that

E[X] =
3

2
, Var[X] =

3

4
and E[Y ] =

3

2
, Var[Y ] =

3

4
.

(c). Compute that

Cov[X,Y ] = E[XY ]− E[X]E[Y ] = −3

4
,

and

ρ[X,Y ] =
Cov[X,Y ]√
Var[X]Var[Y ]

= −1.

This indicates that X are Y are negatively correlated to the maximal degree. Indeed, since Y =
3−X, if X increases, then Y must decrease.

Example. Consider three independent tosses of a fair coin. Let X denote the number of heads
that appear in the first two tosses and Y denote the number of heads that appear in three tosses. Then
X and Y are two random variables. The joint probability mass function p of X and Y is given by

(X,Y ) 0 1 2 3

0 1
8

1
8 0 0

1 0 2
8

2
8 0

2 0 0 1
8

1
8

(a). Compute that

E[XY ] =
∑
xy 6=0

xy · P (X = x, Y = y)

= 1 · p(1, 1) + 2 · p(1, 2) + 4 · p(2, 2) + 6 · p(2, 3)

= 2.

(b). Compute that

E[X] = 1, Var[X] =
1

2
and E[Y ] =

3

2
, Var[Y ] =

3

4
.

(c). Compute that

Cov[X,Y ] = E[XY ]− E[X]E[Y ] =
1

2
,

and

ρ[X,Y ] =
Cov[X,Y ]√
Var[X]Var[Y ]

=

√
2

3
≈ 0.816.

This indicates that X are Y are positively correlated, which means that if X increases, then Y is
likely to increase.

We establish an important lemma, which leads several important consequences.
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Lemma 6.10. Let X1, ..., Xn, Y1, ...., Ym : S → R be random variables. Set X = X1 + · · ·+Xn and
Y = Y1 + · · ·+ Ym. Then

Cov[X,Y ] =

n∑
i=1

m∑
j=1

Cov [Xi, Yj ] .

Proof. Write µi = E[Xi], i = 1, ..., n, and E[Yj ], j = 1, ...,m. Then by Theorem 6.6,

E

[
n∑
i=1

Xi

]
=

n∑
i=1

µi and E

 m∑
j=1

Yj

 =
m∑
j=1

νj .

Compute that

Cov[X,Y ] = Cov

 n∑
i=1

Xi,
m∑
j=1

Yj


= E

( n∑
i=1

Xi − E

[
n∑
i=1

Xi

]) m∑
j=1

Yj − E

 m∑
j=1

Yj


= E

( n∑
i=1

(Xi − µi)

) m∑
j=1

(Yj − νj)


= E

 n∑
i=1

n∑
j=1

(Xi − µi) (Yj − νj)


=

n∑
i=1

m∑
j=1

E [(Xi − µi) (Yj − νj)]

=

n∑
i=1

m∑
j=1

Cov [Xi, Yj ] .

�

Theorem 6.11. Let X,Y : S → R be random variables. Suppose that the standard deviations of X
and of Y , respectively, σX , σY > 0. Then

−σXσY ≤ Cov[X,Y ] ≤ σXσY .
As a consequence,

−1 ≤ ρ[X,Y ] ≤ 1.

Proof. By Lemma 6.10, we compute that

0 ≤ Var

[
X

σX
+

Y

σY

]
= Cov

[
X

σX
+

Y

σY
,
X

σX
+

Y

σY

]
= Cov

[
X

σX
,
X

σX

]
+ Cov

[
X

σX
,
Y

σY

]
+ Cov

[
Y

σY
,
X

σX

]
+ Cov

[
Y

σY
,
Y

σY

]
= Var

[
X

σX

]
+ 2Cov

[
X

σX
,
Y

σY

]
+ Var

[
Y

σY

]
= 2 + 2 · Cov[X,Y ]

σXσY
,
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which implies that
Cov[X,Y ] ≥ −σXσY .

See Question 6.7 for a similar proof that

Cov[X,Y ] ≤ σXσY .
�

Example. Consider 100 independent tosses of a fair coin. Let Xi be the number of heads that
appear in the i-th toss, i = 1, ..., 100. Then Xi are independent, which implies that

Cov [Xi, Xj ] =

{
0 if i 6= j,

Var [Xi] = 1
4 if i = j.

Let X be the number of heads that appear in the first 60 tosses and Y be the number of heads that
appear in the last 60 tosses. Then

E[X] = 30, Var[X] = 15 and E[Y ] = 30, Var[Y ] = 15.

Compute that

Cov[X,Y ] =

60∑
i=1

100∑
j=41

Cov [Xi, Xj ] =

60∑
i=41

Cov [Xi, Xi] = 20 · 1

4
= 5,

and

ρ[X,Y ] =
Cov[X,Y ]√
Var[X]Var[Y ]

=
1

3
.

Example. Consider 100 independent tosses of a fair coin. Let X be the number of heads that
appear in the first 51 tosses and Y be the number of heads that appear in the last 51 tosses. Then

E[X] =
51

2
, Var[X] =

51

4
and E[Y ] =

51

2
, Var[Y ] =

51

4
.

Using the same notation as the previous example, compute that

Cov[X,Y ] =
51∑
i=1

100∑
j=49

Cov [Xi, Xj ] =
51∑
i=49

Cov [Xi, Xi] = 3 · 1

4
=

3

4
,

and

ρ[X,Y ] =
Cov[X,Y ]√
Var[X]Var[Y ]

=
3

51
≈ 0.059.

We now derive the variance of the sum X = X1 + · · · + Xn through the covariances among the
random variables X1, ..., Xn.

Theorem 6.12. Let X1, ..., Xn : S → R be random variables and X = X1 + · · ·+Xn. Then

Var[X] =
n∑
i=1

n∑
j=1

Cov [Xi, Xj ] .

