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Emrgency stop:
touch robot with the hand

b Translate:

S robot follows arm

Rotate:
robot imitates hand rotations

Translate & rotate jointly:
robot follows user's lead

Get-out-of-my-way:
\_ push the robot away with the hand W,

Figure 1: Several examples from the full set of 122 unique user-defined signs identified in this work. Touch-based gestures
are particularly preferred for basic controls (A) or to handle emergencies (D), mid-air gestures for navigation (C) and object
manipulation (B). A full listing of most preferred user-defined signs for hands-free and hands-busy settings is given in Table 2.

ABSTRACT

Wearable robotic arms (WRA) open up a unique interaction space
that closely integrates the user’s body with an embodied robotic
collaborator. This space affords diverse interaction styles, including
body movement, hand gestures, or gaze. Yet, it is so-far unexplored
which commands are desirable from a user perspective. Contribut-
ing findings from an elicitation study (N=14), we provide a compre-
hensive set of interactions for basic robot control, navigation, object
manipulation, and emergency situations, performed when hands
are free or occupied. Our study provides insights into preferred
body parts, input modalities, and the users’ underlying sources of
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inspiration. Comparing interaction styles between WRAs and off-
body robots, we highlight how WRAs enable a range of interactions
specific for on-body robots and how users use WRAs both as tools
and as collaborators. We conclude by providing guidance on the
design of ad-hoc interaction with WRAs informed by user behavior.
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1 INTRODUCTION

Robots are moving onto the human body and hold great promise
for assisting users in manual or physical tasks. Pioneering work
has shown first examples of robotic limbs that can be worn on the
user’s body to provide a third arm [16, 56] or an additional finger
[23]. The additional limb can either synergistically complement the
basic function of human limbs, for instance a sixth finger can help
to hold a large object; or it can act more independently, for instance
holding a heavy item while the user is affixing it with a screw. Usage
contexts range from professional, specific domains such as the
reduction of workload of assembly workers [48], assisted crawling
[13], or assisted learning of motor skills through robotic guidance
[16, 35] to more personal applications in everyday life, such as
carrying bags, moving hot items, or balancing large objects [71].

This very close integration of human and robot, and the resulting
embodied partnership create new opportunities and challenges for
human-robot interaction [22, 27]. While the Wearable robotic arm
(WRA) may be able to perform some of its tasks autonomously,
based on awareness of the task and context [58], we anticipate that
many situations will require explicit user control and intervention.
For instance, the user must be enabled to correct the robot’s actions
in real-time, to perform complex tasks through direct control of the
robot, to flexibly manage collaboration without pre-planning task
assignments, or to handle emergency situations.

However, these real-time interactions with a WRA have not been
thoroughly investigated so far. Particularly, we lack a user-centric,
systematic understanding of how users prefer to interact with a
WRA. This is particularly critical since a WRA unifies characteris-
tics of a body part, a hand-held tool, and an external collaborator.
This opens up a unique interaction space, which is largely unex-
plored so far. A better understanding of this space is necessary for
designing usable interactions with WRAs that people are actually
willing to use in their day-to-day life.

In this paper, we contribute insights from the first elicitation
study on human-robot interaction with a WRA. Based on user-
elicited commands, we address the following key questions for the
interaction with the robot, which impact usability and its design:

e What are principled ways that users would like to employ
to interact with a WRA? What body parts, input modalities,
and input areas do users prefer?

e What kinds of signs do users perform to control the WRA?
How can interactions with WRAs be designed in a way that
reflects user’s preferences? Where do users draw inspiration
from for the actions they suggest?

o Considering that a WRA can be particularly helpful in tasks
where the user’s natural hands are occupied with holding
or manipulating objects, how do user’s preferences change
when hands are occupied in a primary task and therefore
constraint or unavailable for human-robot interaction?

