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Abstract

Good drawings (also known as simple topological
graphs) are drawings of graphs such that any two
edges intersect at most once. Such drawings have
attracted attention as generalizations of geometric
graphs, in connection with the crossing number, and
as data structures in their own right. We are in par-
ticular interested in good drawings of the complete
graph. In this extended abstract, we describe our
techniques for generating all di↵erent weak isomor-
phism classes of good drawings of the complete graph
for up to nine vertices. In addition, all isomorphism
classes were enumerated. As an application of the
obtained data, we present several existential and ex-
tremal properties of these drawings.

1 Introduction

We consider drawings of simple graphs in the plane or,
equivalently, on the sphere. Vertices are represented
by distinct points. Edges are drawn as Jordan arcs
connecting two vertices (of that edge) and not con-
taining any vertex except those at their endpoints.
Note that we do not distinguish between the elements
of the graph and their representation in the drawing.
A good drawing is a drawing of a graph such that any
two edges intersect at most once, either at a com-
mon endpoint or at a proper crossing, and no three
edges cross at a common point. Good drawings have
been extensively studied, and are also referred to as
“topological graphs” (e.g., in [14]), “simple topologi-
cal graphs” (e.g., in [9]), or simply “drawings” (e.g.,
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in [8]). We are interested in good drawings of the
complete graph Kn on n vertices.

One main motivation for considering good drawings
comes from the problem of minimizing the number
of crossings in drawings of Kn (where crossings are
counted by the overall sum of the number of points
in which each pair of edges crosses, as opposed to the
number of crossing edge pairs; see [15]). Indeed, for
any drawing of a graph, there exists a good draw-
ing of the same graph with at most the same num-
ber of crossings. The Harary-Hill conjecture states
that the number of crossings in any drawing of Kn is
at least H(n) = 1
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been verified for n ! 12; see [18]. While it has recently
been shown that the Harary-Hill conjecture holds for
many classes of drawings of Kn (see [1] and references
therein), it still remains open for the general case.

Two drawings are isomorphic if there is a homeo-
morphism of the sphere that transforms one drawing
into the other. For good drawings, this partitions the
infinite number of drawings into a finite number of iso-
morphism classes; Kynčl [9] showed that this number

is in 2!( n4
). With applications like determining the

crossing number in mind, the following coarser classi-
fication turns out to be useful. Two good drawings are
weakly isomorphic if there is an incidence-preserving
bijection between the drawings such that two edges
cross in one drawing if and only if their images in
the other drawing cross as well. Roughly speaking,
weakly isomorphic drawings that are non-isomorphic
di↵er in the order in which their edges intersect; see [4]
for details. The number of weak isomorphism classes

of Kn is in 2n2↵(n)
O(1)

[11] and 2"( n2
) [16].

Already in 1988, Rafla [20] enumerated all weak iso-
morphism classes of good drawings of Kn for n ! 7
by a computer program, under the (still unproven)
assumption that every good drawing contains a sim-
ple (i.e., crossing-free) Hamiltonian cycle. Gronau
and Harborth [5] enumerated all non-isomorphic good
drawings for n=6. Here, we describe our construction
of all weak isomorphism classes and the enumeration
of all isomorphism classes of good drawings of Kn for
n ! 9. The resulting data has been used to obtain ex-
act values for various extremal and existential prob-
lems on good drawings of Kn, both for n ! 9 and,
via extension of relevant instances, for more vertices.
Similar data has been successfully used for combina-
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torially di↵erent configurations of points [2], to ob-
tain counterexamples, induction bases, or, in general,
a better intuition for various problems.

In contrast to, e.g., [20], our generation of all weak
isomorphism classes is based on rotation systems. In
Section 2, we give the basic theoretical background on
rotation systems and sketch techniques that reduced
the required computational e↵ort. In Section 3, we
describe the enumeration of all non-isomorphic draw-
ings of each weak isomorphism class. Applications
and the outcome of several computations on the data
are given in Section 4. Parts of this work have been
presented in the master’s thesis [17] of Pammer.

2 Rotation Systems

Rotation systems were devised as tools for investigat-
ing embeddings of graphs on higher-genus surfaces [6].
Let D be an (arbitrary) drawing of a graph G(V, E).
The rotation ⇢D(v) (or ⇢(v) when D is clear from the
context) of a vertex v in D is the clockwise cyclic or-
der of edges incident to v, given as a sequence (that
is to be interpreted circularly) of the second vertices
of all edges at v. (Note that if G = Kn then ⇢(v) is a
cyclic permutation of V \ { v} ). The rotation system
(abbrev. RS) of D is the set of rotations of all vertices
of D and is denoted by R (D). We consider two rota-
tion systems to be equivalent if one can be obtained
from the other by relabeling and optional inversion
of all rotations. Further, we call a rotation system
realizable if it is the rotation system of a good draw-
ing of a complete graph. The following two results
imply that for complete graphs, the rotation system
uniquely determines the weak isomorphism class of a
good drawing (see also [9]), a property that is central
to our work.

