Appinite

Rudi Pohl¹ and Lorence Collins²

November 11, 2023

¹Email address: rudipohl@yahoo.com

²Email address: <u>lorencecollins@gmail.com</u>

Appinite is an <u>amphibole</u>-rich <u>plutonic rock</u> of high <u>geochemical variability</u>. Appinites are therefore regarded as a *rock series* comprising <u>hornblendites</u>, meladiorites, <u>diorites</u>, but also <u>granodiorites</u> and <u>granites</u>. Appinites have formed from <u>magmas</u> very rich in water. They occur in very different <u>geological environments</u>. The ultimate source region of these peculiar rocks is the <u>upper mantle</u>, which was altered <u>metasomatically</u> and geochemically before <u>melting</u>.

Etymology

The rock appinite was named after its <u>type</u> <u>locality Appin</u> near <u>Ballachulish</u> in <u>Scotland</u>. Appin was originally called *An Appain* in <u>Scottish Gaelic</u>. This is derived from <u>Middle Irish</u> *apdain* or from <u>Old Irish</u> *aibit* with the meaning of <u>abbey</u> — referring to the ancient abbey on the neighbouring island <u>Lismore</u>.

Definition

Bailey and Maufe (1916) defined appinite originally as

a medium- to coarse-grained, meso- to melanocratic igneous rock, that stands out by conspicuous crystals of <u>hornblende</u>, which are enclosed by

a <u>matrix</u> of <u>plagioclase</u> (<u>oligoclase</u> to <u>andesine</u>) and/or <u>orthoclase</u>. <u>Quartz</u> in many places is present, but can also be absent.

Generally, appinites are plutonic equivalents of <u>calc-alkaline lamprophyres</u> such as <u>vogesite</u> and <u>spessartite</u>.[1]

Introduction

Appinites — often synonymously used for *hornblende diorites* — are a coeval rock suite of plutonic or subvolcanic igneous rocks with variable chemical compositions, covering <u>ultramafic</u> to <u>felsic</u> igneous rocks. They are characterized in all their lithologies by <u>euhedral</u> hornblende crystals as the dominant mafic mineral. Hornblende mainly appears as big <u>prismatic phenocrysts</u>, but can also be found in the <u>groundmass</u>.

On top appinites have very different <u>textures</u> — featuring planar and linear magmatic fabrics, <u>cumulate textures</u>, intercumulate textures and also <u>poikilitic</u> fabrics. They also can occur as mafic <u>pegmatites</u> and show common *mixing* and *mingling* between coeval mafic and felsic magmas. In mamy places, they are variably contaminated by the country rocks.

Most appinites crystallize from an important gas phase. This implies an anomalously water-rich magma including both mantle components and meteoric components. [2] The appinite suite therefore offers a unique occasion to study the role of water in the production and in the <u>crystallization</u> history of

mafic to felsic magmas, but also more generally in intrusional processes.

Appinitic <u>intrusions</u> possess a whole gamut of differing plutonic bodies and show very different ways of emplacement. Most of the appinites precede granitic intrusions, but can appear also at the same time. This can be perfectly observed at the <u>Ardara pluton</u> in <u>Donegal</u>. Their emplacement is usually directed by <u>tectonics</u> — especially by important <u>shear zones</u>, who potentially facilitate the rising of the magmas through the <u>crust</u>. [3]

General remarks

In general, appinites appear as relatively small, rather flat intrusional bodies in the crust. Their diameter never exceeds more than 2 kilometers — like for instance the defining appinites in Scotland. Appinites rose along the periphery of granitic plutons and usually are associated with important, deep reaching <u>faults</u> along which they ascended into higher crustal levels.

In many places appinites — and likewise the Scottish appinites — get tied up with active <u>subduction</u>, the formation of granitoids and also the termination of subduction by *slab breakoff*. In the case of the Scottish appinites it is believed that they only formed once the <u>lapetus ocean</u> was closed by continental collision between the southern continental margin of <u>Laurentia</u> and the northwestern side of <u>Eastern</u>
<u>Avalonia</u> and that the subduction within lapetus had stopped.

Yet newer <u>geochronological studies</u> seem to indicate, that the relation between subduction, appinite formation and granite magmatism involves a rather lengthy process.

It is also believed, that the mafic component of appinites only was able to form once the subducting plate had broken off enabling hot asthenospheric material to flow in through the gap. The asthenospheric extra heat initiated magmas containing juvenile mantle components, but also components of Subcontinental Lithospheric Mantle (SCLM). Furthermore, the magmas show affinities to Shoshonites. The felsic components of appinites are connected to big batholiths with fractional crystallization being the main petrogenetic process. The assimilation of country rocks was of hardly any importance.