As a consequence, if X1, ..., Xn are pairwise uncorrelated, then

Var[X] =
∑
i=j

Cov [Xi, Xj ] =
n∑
i=1

Cov [Xi, Xi] =
n∑
i=1

Var [Xi] .

Proof. By Lemma 6.10, we compute that

Var[X] = Cov[X,X] =
n∑
i=1

n∑
j=1

Cov [Xi, Xj ] .

�
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In Section 4.4.1, we calculated the variance of a binomial random variable X with parameter (n, p):
Var[X] = np(1− p). In the following, we establish this fact by considering X as a sum of iid binomial
random variables with parameter (1, p). See Question 6.8.

Proposition 6.13 (Variance of binomial random variables). Let X be a binomial random variable
X with parameter (n, p). Then the variance Var[X] = np(1− p).

Homework Assignment .

Question 6.1. Consider two independent rolls of a fair die. Let X denote the larger number and
Y denote the smaller number.

(a). Find the joint probability mass function of X and Y .
(b). Find pX|Y (1|1) and pX|Y (6|6).
(c). Find pY |X(1|1) and pY |X(6|6).
(d). Determine whether X and Y are independent.

Answer. Notice that X and Y are random variables on the sample space

S = {(x1, x2) : x1, x2 ∈ {1, 2, 3, 4, 5, 6}} ,
which has size 36.

(a). The joint probability mass function of X and Y is given by

(X,Y ) 1 2 3 4 5 6

1 1
36 0 0 0 0 0

2 2
36

1
36 0 0 0 0

3 2
36

2
36

1
36 0 0 0

4 2
36

2
36

2
36

1
36 0 0

5 2
36

2
36

2
36

2
36

1
36 0

6 2
36

2
36

2
36

2
36

2
36

1
36

The sum in each row provides the probability mass function pX :

pX(1) =
1

36
, pX(2) =

3

36
, pX(3) =

5

36
, pX(4) =

7

36
, pX(5) =

9

36
, pX(6) =

11

36
,

which then sum to 1.
The sum in each column provides the probability mass function pY :

pY (1) =
11

36
, pY (2) =

9

36
, pY (3) =

7

36
, pY (4) =

5

36
, pY (5) =

3

36
, pY (6) =

1

36
which also sum to 1.

(b). Compute that

pX|Y (1|1) =
1

11
and pX|Y (6|6) = 1.

(c). Compute that

pY |X(1|1) = 1 and pY |X(6|6) =
1

11
.

(d). Notice that
p(1, 1) 6= pX(1)pY (1).

Therefore, X and Y are dependent. Indeed, knowing that the random variable X takes a value x
(i.e., the larger number) changes the probability that Y takes a value (i.e., the smaller number),
in fact, Y can only take a value smaller than x, among all six possible values in the case when X
is not known.

Question 6.2. Suppose that the joint probability mass function p of X and Y is given by

p(1, 1) =
1

2
, p(1, 2) =

1

4
, p(2, 1) =

1

8
, p(2, 2) =

1

8
.



6.4. VARIANCE AND COVARIANCE 78

(a). Find the conditional mass function of X given Y = i, i = 1, 2.
(b). Determine whether X and Y are independent.
(c). Find P (XY ≤ 3), P (X + Y > 2), P (XY > 1).

Answer. Compute the probability mass functions pX and pY , respectively:

pX(1) = p(1, 1) + p(1, 2) =
3

4
and pX(2) = p(2, 1) + p(2, 2) =

1

4
.

pY (1) = p(1, 1) + p(2, 1) =
5

8
and pY (2) = p(1, 2) + p(2, 2) =

3

8
.

(a). Compute that

PX|Y (1|1) =
p(1, 1)

pY (1)
=

4

5
and PX|Y (2|1) =

p(2, 1)

pY (1)
=

1

5
.

PX|Y (1|2) =
p(1, 2)

pY (2)
=

2

3
and PX|Y (2|1) =

p(2, 1)

pY (2)
=

1

3
.

(b). Since
p(1, 1) 6= pX(1)pY (1),

X and Y are dependent.
(c). Compute that

P (XY ≤ 3) = p(1, 1) + p(1, 2) + p(2, 1) =
7

8
,

P (X + Y > 2) = p(1, 2) + p(2, 1) + p(2, 2) =
1

2
,

P

(
X

Y
> 1

)
= p(2, 1) =

1

8
.

Question 6.3. Let X be a Poisson random variable with parameters λ1. Let Y be a Poisson
random variable with parameters λ2. Suppose that X and Y are independent. Show that Z = X + Y
is a Poisson random variable with parameter λ1 + λ2.

Answer. Compute the probability mass function pZ of Z for 0 ≤ r ≤ n+m:

pZ(r) = P (X + Y = r)

=

r∑
i=0

P (X = i, Y = r − i)

=
r∑
i=0

P (X = i)P (Y = r − i)

=

r∑
i=0

pX(i)pY (r − i)

=
r∑
i=0

e−λ1
λi1
i!
e−λ2

λr−i2

(r − i)!

=
e−(λ1+λ2)

r!

r∑
i=0

r!

i!(r − i)!
λi1λ

r−i
2

= e−(λ1+λ2)
(λ1 + λ2)

r

r!
,

in which we used the binomial theorem in Theorem 1.4 that
r∑
i=0

r!

i!(r − i)!
λi1λ

r−i
2 = (λ1 + λ2)

r.
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Question 6.4. Consider n independent rolls of a fair die. Find the expectation of the sum of the
numbers that appear.

Answer. Let Xi denote the number that appear in the i-th roll. Then Xi is a random variable
whose expectation

E [Xi] = 1 · P (Xi = 1) + 2 · P (Xi = 2) + 3 · P (Xi = 3)

+4 · P (Xi = 4) + 5 · P (Xi = 5) + 6 · P (Xi = 6)

=
7

2
.