We conducted an unlimited gesture production elicitation study
[14, 77] with a WRA form factor prototype to elicit gestures for a
set of 14 robotic actions. These comprise, e.g., basic robot control,
interaction with an object, interactions with a jointly held object,
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and handling situations of emergency. In addition, we also system-
atically investigated users’ strategies used to control robot motion.
We opted for using a passive physical prototype of a WRA that
had the form factor of a third arm. It neither contained motors
for actuation, nor any form of sensing or output. This allowed us
to freely explore the design space in breadth and depth without
restrictions imposed by limitations of today’s technologies.

In this article, we present insights into preferred body parts,
uncover what are preferred modalities of interaction, and present a
detailed analysis of participant’s preferred signs for all 14 actions,
in hands-free and hands-occupied situations. These insights allow
us to discuss implications for the design of interactions with WRAs
and the required technology. With our work, we hope to get one
step closer to the vision of natural and fluid interactions between
robots and humans.

2 RELATED WORK

Our work is motivated by a lack of empirical studies for human-
robot interaction, particularly regarding the design of and interac-
tion with WRAs.

2.1 Human-Robot Interaction

With rapid advances in robotics and its application in many do-
mains, we need a better understanding of human factors in human-
robot interaction [61]. Particularly since humans seem to perceive
robots to be neither a typical device nor a being, it is crucial to
understand how to design interactions with such technologies
[20, 28]. Of note, it is unclear how to best design interactions offer-
ing variable, but suitable levels of agency, which can range from
teleoperation to fully autonomous agents [39, 63]. Some approaches
suggest to assign tasks prior to the execution of a plan. But pre-
planning of task assignments is problematic, as the human user
might change their goals flexibly. Thus, it is especially crucial to
understand how human-initiated, real-time control should be real-
ized. For this purpose, elicitation studies have already been proven
helpful in various areas [75, 77]. However, elicitation studies are
rare for human-robot interaction. Some of the few examples elicit
commands for a telepresence robot which should support commu-
nication between remote and local users [3], for a mobile robot
[7], and most frequently for the control of single drones [8, 47, 59],
and swarm drones [29, 51]. Our work addresses this knowledge
gap through an elicitation study to understand how users desire to
interact with a WRA.

2.2 Wearable Robotic Arms

Wearable robotics is a widely researched area [54]. Wearable robots
cover various form factors, such as robotic legs [49], fingers [23],
and arms [56, 72] which extend the human body, as well as medical
prostheses [26, 31]. Whilst robotic prosthetic arms replace missing
arms, we investigate robotic arms that add supernumerary limbs to
augment the human body with additional functionality. Previous
work has presented promising approaches to build such WRAs. The
suggested designs show a broad variety, both for either single-arm
[18, 50] and two-arm prototypes [16, 34, 56]. Common attachment
points involve the shoulder to ease overhead work [5, 79], the
forearm [71, 72], the upper arm [78], the hips [44, 73], or can be
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worn like a backpack [34, 56]. Whilst most WRAs have a rigid link-
and-joint-based structure, enabling between 3 and 6 Degrees of
Freedom [5, 56], there are also examples of soft robots that offer
continuous deformations; for instance, Soft Poly-Limbs resemble
a flexible elephant trunk which can manipulate objects through
various end effectors [44, 45]. Similarly, Orochi is a soft WRA which
can be worn like a scarf around the body [1]. Furthermore, there
are also devices which are not exclusively third-arm systems, but
their form factor allows them to be used as such since they consist,
e.g., of a chain of servo motors [40].

Artificial intelligence allows to turn the WRA into an intelligent
agent that can act autonomously, be task- and context-aware [58],
or has the ability to adapt to behavioural patterns over time [66]. But
research has also contributed a distinct set of mechanisms which
allow for explicit human-initiated control. For instance, MetaArms
control robotic arms through remapping feet motions directly on
the robotic arms [56]. In addition, human hand positions [18, 45],
shoulder motions [62], EMG sensors on the biceps [33], and vo-
cals [72] have been suggested as a means to directly control the
robotic arms. Brain-Computer Interfaces (BCI) have also been used
for this purpose; for instance, Penaloza et al. used BCI to make a
robotic arm grasp objects [50]. Beside body-centered interactions,
we also find various examples which use external devices to con-
trol a robot. These involve, e.g., a joystick [44], a separate handle
directly attached to the robotic arm [16], or a GUI which allows
a user to program the robotic arm [1]. However, there are only
few examples for which the suggested interaction techniques have
been evaluated in terms of a user study with several participants
[56, 71, 72]. Instead, the operability of the implemented system is
commonly demonstrated through single-user proof-of-concepts.
For instance, Guggenheim et al. demonstrated the usability of their
system by showing how a person uses this system to open a door
whilst hands are occupied with a primary task [18]. Consequently,
research lacks systematic evaluations of the user’s perception for
the proposed interaction techniques. We address this gap with our
empirical study.