Occurrences and ages

Appinites occur more or less worldwide. Temporally, the oldest appinites are 2700 million years old (the Neoarchaean Era); the youngest are of Holocene age. The Neoarchaean appinites are associated genetically with coeval sanukitoids. This is often taken as proof for plate tectonics going back that far in time.

Besides the <u>type locality</u> in the Scottish <u>Caledonides</u> (within the <u>Central Highlands Terrane</u> or *Grampian Terrane*) appinites also occur in <u>Ireland</u> within and in the vicinity of the <u>Donegal Batholith</u> — especially in association with the Ardara pluton — but also within the <u>Leinster Granite^[4]</u> and within the <u>Galway granite batholith</u>. [5]

All these appinites have <u>Silurian</u> ages. Further occurrences in Scotland are found near <u>Loch Lomond</u> and in central <u>Sutherland</u>, which already belongs to the <u>Northern Highlands Terrane</u>. The appinites in the Northern Highlands Terrane are mainly associated with the <u>Ratagain Complex</u>,

the <u>Rogart Granite</u> and the <u>Strontian Granite</u>. ^[6] The appinites from the Rogart Granite and from the Strontian Granite also have Silurian ages and are between 425 and 420 million years old.

So far, the oldest known appinites come from northern Michigan. They go back in time roughly 2700 million years and belong to the *Northern Complex* — a greenstone belt along the southern edge of the Superior craton. [7]

Fairly old appinites are reported from <u>Canada</u>, for instance from the <u>Frog Lake hornblende gabbro</u> situated within the late <u>neoproterozoic</u> *Avalon Terrane* in <u>Nova</u> <u>Scotia</u>. [8] The <u>Wamsutta Diorite</u> in the <u>White</u> <u>Mountains</u> of <u>New Hampshire</u> also has similarities with appinites. The diorite is 408 million years old and belongs to the <u>Acadian Orogeny</u>. [9]

Younger appinites from the <u>Carboniferous</u> appear near <u>Puebla</u> <u>de Sanabria</u> in the <u>Variscides</u> of northwestern <u>Spain</u>. They are also found in the <u>Avila Batholith</u>. Amongst Variscan occurrences appinites in many places carry local names like <u>Durbachites</u> (in the <u>Black Forest</u>), <u>Redwitzites</u> (in the <u>Fichtelgebirge</u>), <u>Vaugnerites</u> (in the French <u>Massif</u> <u>Central</u>), and sometimes they also hide under the header *High Ba Sr Granitoids* (an example being the Rogart Granite in Scotland).

Variscan appinites can also be found in the <u>Southern</u> <u>Alps</u> of <u>Northern Italy</u>. They are associated here with the <u>permian</u> *Serie dei Laghi* — a rock series of gabbros and granites. [13] The age of these Italian appinites is about 285 million years.

In Asia appinites are known to occur in China and in Tibet.

In China appinites appear in the <u>Upper Ordovician</u> (495 - 452 million years) <u>Datong Pluton</u> of the <u>Western Kunlun</u>. and again in the <u>triassic Laocheng Pluton</u> of the <u>Qinling</u> During the <u>Upper Permian</u> appinites formed along the northern edge of the <u>North China Craton</u> (in northwestern <u>Liaoning</u>) and during the Triassic in <u>Heilongjiang</u> (near <u>Duobaoshan</u>), also belonging to the North China Craton.

In the Tibetan <u>Himalaya</u> Appinite-cumulates are found in the <u>Gangdese Batholith</u> of the <u>Lhasa Terrane</u>. These appinites formed during the Upper Triassic and are 220 to 213 million years old. Another appinite association in Tibet occurs near <u>Pengcuolin</u> northwest of <u>Xigazê</u>. It belongs to the southern Lhasa Terrane and is only 51 million years old i.e. <u>Ypresian</u> (<u>Eocene</u>).

Very young examples of appinites come from <u>Iran</u>, like appinites from the <u>Baneh Pluton</u> in the <u>Zagros</u>. These appinites are 40 million years old and stem from the Middle Eocene. They mark the <u>Zagros Suture Zone</u>. At about the same time appinites also formed near <u>Sardasht</u> more to the northwest.