Consider X = X1 + · · ·+Xn. Then X is the sum of the numbers appear. Hence,

E[X] = E [X1 + · · ·+Xn] = E [X1] + · · ·+ E [Xn] =
7n

2
.

Question 6.5. Suppose that n people throw their hat and each person randomly selects one. We
say that i and j for i 6= j are a matched pair if i selects the hat belonging to j and j selects the hat
belonging to i. Find the expectation of the number of the matched pairs.

Answer. The number of pairs of people is given by(
n

2

)
=
n(n− 1)

2
.

For each pair of i and j, define

Xij =

{
1 if i and j is a matched pair,

0 otherwise.

Then

E [Xij ] = 0 · P (Xij = 0) + 1 · P (Xij = 1) =
1

n(n− 1)
.

Consider
X =

∑
pairs i and j

Xij .

Then X is the number of matched pairs. Hence,

E[X] = E

 ∑
pairs i and j

Xij

 =
n(n− 1)

2
· 1

n(n− 1)
=

1

2
.

Question 6.6. Consider three independent tosses of a fair coin. Let X denote the number of heads
that appear in the first two tosses and Y denote the number of heads that appear in the last two tosses.
Find the correlation coefficient of X and Y .

Answer. The joint probability mass function p of X and Y is given by

(X,Y ) 0 1 2

0 1
8

1
8 0

1 1
8

2
8

1
8

2 0 1
8

1
8

(a). Compute that

E[XY ] =
∑
xy 6=0

xy · P (X = x, Y = y)

= 1 · p(1, 1) + 2 · p(1, 2) + 2 · p(2, 1) + 4 · p(2, 2)

=
5

4
.
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(b). Compute that

E[X] = 1, Var[X] =
1

2
and E[Y ] = 1, Var[Y ] =

1

2
.

(c). Compute that

Cov[X,Y ] = E[XY ]− E[X]E[Y ] =
1

4
> 0,

and

ρ[X,Y ] =
Cov[X,Y ]√
Var[X]Var[Y ]

=
1

2
.

Question 6.7. Let X,Y : S → R be random variables. Suppose that the standard deviations of X
and of Y , respectively, σX , σY > 0. Show that

Cov[X,Y ] ≤ σXσY .

Proof. Compute that

0 ≤ Var

[
X

σX
− Y

σY

]
= Cov

[
X

σX
− Y

σY
,
X

σX
− Y

σY

]
= Cov

[
X

σX
,
X

σX

]
− Cov

[
X

σX
,
Y

σY

]
− Cov

[
Y

σY
,
X

σX

]
+ Cov

[
Y

σY
,
Y

σY

]
= Var

[
X

σX

]
− 2Cov

[
X

σX
,
Y

σY

]
+ Var

[
Y

σY

]
= 2− 2 · Cov[X,Y ]

σXσY
,

which implies that
Cov[X,Y ] ≤ σXσY .

�

Question 6.8. Let X be a binomial random variable X with parameter (n, p). Show that the
variance Var[X] = np(1− p).

Answer. Let X1, ..., Xn be iid binomial random variables with parameter (1, p). That is, Xi denotes
the number of heads that appear in one toss of a coin, which lands on heads with probability p. Then
E[Xi] = p amd

E
[
X2
i

]
= 02 · P (Xi = 0) + 12 · P (Xi = 1) = p.

Hence,
Var [Xi] = E

[
X2
i

]
− E [Xi]

2 = p− p2 = p(1− p).
Then X = X1 + · · ·+Xn, i.e., the binomial random variable with parameter (n, p). Hence,

Var[X] = Var [X1] + · · ·+ Var [X1] = np(1− p).

Question 6.9. Let X1, X2, X3, X4 be iid random variables with expectation 1 and variance 4.

(a). Find ρ[X1 +X2, X2 +X3].
(b). Find ρ[X1 +X2, X3 +X4].

Answer. Since X1, X2, X3, X4 are independent, if i 6= j, then

Cov [Xi, Xj ] = 0 and Var [Xi +Xj ] = Var [Xi] + Var [Xj ] = 8.
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(a). Compute that

Cov [X1 +X2, X2 +X3]

= Cov [X1, X2] + Cov [X1, X3] + Cov [X2, X2] + Cov [X2, X3]

= Cov [X2, X2]

= Var [X2]

= 4.

Hence,

ρ [X1 +X2, X2 +X3] =
Cov [X1 +X2, X2 +X3]√

Var [X1 +X2]
√

Var [X2 +X3]
=

1

2
.

(b). Compute that

Cov [X1 +X2, X3 +X4]

= Cov [X1, X3] + Cov [X1, X4] + Cov [X2, X3] + Cov [X2, X4]

= 0.

Hence,
ρ [X1 +X2, X3 +X4] = 0.



CHAPTER 7

Limiting theorems

I know of scarcely anything so apt to impress the imagination as the wonderful form of cosmic order
expressed by the “Law of Frequency of Error.” The law would have been personified by the Greeks
and deified, if they had known of it. It reigns with serenity and in complete self-effacement, amidst
the wildest confusion. The huger the mob, and the greater the apparent anarchy, the more perfect is
its sway. It is the supreme law of Unreason. Whenever a large sample of chaotic elements are taken
in hand and marshaled in the order of their magnitude, an unsuspected and most beautiful form of
regularity proves to have been latent all along.

Francis Galton, 1889i

In this chapter, we present the most important theoretical results in probability: the laws of large
numbers (LLN) and the central limit theorem (CLT). They are concerned with the phenomenon that
certain uniformity appears in a sum (or average, i.e., the sum divided by the number of variables) of a
large number of independent random variables.

That is, each individual random variable behaves on its own and takes values close to or deviated
from its expectation. However, if we take their sum or average, then this new random variable behaves
much more uniformly than the individual ones. In particular, the laws of large numbers assert that the
average stays close to the expectation with overwhelming probability, that is, it does not deviate much
(whereas each individual random variable certainly can). The central limit theorem, on the other hand,
asserts that the sum converges to a normal random variable (whereas each individual random variable
may not be normal at all.)