3 METHOD

It is crucial to provide human operators with easy-to-use means
for controlling robots, especially when they are novices or non-
expert users. This need has been widely recognized and considered
important in literature [11, 12, 18, 54]. Elicitation studies are a useful
tool to empirically ground what interactions are found desirable by
end users [32, 75, 77]. To the best of our knowledge, no previous
work approached the interaction with WRAs from a user-centred
perspective so far. We address this gap with this elicitation study
using an unlimited production approach [14, 77]. We iteratively
refined our study design through an extensive series of pilots. In
the following we detail on the resulting prototype and procedure.

3.1 Prototype

As common in elicitation studies, we opted for a passive proto-
type, to avoid biasing the study results by restrictions of current
technology, a specific set of sensors, or a certain type of output.
The light-weight prototype has the form factor of a WRA, made
of soft but stiff PE foam tubes and a plastic gripper (see Figure 2).
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Figure 2: Study setup with the WRA form factor prototype.
The backpack-worn arm is made of foam tubes, a basic grip-
per, and one articulated joint. The experimenter uses a stick
to control it.

Hereby, we took inspiration from existing designs of robotic arms.
Particularly, we opted for a rigid link-based structure. For simplicity,
we decided to only model one articulated joint. The robotic arm’s
dimensions are based on the average length of a female extended
arm (73.4 cm) [53]. The prototype can be worn like a backpack, as
frequently proposed in the robotics community [16, 35, 57]. The
robotic arm can be moved by the experimenter through an ex-
tension stick attached to the arm, but can also be freely moved
around by the user. The extension stick was chosen to ensure the
experimenter did not invade participants’ personal space when
moving the prototype. Furthermore, the prototype can be worn
either left or right such that it can be attached at side of the user’s
dominant arm. In initial pilot studies, we had alternatively tested
using human arms covered with textile to simulate the robotic arm
in Wizard-of-Oz style, similar as suggested by [69]. However, we
found that human arms were prone to bias as some participants
felt uncomfortable with the experimenter standing closely behind
them and hesitated to touch the human arm for interaction.

3.2 Procedure

Our study procedure is modeled after comparable gesture elicitation
study designs in HCI, e.g., [75, 77]. We adapted the elicitation proce-
dure through increased production to enable a broader exploration
of signs and to reduce legacy bias [14]. The study session took
place in a quiet environment, in single-user sessions. Participants
suggested signs while standing in front of a table. After collecting
informed consent and demographic information, we asked the par-
ticipant to put on the WRA. Our main study procedure followed
three steps, done for each referent:

First, we presented the participant with one of the 14 referents
(see Table 1), each introduced by reading out their textual descrip-
tion. The order was fixed such that the referents’ complexity and
the presented level of robotic autonomy was increasing. Refer to
Appendix A for the concrete instructions read out. We further
demonstrated the effect of the referent by acting out motions using
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Group Referent Referent Description
Activate The user activates the robot. It goes from standby into listening mode.
Deactivate The user deactivates the robot. It returns to standby.

Basic Control

Release Control
Retain Control

The robot goes into autonomous mode.
The robot returns from autonomous into listening mode.

Translate The robot moves left, right, up, down, forward, backward.
. Rotate The robotic gripper rotates left, right, up, down, clockwise, counter-clockwise.
Robot Motion . . .. . . .
Translate Object Jointly The user and the robot move a jointly held object to a specific location.
Rotate Object Jointly The user and the robot rotate a jointly held object by a specific angle.
Pick Up Object The robot picks up an object.
Object Manipulation Put Back Object The robot puts an object down on the table.
Take Over Object The user takes over an object from the robot.
Hand Over Object The robot takes over an object from the user.
Emergency Stop The user intervenes the robot’s action. It stops immediately.