Mineralogy

Appinites consist mainly of <u>amphibole</u> (hornblende) taking up between 50 and 80 volume percent. <u>Anorthite</u>-rich plagioclase with An₅₀₋₇₀ reaches about 20 vol. %. The rest is made up of <u>clinopyroxene</u> (5 to 15 vol. %) and <u>olivine</u> (5 to 10 vol. %). Some <u>biotite</u> and occasional <u>phlogopite</u> are also encountered. In more felsic appinites appear <u>alkali feldspar</u> and <u>quartz</u>. Represented amongst the <u>accessory</u>

minerals are <u>sphene</u>, <u>ilmenite</u>, <u>zircon</u> and <u>apatite</u>. <u>Allanite</u> can be found in more felsic members.

A special occurrence is <u>myrmekite</u> found in an appinite of the Italian *Serie dei Laghi* — indicating metasomatic alterations.

Amongst the amphiboles (mainly brown amphiboles, but also some greenish amphiboles) two populations with high and low <u>aluminium</u> content can be

differentiated. <u>Tschermakite</u> and <u>magnesiohastingsite</u> are rich in aluminium, whereas <u>magnesiohornblende</u> contains much less. Plagioclase can also be subdivided into two groups — one anorthite-rich with An₈₀₋₈₈ and the other anorthite-poor with An₃₆₋₅₂. Plagioclase with a high anorthite component is surrounded by amphiboles or mantled by plagioclases with a low anorthite component. Therefore, it can be assumed, that plagioclase crystallized before amphibole. The <u>grain size</u> of amphiboles varies from 2 millimeters to several centimeters.

Plagioclase, olivine and clinopyroxene settled as <u>cumulates</u>, whereas amphiboles grew afterwards as intercumulate crystals which also can show <u>corona textures</u>.

Petrology

Major elements

Among the <u>major elements</u> the SiO₂ contents of the appinite suite usually vary between 42 and 61 weight %. The rocks are therefore ultramafic, mafic and intermediate in their geochemical composition. Felsic end members can reach up to 72.1 weight % SiO₂. The SiO₂ contents correspond with the rock types <u>cortlandtite</u> (a melagabbro), hornblendite, hornblende diorite, meladiorite and diorite, the felsic end members with granodiorite till granite.

The Al₂O₃ contents vary between 13 and 22 weight %. Appinites are <u>metaluminous</u> with A/NK > 1 and A/CNK < 1. The contents of MgO fall between 5 and 16 weight % and the magnesium numbers generally oscillate between 0.22 and 0.57 (or between 22 and 57). Appinites are magnesian rocks (and not ferroan), because in the relation SiO₂ plotted against Fe₂O₃tot/(Fe₂O₃tot + MgO) their values are always lower than 0.66. Their magnesium contents are higher than what can be expected from melting of metabasalts and they approach sanukitoids of modern island arcs. The K₂O contents vary between 0.5 and 4.0 weight %, appinites are thus calc-alkaline (middle K and high K). Strongly differentiated samples can even touch into the shoshonitic field. With a value of 0.3 weight % K₂O the appinite from Kilrean has not been differentiated at all and represents an island arc tholeite. The ratio Na₂O/K₂O is rather high in appinites (right up to 5.43) and is similar to Cenozoic adakites, which were produced by the melting of subducted oceanic crust. Accordingly, appinites are a rock suite dominated by sodium.

In the <u>TAS diagram</u> appinites appear mainly in the <u>subalcaline</u> <u>field</u>, but they can extend into the <u>alcaline field</u>. They plot in the fields of <u>basalt</u>, basaltic andesite and andesite, but touch as well the fields of <u>basanite</u>, <u>trachybasalt</u>, basaltic trachyandesite and <u>trachyandesite</u>. The magmatic equivalents are gabbro, gabbroic diorite and diorite, extending towards peridotgabbro, foidgabbro, monzogabbro and monzodiorite. <u>Monzonite</u> hardly ever is realized.

The following table shows major element compositions of several appinites — in comparison with the lamprophyre from Narin-Portnoo:

Oxide weigh t %	Appini te Meena largan	App inite Nari n- Port noo	Appi nite Colo nsay	Appinit e Serie dei Laghi 1	Appinit e Serie dei Laghi 2	Laoc heng Appi nite 1	Laoc heng Appi nite 2	Appi nite Pengc uolin	Lampr ophyre Narin- Portno o
SiO ₂	48.90	50.2 0	52.3 0	49.76	56.03	46.5 5	50.4 4	41.16 - 48.13	49.37
TiO ₂	1.65	1.00	0.72	1.64	1.02	2.33	0.73	0.79– 2.22	3.15
Al ₂ O ₃	15.51	14.3 0	15.2 3	17.01	15.36	15.5 9	12.1 8	16.20 - 18.26	13.42
Fe ₂ O ₃ t ot	9.18	7.70	7.59	10.83	8.04	11.4 8	8.31	9.65– 16.21	14.29
MnO	0.13	0.10	0.14	0.19	0.13	0.15	0.13		0.23
MgO	9.10	7.90	5.77	5.58	8.30	7.62	10.5 8	5.25– 8.66	5.64
CaO	9.96	11.8 0	7.85	9.84	6.59	8.16	13.1 5	10.10 - 11.48	9.90
Na₂O	2.60	2.80	2.16	2.74	2.74	3.61	1.89	1.86– 2.79	2.57
K ₂ O	1.20	1.00	3.00	2.03	1.56	2.37	0.91	0.49– 0.90	0.51
P ₂ O ₅	0.37	0.30	1.11	0.35	0.22	0.76	0.17		0.36
LOI	2.20	2.40	1.85	0.03	0.01	1.73	1.58		0.56

Mg#	0.35	0.41	0.62	0.50	0.67	0.60	0.74	0.39 - 0.61	0.46
Na/K	3.30	4.26	1.09	2.06	2.66	2.31	3.14	2.48 - 5.43	7.69
Al/K+ Na	2.79	2.51	2.24	2.54	2.48	1.83	2.97		2.81
AI/K+ Na+C a	0.66	0.53	0.72	0.69	0.84	0.67	0.43		0.59

Trace éléments

Amongst the <u>trace elements</u> the mafic members of appinites manifest high concentrations in transitional metals like <u>nickel</u> (98-288 <u>ppm</u>), <u>chromium</u> (100-810 ppm) and <u>vanadium</u> (179-462 ppm). The <u>large-ion lithophile</u> <u>elements</u> (LILE), for example <u>rubidium</u>, potassium, <u>barium</u> (253-528 ppm), <u>cesium</u> and <u>strontium</u> (415-813 ppm), also have elevated concentrations — and so do the light rare-earth elements (<u>LREE</u>). Low in concentration are the heavy rare-earth elements (<u>HREE</u>) and also the <u>high field</u> <u>strength</u>

elements (HFSE) <u>niobium</u>, <u>tantalium</u>, <u>zirconium</u>, <u>phosphorus</u>, <u>titanium</u> and <u>thorium</u>. Still the HFSE are higher concentrated than in the associated granodiorites and granites. Compared with <u>chondrites</u> the LREE show an enrichment by factors 20-200. The HREE fractionation (expressed through the ratio Gd_N/Yb_N) shows values between 1.4 and 6.1. A positive <u>europium</u> anomaly is very weakly expressed and in

more felsic appinites the anomaly turns slightly negative (0.96-0.70). The values for <u>yttrium</u> are rather low (17-30 ppm).

The high concentrations in the elements Mg, Ni, Cr and Ba point towards a mantle source region. [20]

Compared with <u>MORBs</u> the elements rubidium, barium, potassium and also <u>cerium</u> are strongly enriched, yet titanium, <u>ytterbium</u> and yttrium are depleted.

The following table shows trace elements of different appinites:

Trace elemen ts ppm	Appinite Meenalarg an	Appini te Narin- Portno o	Appinite Se rie dei Laghi 1	Appinite Se rie dei Laghi 2	Laoche ng Appinit e 1	Laoche ng Appinit e 2
Pb	_	11.0	_	_	4.90	4.94
Ni	95	35	22	128	127	125
Cr	_	_	93	374	650	677
V	271	230	_	_	193	194
Zr	76	62	114	141	72.2	69.1
Υ	30.0	18.0	33.0	24.0	17.1	17.5
Sr	813	415	401	370	635	596
Ва	336	_	125	294	347	332
Rb	37.0	31.0	72.0	70.0	58.6	38.7

Nb	4.0	4.0	11.0	9.0	4.17	4.21

Isotopes

According to Harmon et al. (1984) appinites possess the following ε_{Nd} -, ε_{Sr} - and ε_{Hf} values: [21]

- ϵ_{Nd} varies between -8 and +2 (i. e. between 0.5123 and 0.51275 in the *Serie dei Laghi* between 0.5119 and 0.5123 for $^{143}Nd/^{144}Nd$)
- ϵ_{Sr} varies between -5 und +10 (i. e. between 0.7044 and 0.711 for $^{87}Sr/^{86}Sr$).
- $\varepsilon_{Hf(t)}$ in zircon varies between 3.3 and 7.9, but can descend to -1.7.