In fact, we have already encountered this phenomenon in previous chapters and we recall them in
the first section. Our study in this chapter involves discrete random variables and their continuous
counterparts, as well as multiple random variables. We therefore also review the basics on these topics
in the probability theory.

Let S be a (discrete or continuous) probability space with a probability P throughout the chapter.

7.1. Review of Probability

7.1.1. Discrete random variables. Let X : S → R be a discrete random variable with proba-
bility mass function p.

• For each value x, p(x) = P (X = x) provides the probability that X takes the value x.
• The expectation of X is given by

µ = E[X] =
∑
s∈S

X(s) · P ({s}) =
∑

x∈X(S)

x · p(x).

• The variance of X is given by

Var[X] = E
[
(X − µ)2

]
= E

[
X2
]
− µ2,

in which σ =
√

Var[X] is the standard deviation of X.

iFrancis Galton, Natural inheritance. (1889).

82
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Example. Let X be a binomial random variable with parameter (n, p), that is,

p(i) =

(
n

i

)
pi(1− p)n−i for i = 0, ..., n.

Then E[X] = np and Var[X] = np(1− p).

7.1.2. Continuous random variables. Let X : S → R be a continuous random variable with
probability density function f(x).

• For each interval I ⊂ R,

P (X ∈ I) =

∫
I
f(x) dx.

• The probability distribution function of X is given by

F (a) = P (X ∈ (−∞, a)) = P (X < a) =

∫ a

−∞
f(x) dx.

• The expectation of X is given by

µ = E[X] =

∫ ∞
−∞

x · f(x) dx.

• The variance of X is given by

Var[X] = E
[
(X − µ)2

]
= E

[
X2
]
− µ2.

Example. Let X be the standard normal random variable, that is, the probability density function
is

φ(x) =
1√
2π
e−

1
2
x2 for all x ∈ R,

and the probability distribution function is

Φ(a) =

∫ a

−∞
φ(x) dx for all a ∈ R.

Then
E[X] = 1 and Var[X] = 1.

The important 68-95-99.7 rule states that

P (|X| < 1) ≈ 0.68, P (|X| < 2) ≈ 0.95, P (|X| < 3) ≈ 0.997.

7.1.3. Multiple random variables. Let X1, ..., Xn : S → R be (discrete or continuous) random
variables.

• The expectation
E [X1 + · · ·+Xn] = E [X1] + · · ·+ E [Xn] .

• If X1, ..., Xn are independent, then the variance

Var [X1 + · · ·+Xn] = Var [X1] + · · ·+ Var [Xn] .
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7.1.4. Laws of large numbers. In Chapter 2, we defined the basic concepts of sample space
and outcomes in probability. For example, consider the experiment of tossing a coin. Then the sample
space S = {h, t} is the set of two possible outcomes of heads (h) and tails (t). Suppose that the coin
lands on heads with probability p. The concept of probability here should be understood as follows: If
we toss the coin for a great many times (independently), then the percentage of tosses which land on
heads in these experiments tends to p. That is, in, say, 100 tosses, it is much more likely to have, say,
50± 10 heads than the case out of such a range. This phenomenon reflects the law of large numbers.

Indeed, X1, ..., Xn are iid (independent and identically distributed) random variables with expec-
tation E[Xi] = µ. Then the random variable

Y =
X1 + · · ·+Xn

n
,

that is, the average of X1, ..., Xn, has expectation

E[Y ] = E
[
X1 + · · ·+Xn

n

]
=

1

n
(E[X1] + · · ·+ E[Xn]) = µ.

The laws of large numbers state that as n → ∞, Y converges to its expectation µ with overwhelming
probability, in certain senses, thus the weak law and the strong law. Hence, as n→∞, it becomes more
unlikely that the average value Y of X1, ..., Xn deviates from the expectation, though each individual
random variable Xi certainly can.

Set Xi, i = 1, ..., n, as iid binomial random variables with parameter (1, p). That is, Xi is the
number of heads in the i-th toss in n independent toss of a coin, which lands on heads with probability
p. Then the expectation of Xi is E[Xi] = p. In this case,

Y =
X1 + · · ·+Xn

n

is exactly the percentage of tosses which land on heads. The expectation E[Y ] = p. According to the
laws of large numbers, Y converges to p as n → ∞ with overwhelming probability, which justifies our
understanding of the concept of probability.

7.1.5. Central limit theorems. In Section 5.4, we mentioned the De Moivre-Laplace limit theo-
rem without a proof, that is, let X be the binomial random variable with parameters (n, p). As n→∞,
the distribution of X converges to the one of the normal distribution. This theorem belongs to the
realm of central limit theorem.

Indeed, let Xi, i = 1, ..., n, be iid random variables with expectation µ and variance σ2. Then

X = X1 + · · ·+Xn

is a random variable with expectation nµ and variance nσ2 (so the standard deviation is σ
√
n). The

central limit theorem states that as n → ∞, the distribution of X converges to one of the normal
distribution with expectation nµ and variance nσ2. Therefore, the normalized random variable

X − nµ
σ
√
n

converges to the standard normal distribution: For each interval I ⊂ R,

lim
n→∞

P

(
X − nµ
σ
√
n
∈ I
)

=

∫
I
φ(x) dx.

The central limit theorem may appear surprising as it applies as long as the random variables X1, ..., Xn

are independent and identical, regardless which type they are and whether they are discrete or contin-
uous. So if one repeats any experiments independently for a great many times, the overall result must
tend to be normal.

Set Xi, i = 1, ..., n, as iid binomial random variables with parameter (1, p), which has expectation
µ = p and variance σ2 = p(1 − p). Then X = X1 + · · · + Xn is the binomial random variable with
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parameter (n, p). In this case, the central limit theorem recovers the one of De Moivre-Laplace: For
each interval I ⊂ R,

lim
n→∞

P

(
X − np√
np(1− p)

∈ I

)
=

∫
I
φ(x) dx.