Theorem 1 (Pach, T«oth [16]) The rotation sys-
tem of a good drawing of the complete graph deter-
mines the pairs of crossing edges.

Theorem 2 (Gioan [4]) The set of crossing pairs of
edges determines the equivalence class of the rotation
system of a good drawing of the complete graph.

Note that this is, in general, only true for com-
plete graphs: Determining the crossing number of a
(general) graph with a predefined rotation system is
NP-complete [19]. A result similar to the above ones
is also known for isomorphism classes:

Theorem 3 (Kynÿcl [9]) Two good drawings are
isomorphic i↵ there exists a bijection between their
vertices such that (i) they are weakly isomorphic,
(ii) for each edge, the order of crossings along its im-
age is the same, and (iii) for each crossing the radial
order of the edge parts emanating to the four involved
vertices is the same (or inverted for all crossings).
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Figure 1: The two di↵erent drawings of K4, with their
rotation systems.

K4 has only two (weak) isomorphism classes,
see Figure 1. We denote them by DX

4
and DY

4
. The

basic observation leading to Theorem 1 is that the
sub-drawing induced by four points has a rotation
system equivalent to R (DX

4
) if the four points are

involved in a crossing, and a rotation system equiva-
lent to R (DY

4
) otherwise. (Therefore, Property (iii)

in Theorem 3 is also determined by the rotation sys-
tem for drawings of the complete graph.) The other
direction (Theorem 2) is slightly more involved and
requires considering also 5-tuples. Unless stated oth-
erwise, we will consider only good drawings of com-
plete graphs (and their rotation systems). We have:

Observation 1 When given the rotation around
three vertices in a drawing of K4, the relative posi-
tion of these three vertices in the rotation around a
fourth vertex v is determined.

We generate all rotation systems of size n by ex-
tending the ones of size n " 1 in the following way. In
the sequence representing the rotation around every
vertex, we place the new vertex vn in all possible ways.
Each choice also determines parts of ⇢(vn) by Obser-
vation 1. The relative order of two vertices might be
di↵erent when considering di↵erent 4-tuples (which
indicates that the choice is invalid) and therefore all
4-tuples containing vn have to be checked. Hence,
we obtain a set of rotation systems where each ro-
tation system restricted to any four vertices is either
the one of DX

4
or DY

4
. We call such a rotation system

consistent. Still, there exist non-realizable consistent
rotation systems. For K5, there are five (weak) iso-
morphism classes, and two non-realizable consistent
rotation systems. For n # 6, there are more isomor-
phism classes than weak isomorphism classes. We de-
scribe our approach for checking realizability, which
is also used for enumerating all isomorphism classes,
in the next section.

To ensure that no two equivalent rotation systems
are stored, we guess a vertex that is given the la-
bel 1. Then we guess a second vertex to label all ver-
tices from 2 to n, either counterclockwise or clockwise
around the first one. This way, we obtain 2n(n " 1)
di↵erent labelings. Each labeling gives a matrix con-
sisting of the n rotations. We use the lexicographically
smallest one for storing the rotation system. Hence,
duplicates can be filtered easily.
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Figure 2: Four drawings of the same rotation system.
The two at the bottom are also isomorphic (consider
the labeling horizontally mirrored), the others are not.

3 Realizability and Enumeration

It remains to decide realizability of a rotation sys-
tem and, in case of a positive decision, to count the
number of its isomorphism classes. Deciding whether
a rotation system of Kn can be realized as a good
drawing can be done in polynomial time [10]. Since
we also want to enumerate all non-isomorphic draw-
ings of each rotation system, we use a less sophis-
ticated approach that, using properties of the rota-
tion system, works fast for small instances. The basic
idea is to use a backtracking algorithm to incremen-
tally build a good drawing, which is represented as
a doubly-connected edge list. This algorithm can be
used for both checking realizability and for obtaining
all realizations of a rotation system.

Similar to recognizing equivalent rotation systems,
we use a lexicographically smallest labeling to check
isomorphism. However, finding a “fingerprint” for
the isomorphism class is more complicated. Consider
Theorem 3 (i) and (ii). The first part of the finger-
print is the lexicographically smallest rotation sys-
tem. The labeling of the vertices defines an order on
them, which, in turn, gives a lexicographic order on
the edges. For each edge e, from smallest to largest,
we list the indices of the edges that cross e, in the or-
der when going from the smaller to the larger vertex.
However, there are, in general, several lexicographi-
cally smallest labelings for a rotation system, which
could give di↵erent sequences for the edge crossings.
Hence, for a given good drawing, we have to check all
such labelings of the rotation system to obtain the lex-
icographically smallest sequence of edge crossings. An
example is given in Figure 2, showing four drawings
of one rotation system, of which two are isomorphic.