Appinites prolong the <u>mantle array</u> into the field of negative ε_{Nd} . Yet their mafic members plot very close to enriched MORB (EMORB) with $\varepsilon_{Nd} = +2$ and $^{87}\text{Sr}/^{86}\text{Sr} = 0.7048$. Their ε_{Sr} falls slightly above 0.

Whole rock analyses for $\delta^{18}O$ delivered values of 6.7 ‰, yet for single minerals values from 4.3 to 6.1 ‰. [22]

The isotopic ratio ²⁰⁶Pb/²⁰⁴Pb varies between 17.9 and 18.4.

Geochemistry

The <u>geochemical composition</u> of appinites is mainly calcalkaline, sometimes shoshonitic and rarely tholeitic. Therefore appinites resemble shoshonites, shoshonitic <u>lamprophyres</u>, ^[23] but also magnesian andesites, ^[24] sanukitoids, adakites and <u>TTG</u> rocks (tonalites, trondhjemites and granodiorites). The TTGs

appear especially in the late <u>Archean</u> and during the <u>Paleoproterozoic</u>. [25]

Genesis

The appinites in western Scotland and in northwestern Ireland originated from a gas-rich basaltic magma. The occurrences near Ballachulish are calc-alkaline and belong to the high-K type. They are evolving towards more continental conditions. In contrast, the Ardara appinites show transitions from calc-alkaline towards tholeitic, and were thus evolving towards island arc rocks. The Loch Lomond appinites are intermediate between the two, and they are common calc-alkaline rocks.

In the appinites from Ballachulish, <u>olivine</u> appears on the <u>liquidus</u> at a depth of about 70 to 80 kilometers, from where they ascended into overlying crustal domains. Their ascent was impeded by structural complications caused by <u>folded rocks</u> of the <u>Dalradian Supergroup</u>. Further crystallizations then happened under falling temperatures and rather variable gas pressures, caused by explosions within <u>subvolcanic pipes</u>.

Olivine crystallized first then <u>clinopyroxene</u>, amphibole, <u>mica</u> and plagioclase, creating a progressive rock suite covering ultramafic to felsic compositions. [26]

Experimental and theoretical studies show that, with rising water pressure, the stability field of hornblende expands, restricting the stability fields of olivine and clinopyroxene. The characteristic textures of appinites point to rapid crystal growth. These studies also support the reduction of melt <u>viscosity</u>, whereby <u>ions</u> can be transported more effectively to the sites of mineral growth.

Source region

The general source region of appinitic magmas is estimated to be situated at about 40 kilometers depth, just below the base of the <u>continental crust</u>. From there the magmas ascended and finally stalled at about 15 kilometers depth in upper crustal levels.

The water-bearing, basaltic appinitic magmas probably derive from <u>underplated</u> mafic sources with differing degrees of fractionation. They most likely resulted from subduction processes. From within the subcontinental lithospheric mantle they then rose into the <u>MASH zone</u> (abbreviation of *Melting, Assimilation, Storage and Homogenisation*) just above the <u>MOHO</u>. Here they engendered copious granitic magmas by partial melting processes.

It is assumed, that once the subduction came to an end water-bearing magmas rose from the underplated region into middle and upper crustal levels with 15 kilometers as upper intrusional depth level (corresponding to a pressure of 0.3 to 0.6 GPa or 3 to 6 kilobar). Here the magmas stalled, differentiated and crystallized under water-saturated conditions.

The granitic magmas also ascended in pulsating fashion and were making use of structures in the host rocks that were oriented to the local <u>stress</u> field in a favourable way — thus enabling the ascent. But later mafic pulses were hindered in their ascent by structurally higher, already crystallized granitic bodies — which functioned as <u>rheological</u> barriers. Still the appinite magmas were able to circumvent these barriers by

using as ascent ways deep-reaching faults along the edges of the granitoids. According to this model appinites provide a direct link to mafic underplating. Their mafic members also offer insights into the formation of granitic <u>batholiths</u> — and more generally into the crustal growth process underneath island arcs.

Melting

The melting of appinites was triggered by the incursion of hot and less viscous asthenospheric material. The incursion was due to *slab breakoff* after the collision of terranes or after outright continental collision. Another possibility is the opening of a *slab window*, which is resulting from the collision of a <u>mid-ocean ridge</u> with a subduction zone.