7.2. The weak law of large numbers

In this section, we prove the law of large numbers in its weak form. It follows from Chebyshev’s
inequality, which in turn is a consequence of Markov’s inequality. These inequalities have their own
independent interests. That is, consider a random variable X, discrete or continuous. Suppose that we
know its expectation E[X] = µ and variance Var[X] = σ2. If, say, we also know that X is a normal
random variable, then the probability density function is

f(x) =
1

σ
√

2π
e−

1
2(x−µσ )

2

,

from which all information concerning the distribution of the random variables can be derived.
However, and more commonly, when we do not know what the random variable is, and we want to

extract information of the distribution of its values from the expectation and variance, then Markov’s
inequality and Chebyshev’s inequality provide valuable (albeit can be imprecise) information.

Theorem 7.1 (Markov). Let X be a non-negative random variable, that is, X(s) ≥ 0 for all s ∈ S.
Then for all a > 0,

P (X ≥ a) ≤ E[X]

a
.

Proof. Suppose that X is a discrete random variable. Since X(s) ≥ 0 for all s ∈ S,

E[X] =
∑
s∈S

X(s) · P ({s})

≥
∑

X(s)≥a

X(s) · P ({s})

≥
∑

X(s)≥a

a · P ({s})

= a
∑

X(s)≥a

P ({s})

= aP (X ≥ a),

which implies that

P (X ≥ a) ≤ E[X]

a
.

Suppose that X is a continuous random variable with probability density function f(x). Then

E[X] =

∫ ∞
−∞

x · f(x) dx ≥
∫ ∞
a

x · f(x) dx ≥
∫ ∞
a

a · f(x) dx = a

∫ ∞
a

f(x) dx = aP (X ≥ a),

which implies Markov’s inequality. �

Example. Suppose that the class of Introduction to Probability is consisted of 10 students. Equip
this sample space S with a probability P such that each sample point has the same probability (of
1
10). Assume that the scores of Test 1 are 33, 17, 32, 38, 32, 23, 32, 38, 40, 23. Let X denote the score a
student obtained in Test 1. Then X is a random variable whose expectation E[X] = 30.8.

(a). Set a = 22. Then
E[X]

a
= 1.4, while P (X ≥ 30) =

9

10
.
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(b). Set a = 30.8. Then
E[X]

a
= 1, while P (X ≥ 30.8) =

7

10
.

(c). Set a = 38. Then
E[X]

a
≈ 0.811, while P (X ≥ 38) =

3

10
.

Remark. Markov’s theorem provide an easily accessible upper bound by E[X]
a of P (X ≥ a) (i.e.,

the probability that X takes larger values than a given number). However, this bound can be imprecise.

Moreover, it is only meaningful when a > E[X], and when a ≤ E[X], E[X]
a ≥ 1 and the estimate is

trivially true.

Example. Suppose that the grades of 40 students have a mean of 60. Then by Markov’s inequality,
the number of grades which are ≥ 95 is bounded above by

60

95
· 40 ≈ 25.3.

Therefore, the number of grades which are ≥ 95 is at most 25.

Example. Let X be the uniform random variable on (0, 30), that is, the probability density function
is

f(x) =

{
1
30 if 0 < x < 30,

0 otherwise.

Then the expectation E[X] = 15.

(a). Set a = 10. Then
E[X]

a
= 1.5, while P (X ≥ 10) =

2

3
.

(b). Set a = 15. Then
E[X]

a
= 1, while P (X ≥ 15) =

1

2
.

(c). Set a = 20. Then
E[X]

a
= 0.75, while P (X ≥ 20) =

1

3
.

Theorem 7.2 (Chebyshevi). Let X be a random variable with expectation E[X] = µ and variance
σ2 = Var[X] > 0. Then for all d > 0,

P (|X − µ| ≥ d) ≤ σ2

d2
.

As a consequence, for all k > 0,

P (|X − µ| ≥ kσ) ≤ 1

k2
.

Proof. Let Y = (X − µ)2. Then Y is a non-negative random variable whose expectation

E[Y ] = E
[
(X − µ)2

]
= Var[X] = σ2.

Take a = d2 in Markov’s inequality. Then

P (|X − µ| ≥ d) = P
(
(X − µ)2 ≥ d2

)
= P

(
Y ≥ d2

)
≤ E[Y ]

d2
=
σ2

d2
.

�

iPafnuty Chebyshev, Des valeurs moyennes. [The expectation values]. (1867).
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Example. Suppose that the class of Introduction to Probability is consisted of 10 students. Equip
this sample space S with a probability P such that each sample point has the same probability (of
1
10). Assume that the scores of Test 1 are 33, 17, 32, 38, 32, 23, 32, 38, 40, 23. Let X denote the score
a student obtained in Test 1. Then X is a random variable whose expectation µ = E[X] = 30.8 and
variance Var[X] = 50.96 (so the standard deviation σ ≈ 7.139).

(a). Set k = 1. Then 1
k2

= 1, while

P (|X − µ| ≥ σ) ≈ P (|X − 30.8| ≥ 7.139) = P (X ≥ 38) + P (X ≤ 23) =
6

10
.

(b). Set a = 1.5. Then 1
k2
≈ 0.816, while

P (|X − µ| ≥ 1.5σ) ≈ P (|X − 30.8| ≥ 10.709) = P (X ≥ 42) + P (X ≤ 20) =
1

10
.

(c). Set a = 2. Then 1
k2

= 0.25, while

P (|X − µ| ≥ 2σ) ≈ P (|X − 30.8| ≥ 14.278) = P (X ≥ 46) + P (X ≤ 16) = 0.