Handling Emergencies

Get-out-of-my-way

The robot moves out of the user’s view.

Table 1: The list of 14 referents, their descriptions, and assigned groups. The list reflects a range of referents for basic control,

to navigate the robot, manipulate objects, and handle unexpected emergency situations.

the WRA to create a more realistic interaction. As our pilot studies
had indicated that user suggestions were biased by functionalities
offered by specific objects such as screwdrivers or other tools, we
opted against using such objects, and instead used generic styro-
foam cubes (10 X 10 X 10 c¢m). Similar approaches using a 2D- or
3D cube world have been proven useful in prior studies [36, 77].

Second, after demonstrating the effect of a referent, we asked
the participants to suggest signs which they would prefer to use
for this command, without accounting for any potential techno-
logical constraints. Aiming for a focused analysis, we restricted
suggestions to non-verbal signs. To reduce legacy bias, participants
could suggest as many signs as they wanted [14]. We encouraged
them to think aloud to obtain rich qualitative data that would be
indicative of their mental models. We specifically asked them to
verbally describe the signs they performed and to describe their
reasoning as accurately as possible.

Third, given their set of non-verbal signs for a referent, we then
asked participants which of their suggestions was their overall
favorite and why. In case the suggested sign was not compatible
with a hands-occupied setting, i.e., when the preference involved
motions with the hands or arms, we asked for an alternative pre-
ferred sign that can be used in hands-occupied. As for four of our
referents, one hand is naturally part of the interaction because the
referents themself involve, for instance, that the hand is holding an
object jointly with the robot, participants were allowed to select
signs involving the corresponding hand for the hands-occupied
setting, but not the other hand. This procedure allowed us to collect
a variety of signs per referent and understand user preferences and
patterns both under hands-free and hands-occupied conditions.

The elicitation was complemented through interleaved questions
which asked, for instance, about challenges that participants see for
the interaction with the robotic arm when controlling its motion
or when the arm acts autonomously. Each session took around 90
minutes and was video-recorded.

3.3 Referents

We elicited signs for 14 referents, listed in Table 1. We opted for
domain-independent commands that cover different types of inter-
actions with a robot which serves to enable a broad exploration.
The set of commands was evolved iteratively through consultation
with literature, a series of pilot studies, and discussions amongst co-
authors. We grouped the commands into four main categories: basic
control, robot motion, object manipulation, and handling emergencies.
We selected ACTIVATE and DEACTIVATE as referents for basic control
of the robot’s functionality. As robots can offer autonomous actions
that the user might need to trigger explicitly, e.g., as mentioned in
[58], we included two referents in which the user delegates control
to the robot to complete a task autonomously (RELEASE CONTROL)
and retains control afterward (RETAIN cONTROL). To allow for inter-
leaved phases of direct human control in mixed-initiative settings,
we further included two navigation and object manipulation refer-
ents, respectively, that give the user more explicit control and allow
for low-level intent communication: TRANSLATE, ROTATE and PICK
Up, puT DowN. These basic navigation and manipulation tasks have
been frequently addressed in prior work, e.g., [16, 18, 44, 56, 72]. As
robotic arms are also promising for jointly moving objects together
with the user or for handover tasks [2, 71, 72], we complemented
the existing navigation and manipulation referents by their col-
laborative counterparts TRANSLATE JOINTLY, ROTATE JOINTLY and
HAND OVER OBJECT, TAKE OVER OBJECT. Lastly, due to the WRA’s
proximity to the human body, handling emergencies is particularly
crucial to avoid endangering the user or invading their personal
space. To better understand how the user wants to intervene in
such undesirable actions, we included EMERGENCY STOP where the
user “aborts” [7] or “stops” [74] the robot, and GET-OUT-OF-MY-WAY
which tells the robot “Don’t get too close to me” or “Go away” [17].
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3.4 Participants

We recruited 14 voluntary participants (7 female, 7 male, 0 diverse;
M =23.5y;SD = 7.0 y; 13 right-handed, 1 left-handed) for the study.
They received a compensation of 15 Euros. Participants had vari-
ous cultural backgrounds (Europe, Middle East, Far East, Central
America). Their occupations included pupil, secretary, pharmacist,
researcher, and students in law, education, cultural sciences, phar-
macy, computer linguistics, data science and artificial intelligence.
One participant was experienced in interaction design and imple-
mentation of off-body robotic arms.