Mafic appinite magmas can contain a juvenile component. Neodymium isotopes show, however, that an additional SCLM-component was engaged. Quite often the SCLM-component had previously been metasomatized by hot fluids and magmas. This subcontinental lithospheric mantle component then was underplated by other mafics during subduction. Therefore, the composition of the mafic starting magmas can be quite variable for appinites. This explains, why certain appinite suites have calc-alkaline and others tholeitic compositions — and therefore differ from the shoshonitic type locality.

Some felsic appinite magmas are thought to have formed by <u>anatexis</u> — and not by fractional crystallization.

Overview

The overview centers on the example of the Pengcuolin appinite in the Tibetan Lhasa terrane. In this case the source

region is assumed to be directly above oceanic crust of the Neotethys domain subducting northwards underneath the Tibetan plateau, i.e. Eurasia. The pressure in the source region is estimated at 3.6 GPa corresponding to a depth of 120 kilometers. This is quite deep considering the above mentioned value of 80 kilometers. An explanation is of course overthickened crust caused by the continental collision of India and Eurasia.

The subcontinental mantle rocks were of <u>lherzolithic</u> <u>composition</u>, to be more specific an <u>olivine lherzolite</u>.

The temperatures were estimated at fairly low 800° C due to the subducted oceanic crust. The overlying subcontinental lherzolite was fluxed by fluids rising from the slab, became hydrated and was therefore metasomatized. Incoming asthenospheric material additionally provided heat to the lherzolite which was slowly rising, mainly along deepreaching tectonic fracture zones. At a pressure of 2.7 GPa or 90 kilometers depth the lherzolite had reached a temperature of 1329° C and started to melt. The primary magma rose quite quickly along faults within the subcontinental mantle. Having traversed the MOHO and arrived at 27 kilometers depth (corresponding to a pressure of 0.8 GPa) the melt collected in a first magma chamber. Plagioclase rich in anorthite began crystallizing and olivine plus pyroxene fractionated. This anorthite-rich appinitic magma kept on rising through the lower crust and stagnated once more at 16 kilometers depth (or at 0.5 GPa). Meanwhile it had cooled down to just above 800° C and started to crystallize aluminium-rich amphibole and plagioclase depleted in anorthite. The final batch of appinitic magma then finally stalled in the upper crust at a

depth of 10 kilometers (or 0.3 GPa). The last crystals to settle out then were aluminium-poor amphibole and anorthite-poor plagioclase.

Heat and additional water contributed in the first magma chamber at 27 kilometers depth to produce felsic melts, which also rose into the upper crust and intruded as granitic plutons. The associated granitoids therefore owe their existence to the heat input of the appinites enabling lower crustal material to be melted anatectically. Consequently, appinites can be regarded as *midwives* of collisional granitoids.

Lamprophyres

Lamprophyres are similar to appinites and origins of some kinds of lamprophyres are discussed in Collins (2023). [27]

Literature

- Hamidullah, S. (1983). Petrogenetic studies of the appinite suite of western Scotland. Master's thesis University of Glasgow.
- Murphy, J. Brendan (2013). Appinite suites: A record of the role of water in the genesis, transport, emplacement and crystallization of magma. Vol. 119. Earth-Science Reviews. pp. 35–59. doi:10.1016/j.earscirev.2013.02.002.
- Murphy, J. Brendan; Nance, Damian; Gabler, Logan B.; Martell, Alexandra; Archibald, Douglas A. (2019). Age, Geochemistry and Origin of the Ardara Appinite Plutons, Northwest Donegal, Ireland. Vol. 46(1). Geoscience Canada. pp. 31–48. doi:10.12789/geocanj.2019.46.144.
- Murphy, J. Brendan (2020). Appinite suites and their genetic relationship with coeval voluminous granitoid

- batholiths. Vol. 62, n. 6. International Geology Review. pp. 683–713. <u>doi:10.1080/00206814.2019.1630859</u>.
- Murphy, J. Brendan; Collins, William J.; Archibald, Donnelly B. (2022). Logan Medallist 7. Appinite Complexes, Granitoid Batholiths and Crustal Growth: A Conceptual Model. Vol. 49. Geoscience Canada. pp. 237–249. doi:10.12789/geocanj.2022.49.191.
- Pitcher, Wallace Spencer (1997). The nature and origin of granite. Chapman and Hall. <u>ISBN 0-412-75860-1</u>.
- Yarr, Timothy Roderick (1991). A petrological study of the appinite suite associated with the Ardara Pluton, Co. Donegal, Ireland. Master's thesis University of St Andrews.