Remark. Chebyshev’s inequality provide an easily accessible upper bound by 1
k2

of P (|X−µ| ≥ kσ)
(i.e., the probability that X is deviated from the expectation by k standard deviations). However, this
bound can be imprecise. Moreover, it is only meaningful when k > 1, and when k ≤ 1, 1

k2
≥ 1 and the

estimate is trivially true.

Example. Let X be the uniform random variable on (0, 30). Then the expectation µ = E[X] = 15
and variance Var[X] = 75 (so the standard deviation σ ≈ 8.66).

(a). Set k = 1. Then 1
k2

= 1, while

P (|X − µ| ≥ σ) ≈ P (|X − 15| ≥ 8.66) = P (X ≥ 23.66) + P (X ≤ 6.34) = 0.423.

(b). Set k = 1.5. Then 1
k2
≈ 0.816, while

P (|X − µ| ≥ 1.5σ) ≈ P (|X − 15| ≥ 12.99) = P (X ≥ 27.99) + P (X ≤ 2.01) = 0.134.

(c). Set k = 2. Then 1
k2

= 0.25, while

P (|X − µ| ≥ 2σ) ≈ P (|X − 15| ≥ 17.32) = P (X ≥ 32.32) + P (X ≤ −2.32) = 0.

Remark. An equivalent formulation of Chebyshev’s inequality is that

P (|X − µ| < d) ≥ 1− σ2

d2
and P (|X − µ| < kσ) ≥ 1− 1

k2
,

that is, lower bounds of the probability that the random variable X takes value close to its expectation.

Example. Suppose that the grades of 40 students have a mean of 80 and a variance of 36 (so the
standard deviation is 6). Then by Chebyshev’s inequality, the number of grades which are in the range
(68, 92) (i.e., within two standard deviations from the mean) is bounded below by(

1− 1

22

)
· 40 = 30.

Therefore, the number of grades in the range (68, 92) is at least 30.

Example. Let X be the standard random variable. Then the expectation µ = E[X] = 0 and
variance Var[X] = 1 (so the standard deviation σ = 1).

(a). Set k = 1. Then 1− 1
k2

= 0, while

P (|X − µ| < σ) = P (|X| < 1) ≈ 0.68.

(b). Set k = 2. Then 1− 1
k2

= 0.75, while

P (|X − µ| < 2σ) = P (|X| < 2) ≈ 0.95.
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(c). Set k = 3. Then 1− 1
k2
≈ 0.889, while

P (|X − µ| < 3σ) = P (|X| < 3) ≈ 0.997.

Now the weak law of large numbers follows directly from Chebyshev’s inequality:

Theorem 7.3 (The weak law of large numbers). Let Xi with i ∈ N be iid random variables with
expectation µ and variance σ2 <∞. Then for any ε > 0,

P

(∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ ≥ ε)→ 0 as n→∞.

Proof. Let

Y =
X1 + · · ·+Xn

n
.

Then Y is a random variable whose expectation is given by

E[Y ] = E
[
X1 + · · ·+Xn

n

]
=

1

n
(E[X1] + · · ·+ E[Xn]) = µ.

Since X1, ...Xn are independent, the variance of Y is given by

Var[Y ] = Var

[
X1 + · · ·+Xn

n

]
=

1

n2
Var [X1 + · · ·+Xn] =

1

n2
(Var[X1] + · · ·+ Var[Xn]) =

σ2

n
.

Then by Chebyshev’s inequality,

P (|Y − µ| ≥ ε) ≤ Var[Y ]

ε2
≤ σ2

nε2
→ 0 as n→∞.

�

Example. Consider n independent tosses of a fair coin. Let Xi denote the number of heads in the
i-th toss, i = 1, ..., n, whose expectation µ = 1

2 and variance σ2 = 1
4 . Then X = X1 + · · · + Xn is the

number of heads, whereas Y = X
n is the percentage of tosses which land on heads.

According to the weak law of large numbers, for any ε > 0,

P

(∣∣∣∣Y − 1

2

∣∣∣∣ ≥ ε) ≤ Var[Y ]

ε2
≤ σ2

nε2
=

1

4nε2
.

For example, set n = 100 and ε = 1
10 . Then

P

(∣∣∣∣Y − 1

2

∣∣∣∣ ≥ 1

10

)
≤ 1

4nε2
= 0.25.

which implies that

P

(∣∣∣∣Y − 1

2

∣∣∣∣ ≤ 1

10

)
≥ 0.75.

That is, with at least probability 0.75, the percentage of tosses which land on heads is in the range
1
2 ±

1
10 , i.e., the number of heads is in the range 50± 10.

7.3. The strong law of large numbers

In this section, we prove the strong law of large numbers.

Theorem 7.4 (The strong law of large numbers). Let Xi with i ∈ N be iid random variables with
expectation µ and variance σ2. Suppose that the fourth moment E[X4

i ] = K <∞.

P

(
lim
n→∞

X1 + · · ·+Xn

n
= µ

)
= 1.
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Remark (Weak and strong laws of large numbers). Let

Y =
X1 + · · ·+Xn

n
.

Recall that the weak law of large numbers states that for any ε > 0,

P (|Y − µ| ≥ ε)→ 0 as n→∞.
that is, the probability that Y deviates from the expectation µ by at least ε converges to 0.

Now the strong law of large numbers states that with probability 1, Y converges to µ, that is,
Y does not deviate from its expectation asymptotically. Therefore, the strong law of large numbers
implies the weak version.

Indeed, if not, then P (|Y − µ| ≥ ε) does not converge to 0, i.e., there is a positive probability that
Y deviates from µ by at least ε > 0. With at least the same probability, Y does not converge to µ,
contradicting with the strong law.

The proof below of the strong law of large numbers uses the fourth moment E[X4]. We prove a
relation with the second moment:

Lemma 7.5. Let X be a random variable with fourth moment E[X4] = K. Then(
E
[
X2
])2 ≤ K.