3.5 Data Analysis

We analyzed the video recordings inductively and iteratively. To
this end, we first transcribed participants’ verbatim statements and
all signs and variations through textual descriptions of the exact
sign they demonstrated. This resulted in a total amount of 635 signs.
Each participant suggested an average of 3.2 signs per referent (SD
=0.8), and a total between 30 and 75 gestures (M = 45.4, SD = 11.9).
After merging identical or similar suggestions (e.g., pointing with
the index finger and with the full hand were considered similar),
we ended up with 197 unique signs. We then filtered for signs that
were suggested by more than one participant or were a participant’s
favorite. This consensus threshold of two as introduced by Morris
[38] has been proven useful in other elicitation studies where the
number of proposals from each participant was not fixed [41, 43].
This left us with 122 signs. Subsequently, we conducted a qualitative
content analysis following flexible coding approaches [15, 30, 65].
These build on Grounded Theory to code data, but differ from
it by taking into account modern tools that allow for a simpler
arrangement of data, and in turn for more rigorous and flexible
analysis. In contrast to Grounded Theory where small codes are
merged into bigger concepts, one starts by coding big indices of
data and gradually refines them. In our analysis, we classified each
of the 122 user-defined signs based on the following dimensions:
Body parts, input modality (adapted from [21]), complexity [55],
input area (adapted from [52]), form and flow [55, 77]. We report
on those dimensions for contextualization in the results section.

4 RESULTS

In the following, we investigate what signs the participants have
defined. We start with an overview of what body parts, input modal-
ities, and locations are preferred for interaction. Next, we analyze
more closely what are the preferred signs for each referent, with free
hands or hands occupied, and identify what strategies are used for
controlling robot motion. Finally, we discuss what are main sources
of inspiration that the participants drew from when defining signs.

4.1 Taxonometric Breakdown: Body Parts,
Input Modalities, and Input Areas

Body Parts. Figure 3 depicts the distribution of body parts that
participants have used for producing the signs. Even though partici-
pants could use any body part for interaction, they most frequently
suggested using the upper limb (47 %), with fingers and hands used
in 31 % of all signs, and arms used in 16 %. This confirms findings
from the literature on interaction with off-body robots [47, 51, 59].
This was followed by head and eyes (17 %). The directional mobility
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BCI
(3 %) )

Eyes/head
Vocal chords (17 %)
(7 %)
Upper body
(1 %)
Arms
(16 %) Elbows
(1 %)
Hands
(31 %)
Whole body
Feet/legs (1 %)
(10 %)

Figure 3: Body parts used for the user-defined signs. Most
frequently used are fingers/hands, then arms and eyes/head.

of the head and eyes make them a potentially useful alternative for
settings where users cannot or do not want to use their hands. The
lower limbs (feet and legs) were used in 10 %.

Input Modalities. To code the input modalities, we used Hertel et
al’s taxonomy for AR [21], as it best reflects all multimodal inputs
that occurred in our study, whilst most other taxonomies are bound
to specific technologies, or were too coarse to capture our needs.
We categorized input modalities either as "Touch’ (contact between
any type of surface and a body part), ’Gaze’ (directional indications
through eye or head motions), ’Gesture’ (uninstrumented motion of
a body part which is neither "Touch’ nor ’Gaze’), "Voice’, or Brain-
Computer Interaction (BCI). We summarize signs that involve
various classes as "Mixed’. Our results show that the majority of
user suggestions for all referents either involve a contact with a
surface ("Touch’, 36 %) or uninstrumented body motions ('Gestures’,
38 %). Touch was primarily performed with hand motion (58 %),
but also with the arm (17 %) or with feet or legs (16 %). Gestures
were mainly performed with arms (27 %) or hands (26 %), and less
frequently with head or eyes (13 %), or feet or legs (9 %).