References

- 1. Bailey, E. B.; Maufe, H. B. (1916). The geology of Ben Nevis and Glen Coe, and the surrounding country. Edinburgh: Geological Survey of Scotland. pp. 1–247.
- 2. ^ Murphy, J. Brendan; Collins, William J.; Archibald, Donnelly B. (2022). "Logan Medallist 7. Appinite Complexes, Granitoid Batholiths and Crustal Growth: A Conceptual Model". Geoscience Canada. 49 (3–4): 237–249. doi:10.12789/geocanj.2022.49.191. S2CID 254 914009.
- 3. <u>^ Yarr, Timothy Roderick (1991)</u>. A petrological study of the appinite suite associated with the

- Ardara Pluton, Co. Donegal, Ireland. Edinburgh: University of Saint Andrews.
- 4. A Brindley, J. C. (1970). Appinitic intrusions associated with the Leinster Granite. Vol. 102. Edinburgh: Earth and Environmental Science Transactions of the Royal Society of Edinburgh. pp. 1–16. doi:10.1017/S175569101100911X. S2CID 129637679.
- 5. Leake, Bernard Elgey (2011). Stoping and the mechanisms of emplacement of the granites in the Western Ring Complex of the Galway granite batholith, western Ireland. Vol. 70. Proceedings of the Royal Irish Academy. Section B: Biological, Geological, and Chemical Science. pp. 93–104.
- 6. <u>^</u> Fowler, M. B.; Kocks, H.; Darbyshire, D. P. F.; Greenwood, P. B. (2008). "Petrogenesis of high Ba-Sr plutons from the Northern Highlands Terrane of the British Caledonian Province". Lithos. 105 (1–2): 129–148. <u>Bibcode</u>: 2008Litho.105..129F. doi:10.1016/j.lithos.2008.03.003.
- 7. <u>^</u> Wilkin, Richard T.; Bornhorst, Theodore J. (1993). Archean Appinites from the Northern Complex, Michigan. Vol. 101. Journal of Geology. pp. 107–114.
- 8. <u>^</u> Pe-Piper, Georgia; Piper, David J. W.; Tsikouras, Basilios (2010). "The late Neoproterozoic Frog Lake hornblende gabbro pluton, Avalon Terrane of Nova

- Scotia: evidence for the origins of appinites". Canadian Journal of Earth Sciences. 47 (2): 103–120. <u>Bibcode</u>: 2010CaJES..47..103P. <u>doi:10.1139/E0</u>9-077.
- 9. <u>^</u> Dorais, Michael J. (2022). "The petrogenesis and tectonic setting of the New Hampshire Plutonic Suite: towards a more comprehensive model for the magmatism of the Acadian Orogen". American Journal of Science. 322 (3): 493–531. <u>Bibcode</u>: 2022AmJS..322..493D. <u>doi:10.2475/03.2022.03</u>. S2CID 249047111.
- 10. <u>^</u> Castro, Antonio (2003). The Appinite-Migmatite Complex of Sanabria, NW Iberian Massif, Spain. Vol. 44. Journal of Petrology. pp. 1309–1344.
- 11. <u>^</u> Molina, J. F.; Montero, P.; Bea, F.; Scarrow, J. H. (2012). Anomalous xenocryst dispersion during tonalite—granodiorite crystal mush hybridization in the mid crust: mineralogical and geochemical evidence from Variscan appinites (Avila Batholith, Central Iberia). Vol. 153. Lithos. pp. 224—242. <u>Bibcode</u>: 2022AmJS..322..493D. doi:10.2475/03.2022.03. S2CID 249047111.
- 12. ____ von Raumer, J. F.; Finger, F.; Veselá, P.; Stampfli, G. M. (2014). Durbachites-Vaugnerites un marqueur géodynamique dans l'orogène Variscan central de l'Europe. Vol. 26. Terra Nova. pp. 85–95.

- 13. ^ Pinarelli, Laura; Del Moro, Aldo; Boriani, Attilio; Caironi, Valeria (2002). Sr, Nd isotope evidence for an enriched mantle component in the origin of the Hercynian gabbro-granite series of the Serie dei Laghi (Southern Alps, NW Italy). Vol. 14. European Journal of Mineralogy. pp. 403–415.
- 14. _^ Zhu, Jie (2018). "Geochemistry and petrogenesis of the early Palaeozoic appinitegranite complex in the Western Kunlun Orogenic Belt, NW China: implications for Palaeozoic tectonic evolution". Geological Magazine. 155 (8): 1641—1666. Bibcode: 2018 Geom... 155.1641Z. doi:10.1017/

S0016756817000450. S2CID 37258241.