Proof. Notice that E[X4] = E[(X2)2] is the second moment of the random variable X2. Hence,

K = E
[
X4
]

= E
[(
X2
)2]

= Var
[
X2
]

+
(
E
[
X2
])2

,

which implies that (
E
[
X2
])2

= K −Var
[
X2
]
≤ K,

since Var[X2] ≥ 0. �

The proof below also uses some basics of series, for which we briefly recall here:

Remark (Series).

• If
∞∑
n=1

an

converges, then
lim
n→∞

an = 0.

• If 0 ≤ an ≤ bn for all n ∈ N and
∞∑
n=1

bn

converges, then
∞∑
n=1

an

also converges.
•

∞∑
n=1

1

nr

{
converges if r > 1,

diverges if 0 < r ≤ 1.

Now we provide the proof of the strong law of large numbers:
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Proof. It suffices to prove the theorem in the case when µ = E[Xi] = 0. Indeed, the case for
general iid random variables Yi with i ∈ N follows by setting Xi = Yi − E[Yi].

Write

X =

n∑
i=1

Xi and Y =
X

n
.

Then

X4 =

(
n∑
i=1

Xi

)4

=
n∑

i,j,k,l=1

XiXjXkXl,

whose terms can be classified into five groups:

(1). All four of i, j, k, l are identical. There are n such terms, e.g., X1X1X1X1. Each term has expec-
tation equal to

E [X1X1X1X1] = E
[
X4

1

]
= K.

(2). Three of i, j, k, l are identical, which differ with the remaining one, e.g., X3
1X2. Each term has

expectation equal to
E
[
X3

1X2

]
= E

[
X3

1

]
E [X2] = 0,

because E[X1] = µ = 0.
(3). Two of i, j, k, l are identical, differing with the remaining two, which are also distinct, e.g., X2

1X2X3.
Each term has expectation equal to

E
[
X2

1X2X3

]
= E

[
X2

1

]
E [X2]E [X3] = 0.

(4). Two of i, j, k, l are identical, differing with the remaining two, which are identical, e.g., X2
1X

2
2 .

There are (
n

2

)(
4

2

)
= 3n(n− 1)

such terms. Each term has expectation equal to

E
[
X2

1X
2
2

]
= E

[
X2

1

]
E
[
X2

2

]
=
(
E
[
X2

1

])2 ≤ K,
using Lemma (7.5).

(5). All four of i, j, k, l are distinct, e.g., X1X2X3X4. Each term has expectation equal to

E [X1X2X3X4] = E [X1]E [X2]E [X3]E [X4] = 0.

Hence,
E
[
X4
]
≤ nK + 3n(n− 1)K,

which implies that

E
[
X4

n4

]
≤ K

n3
+

3(n− 1)K

n3
≤ K

(
1

n3
+

3

n2

)
.

Notice that
∞∑
n=1

(
1

n3
+

3

n2

)
<∞.

It then follows that

E

[ ∞∑
n=1

X4

n4

]
=
∞∑
n=1

E
[
X4

n4

]
<∞, (7.1)

which implies that with probability 1,
∞∑
n=1

X4

n4
<∞. (7.2)

If not, then there is a positive probability such that
∞∑
n=1

X4

n4
=∞,
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which would lead to conclusion that the expectation of this series is infinity, contradicting with (7.1).
Now (7.2) implies that with probability 1,

lim
n→∞

X4

n4
= lim

n→∞

(
X

n

)4

= lim
n→∞

Y 4 = 0,

that is, Y → 0 as n→∞. �

7.4. The central limit theorem

In this section, we prove the central limit theorem.

Theorem 7.6 (The central limit theorem). Let Xi with i ∈ N be iid random variables with expec-
tation µ and variance σ2. Let X = X1 + · · ·+Xn. Then for each interval I ⊂ R,

lim
n→∞

P

(
X − nµ
σ
√
n
∈ I
)

=

∫
I
φ(x) dx.

Thus, the central limit theorem provides a complete characterization of the limit of the random
variable X−nµ

σ
√
n

. We prove the theorem using the characteristic functions of random variables.

Definition (Characteristic functions). Let X be a random variable. The characteristic function of
X is defined as

ϕX(t) = E
[
eitX

]
.

• Suppose that X is a discrete random variable with probability mass function p. Then

E
[
eitX

]
=

∑
x∈X(S)

eitx · p(x).

• Suppose that X is a continuous random variable with probability density function f . Then

E
[
eitX

]
=

∫ ∞
−∞

eitx · f(x) dx.

Remark. In the discrete case, ϕX(t) is the discrete Fourier transform of the probability mass
functions; in the continuous case, the continuous Fourier transform of the probability density function.

In Fourier analysis, one can show that the characteristic function of a random variable X determines
completely the probability mass or density function via an inverse Fourier transform. In particular, all
information of X can be derived from its characteristic function, which include the expectation, the
variance, and all the moments. See Lemma 7.7.

Moreover, to show that two random variables are identical, it suffices to show that their character-
istic functions equal. This is our plan of proving the central limit theorem later. That is, to show that a
random variable Z converges to the standard normal random variable, we prove that the characteristic

function ϕZ(t) converges to e−
1
2
t2 , one of the standard normal random variable, see Proposition 7.8.

Lemma 7.7. Let X be a random variable with characteristic function ϕX(t). Then for all k ∈ N,

ϕ
(k)
X (0) = ikE

[
Xk
]
.

In particular,

ϕX(0) = 1, ϕ′X(0) = iE[X], ϕ′′X(0) = −Var
[
Xk
]
.

Proof. Compute that

ϕ
(k)
X (t) = E

[
(iX)keitX

]
= ikE

[
XkeitX

]
.

Hence,

ϕ
(k)
X (0) = ikE

[
Xk
]
.

�
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Proposition 7.8. Let X be the standard normal distribution. Then the characteristic function is

E
[
eitX

]
= e−

1
2
t2 .