4 Applications

The numbers of (weak) isomorphism classes are given
in Table 1.

n realizable RS
non-iso. non-iso. drawings
drawings per RS

3 1 1 1 . . . 1
4 2 2 1 . . . 1
5 5 5 1 . . . 1
6 102 121 1 . . . 3
7 11 556 46 999 1 . . . 57
8 5 370 725 502 090 394 1 . . . 46 571
9 7 198 391 729 1 . . . > 2.3$ 1010

Table 1: The numbers of weak isomorphism classes
and non-isomorphic good drawings of Kn, in total and
per RS.

4.1 Simple Hamiltonian Cycles

For n = 7, Rafla’s numbers [20] match ours, confirm-
ing the conjecture that every good drawing has a sim-
ple (i.e., crossing-free) Hamiltonian cycle for n ! 7.
In addition, we verified the conjecture for n ! 9.

4.2 Maximum Number of Crossings

As every drawing of K4 has at most one crossing,
there are at most

#n
4

$
crossings in a good drawing.

But in contrast to complete geometric graphs (where
only the set with all points in convex position at-
tains this bound), there exist many weak isomor-
phism classes with this maximum number of crossings.
We call them max-crossing drawings. Harborth and
Mengersen [8] already considered max-crossing draw-
ings, enumerating all 15 non-isomorphic ones for K6.
Kynčl [9] gives a lower bound of 2n�5 (n�3)!

n for the
number of max-crossing realizable RS, but no up-
per bounds better than that for all realizable RS are
known. Table 2 gives the numbers obtained from our
data. Observe that all max-crossing realizable RS can
be obtained by extending only max-crossing realizable
RS. Therefore, we can go beyond the n = 9 barrier
by extending only such systems. Note the slight dif-
ference to the question in [11, Problem 2], asking for
the number of max-crossing consistent RS.

It is known that every good drawing of Kn contains
a max-crossing sub-drawing of size ⌦(log1/8 n) [14]
(in fact, the bound is given for two particular max-
crossing graphs). Table 2 also lists the number of
realizable RS with no max-crossing 5-tuple, showing
that no such RS of size larger than 12 exists.

4.3 Crossing Number of K13

The crossing number of K13 is known to be between
219 [12] and 225 [18]. For odd n, the crossing number
has the same parity as H(n) [13]. For a drawing D
of Kn with cr(D) crossings there exists a vertex v s.t.
cr(D \ v) !

!
n�4

n cr(D)
"

[18]. This allows us to obtain
the exact value for cr(K13) by only extending rota-
tion systems with few crossings. By this we were able
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n
max-crossing realiz. RS without

realiz. RS drawings 5-crossing 5-tuple
4 1 1 2
5 2 2 3
6 10 15 33
7 115 1 477 606
8 2 657 8 373 474 19 195
9 82 957 449 188
10 3 226 173 4 208 379
11 4 162 266
12 32 290
13 0

Table 2: The number of realizable rotation systems
with the maximum number of crossings and the num-
ber of sets with no 5-tuple with 5 crossings.

to show that cr(K13) % {223, 225} . For obtaining all
rotation systems where K13 has at most 223 crossings
(if they exist), it is su�cient to extend all rotation
systems of K9 with at most 38 crossings, with inter-
mediate RS for n = 10, 11, 12 of at most 64, 102, and
154 crossings. The computations are ongoing.

4.4 Empty Triangles

In a good drawing D, a 3-cycle spanned by three
edges of D is called an empty triangle if the interior
of one of its sides does not contain any vertices of D.
Let �(n) be the minimum number of empty triangles
over all good drawings of Kn. Harborth [7] showed
2 ! �(n) ! 2n " 4, asking whether this upper bound
is tight. The currently best known lower bound of n is
given in [3], where also tightness of the upper bound
is stated for n ! 8. Using our data, we could extend
the positive answer to Harborth’s question for n = 9.

5 Conclusion

We described the generation of all weakly isomorphic
good drawings of Kn for n ! 9. The obtained data
allowed us to investigate several open existential and
extremal problems for such drawings. We expect the
data to be helpful for settling further questions in this
area, like the crossing number of K13 or the question
of which RS maximize the number of non-isomorphic
drawings.
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[10] J. Kynčl. Simple realizability of complete abstract
topological graphs in P. Discrete Comput. Geom.,
45(3):383–399, 2011.

[11] J. Kynčl. Improved enumeration of simple topologi-
cal graphs. Discrete Comput. Geom., 50(3):727–770,
2013.

[12] D. McQuillan, S. Pan, and R. B. Richter. On the
crossing number of K13. ArXiv e-prints, July 2013.
arxiv:1307.3297.

[13] D. McQuillan and R. B. Richter. A parity theorem for
drawings of complete and complete bipartite graphs.
Amer. Math. Monthly, 117(3):267–273, 2010.

[14] J. Pach, J. Solymosi, and G. Tóth. Unavoidable con-
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