- 15. <u>^</u> Liu, Hang; Gong, Hujun; Luo, Fenhong; Zhang, Yaqin; Dang, Ben (2023). <u>"Triassic Appinite from the Qinling Orogen (Central China): Hydrous Melting of Depleted Mantle Wedge in Post-Collision Stage"</u>. Minerals. **2023** (3): 441. <u>Bibcode: 2023Mine...13..441L</u>. <u>doi:10.3390/min 13030441</u>.
- 16. ^ Ma, Xuxuan; Meert, Joseph G.; Xu, Zhiqin; Yi, Zhiyu (2018). Triassic intra-oceanic arc system within Neotethys: Evidence from cumulate appinite in the Gangdese belt, southern Tibet. Vol. 10. Lithosphere. pp. 545—565. doi:10.1130/L682.1. S2CID 85439693.

- 17. <u>A Huang, Feng; Zhang, Zhao; Xu, Jifeng; Li, Xiyao; Zeng, Yunchuan; Wang, Baodi; Li, Xiaowei; Xu, Rong; Fan, Zichen; Tian, Ye (2019). "Fluid flux in the lithosphere beneath southern Tibet during Neo Tethyan slab breakoff: Evidence from an appinitegranite suit". Lithos. 344–345: 324–338. <u>Bibcode</u>: 2019Litho.344..324H. doi:10.1016/j.lithos.2019.07.004. <u>S2CID</u> 199091620.</u>
- 18. ^ Azizi, Hossein; Hadad, Sepideh; Stern, Robert J.; Asahara, Yoshihiro (2018). "Age, geochemistry, and emplacement of the ~40-Ma Baneh granite—appinite complex in a transpressional tectonic regime, Zagros suture zone, northwest Iran". International Geology Review. 61 (2): 195—223. doi:10.1080/00206814.2017.1422394. S2CID 134377013.
- 19. <u>^</u> Fazlnia, Abdolnaser (2018). "Petrogenesis and tectonic significance of Sardasht syenite—monzonite—gabbro—appinite intrusions, NW Iran". International Journal of Earth Sciences. 108: 49–66. doi:10.1007/s00531-018-1641-7. S2CID 134195620.
- 20. ^ Atherton, M. P.; Ghani, A. A. (2002). "Slab breakoff: a model for Caledonian, Late Granite syncollisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland". Lithos. 62 (3–4): 65–85. <u>Bibcode</u>: 2002Litho..62...65A. doi:10.1016/S0024-4937(02)00111-1.

- 21. A Harmon, R. S.; Halliday, A. N.; Clayburn, J. A. P.; Stephens, W. E. (1984). "Chemical and isotopic systematics of the Caledonian intrusions of Scotland and Northern England: a guide to magma source region and magma-crust interaction". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. Philosophical Transactions of the Royal Society London A. 310 (1514): 709–742. Bibcode: 1984RSPTA.310..709H. doi:10.1098/rsta.1984.0016. S2CID 122825312.
- 22. <u>^</u> Bruand, Emile; Storey, C.; Fowler, M.; Dhuime, B.; Doucelance, R. (2023). <u>"Mineral-whole rock isotope fidelity? A comparative study of Hf-Nd-O from high Ba Sr granitoids"</u> (PDF). Chemical Geology. **624**. <u>Bibcode</u>: <u>2023ChGeo.624l1425B</u>. <u>doi: 10.1016/j.chemgeo.2023.121425</u>.
- 23. <u>^</u> Rock, N. M. S. (1991). "Lamprophyres". Springer. <u>doi</u>:10.1007/978-1-4757-0929-2.
- 24. <u>^</u> Tiepolo, M.; Tribuzio, R.; Langone, A. (2011). "Crystallization and Ultramafic Crust Assimilation: Evidence from Adamello Hornblendites (Central Alps, Italy)". Journal of Petrology. **52**: 1011–1045. doi:10.1093/petrology/egr016.
- 25. <u>^</u> Stern, R. A.; Hanson, G. N.; Shirey, S. B. (1989). "Petrogenesis of mantle-derived, LILE-enriched Archean monzodiorites and trachyandesites (sanukitoids) in southwestern

- Superior Province". Canadian Journal of Earth Sciences. 26: 1688–1712.
- 26. <u>^</u> Hamidullah, S. (1983). Petrogenetic studies of the appinite suite of western Scotland. Master's thesis, University of Glasgow.
- 27. <u>^</u>Collins, L., 2023, *Origin of lamprophyres* associated with myrmekite-bearing granitic rocks. This article can be accessed at this link.

 Nr60Lamprophyre4.pdf (csun.edu)