Proof. Compute that

E
[
eitX

]
=

∫ ∞
−∞

eitx · φ(x) dx

=
1√
2π

∫ ∞
−∞

eitx · e−
1
2
x2 dx

=
1√
2π

∫ ∞
−∞

e−
1
2(x2−2itx) dx

=
1√
2π

∫ ∞
−∞

e−
1
2(x2−2itx+(it)2−(it)2) dx

=
1√
2π

∫ ∞
−∞

e−
1
2
(x−it)2e−

1
2
t2 dx

= e−
1
2
t2 · 1√

2π

∫ ∞
−∞

e−
1
2
(x−it)2 dx

= e−
1
2
t2 .

�

The proof below of the central limit theorem also uses some basics of Taylor series, for which we
briefly recall here:

Remark (Taylor series). Suppose that u(x) ∈ C∞(R). Then

u(x) =

∞∑
k=0

u(k)(0)

k!
xk.

which is the Taylor series at 0. In particular, if f ∈ C∞(R), then as x→ 0,

u(x) = u(0) + u′(0)x+
1

2
u′′(0)x2 + o

(
x2
)
.

Now we provide the proof of the central limit theorem:

Proof. It suffices to prove the theorem in the case when µ = E[Xi] = 0 and σ2 = Var[Xi] = 1.

Indeed, the case for general iid random variables Yi with i ∈ N follows by setting Xi = Yi−E[Yi]√
Var[Yi]

.

We then need to show that as n→∞,

Z =
X√
n

=
X1 + · · ·+Xn√

n

converges to the standard normal random variable. To this end, we show that the characteristic function

ϕZ(t) = E
[
eitZ

]
→ e−

1
2
t2 as n→∞,

in which e−
1
2
t2 is the characteristic function of the standard normal random variable by Proposition

7.8. Since X1, ..., Xn are independent, we compute that

E
[
eitZ

]
= E

[
e
it(X1+···+Xn)√

n

]
= E

[
e
itX1√
n · · · e

itXn√
n

]
= E

[
e
itX1√
n

]
· · ·E

[
e
itXn√
n

]
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=

(
E
[
e
itX1√
n

])n
Consider the random variable X1√

n
:

E
[
X1√
n

]
= 0 and Var

[
X1√
n

]
=

1

n
Var [X1] =

1

n
.

Therefore, its characteristic function satisfies that

ϕ′X1
(0) = E

[
X1√
n

]
= 0 and ϕ′′X1

(0) = −Var

[
X1√
n

]
= − 1

n
.

Hence, the Taylor series of ϕX1 at 0 states that

ϕX1(t) = 1− t2

2n
+ o

(
t2
)
.

Finally, as n→∞,

E
[
eitZ

]
=

(
E
[
e
itX1√
n

])n
=

(
1− t2

2n
+ o

(
t2
))n
→ e−

1
2
t2 .

Here, we used the fact that (
1 +

1

m

)m
→ e as m→∞.

�

Homework Assignment .

Question 7.1. A manager distributes a total bonus of $10,000 among 100 employees. Using
Markov’s inequality, find an upper bound of the number of employees who receive bonuses greater
than or equal to $500.

Answer. The mean of the bonuses is given by 10000
100 = 100. By Markov’s inequality, the number

of employees who receive bonuses greater than or equal to $500 is bounded above by

100

500
· 100 = 20.

Therefore, the number of employees who receive bonuses greater than or equal to $500 is at most 20.

Question 7.2. A manager distributes a total bonus of $10,000 among 100 employees. Suppose that
the variance of the bonuses is 100 (so the standard deviation is $10). Using Chebyshev’s inequality,
find the a lower bound of the number of employees which receive bonuses in the range (70, 130).

Answer. The mean of the bonuses is given by 10000
100 = 100. By Chebyshev’s inequality, the number

of employees who receive bonuses in the range (70, 130) (i.e., within three standard deviations from the
mean) is bounded below by (

1− 1

32

)
· 100 ≈ 88.9.

Therefore, the number of employees who receive bonuses in the range (70, 130) is at least 89.

Question 7.3. Let X1, ..., X9 be independent Poisson random variables with expectation 1. Let
X = X1 + · · ·+X9.

(a). Using Markov’s inequality, find an upper bound of P (X > 12).
(b). Using the central limit theorem, find an approximation of P (X > 12).

Answer. A Poisson random variable with expectation µ = 1 has variance σ2 = 1. Hence, X =
X1 + · · ·+X9 has expectation E[X] = 9 and variance Var[X] = 9 (so the standard deviation is 3).
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(a). Using Markov’s inequality,

P (X > 12) ≤ E[X]

12
=

3

4
= 0.75.

(b). Using the central limit theorem, the random variable

Y =
X − 9

3
can be approximated by the standard normal random variable, that is, X = 3Y + 9. Hence,

P (X > 12) = P (3Y + 9 > 12) = P (Y > 1) = 1− P (Y < 1) ≈ 1− 0.8413 = 0.1587,

by Table 5.2.

Question 7.4. A person has 100 light bulbs whose lifetimes are independent exponential random
variables with mean 5 hours. If the bulbs are used one at a time, with a failed bulb being replaced
immediately by a new one, approximate the probability that there is still a working bulb after 540
hours.

Answer. Let X1, ..., X100 be iid exponential random variables with expectation µ = 5. Then its
parameter is λ = 1

5 and variance is σ2 = 25. Then X = X1 + · · · + Xn is a random variable with
expectation 500 and variance 2500 (so the standard deviation is 50). Using the central limit theorem,
the random variable

Y =
X − 500

50
can be approximated by the standard normal random variable, that is, X = 50Y + 500. Hence,

P (X > 540) = P (50Y + 500 > 540) = P (Y > 0.8) = 1− P (Y < 0.8) ≈ 1− 0.7881 = 0.2119,

by Table 5.2.
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