However, the frequency of input modalities strongly varies for
referents. Figure 4 depicts for each referent the percentage of all
user-defined signs that belong to one input modality, separately
for hands-free and hands-occupied settings. We see that *Touch’ is
particularly dominant for basic control, and handling emergencies,
particularly when hands are free. In contrast, ’Gesture’ is dominant
for robot motion and object manipulations.

"Gaze’ is suggested frequently for robot motion (> 17 %) and pIck
Up (23 - 44 %). Contrary, the use of *Voice’ was mostly suggested
as a modality to handle emergencies, or as an abstract method to
activate or deactivate the robot (9 % each). Surprisingly, abstract
sounds were also frequently suggested for translatory and rotational
motions of the robot (9 % — 17 %).

A distinct property of WRAs is that they can support the user
also in settings where their hands may be occupied, for instance by
holding an object, or when working with tools. This implies that
for such settings, additional constraints need to be met: Any sign
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Basic Control
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Figure 4: Distribution of input modalities for each referent,
divided by hands-free and hands-occupied. "Touch’ and ’Ges-
ture’ are frequently suggested when hands are free. ’Gesture’
and ’Gaze’ often replace "Touch’ when hands are occupied.

must be compatible with the user’s manual activity. To investigate
preferred interactions under this constraint, we split the set of user
suggestions into a subset of signs compatible with occupied hands.
When hands are occupied, signs involving *Touch’ are frequently
replaced by ’Gesture’, particularly so for those referents that have
shown very frequent use of *Touch’ in hands-free. Also ’Gaze’ is
considerably more frequently used when hands are occupied, par-
ticularly for controlling robot motion and for picking up objects.

Input Areas. We analyzed the location of touch contact for the
"Touch’ modality: on-robot (touching the robotic arm, gripper, or
the harness), on-body (two body parts touching each other), on-
surface (touching any passive surface, e.g., the cube, table, or the
floor) or on-device (touching any external device). Figure 5 shows
the distribution of input areas for "Touch’. By far most *Touch’
instances were performed on-robot (45 %). Lastly, on-surface (e.g.,
tapping on the cube) and on-body (e.g., clapping the feet against
each other) were frequently used input areas (20 - 23 %). External
devices (11 %) were rarely suggested.

Muehlhaus et al.

On-body _~ ~ ——— On-device
(20 %) = (1 %)
On-robot
(45 %)
On-surface
(23 %)

=
ASSSSSSSSSSSSSWR

Figure 5: Input areas of user-defined *Touch’ signs. Most
frequently suggested is input on the robotic arm, least fre-
quently interactions with external devices.

4.2 Preferred Signs

We gauged user preference in more detail by asking participants to
select one preference for each referent (out of the unlimited set of
their propositions) for both, hands free and hands occupied. Table 2
lists the 3 most preferred signs for each referent when hands are free
and when hands are occupied. To identify the level of consensus
between participants’ suggestions, we calculated agreement rates
for all suggestions using the modified agreement rate introduced
by Vatavu et al. [70]:

|P| |Pil |2 1
= 1ZP"QP(W) “IP—1

Here, r refers to the referent for which we compute the agreement
rate AR(r), P is the set of all signs elicited for r, and P; is the ith
subset of identical signs in P. The results are shown in Table 2.
Agreement rates ranged from 0.02 (low agreement, AR < 0.1) to
0.35 (high agreement, 0.3 < AR < 0.5). The rather low agreement
rates are a natural result of the unlimited gesture production and
emphasize the exploratory character of the study. Despite the rather
low agreement rates of the suggested signs, we observe that partic-
ipants share considerable agreement on what signs they prefer. We
now present the most frequently preferred signs:

AR(r) =

4.2.1 Basic Control. Referents for basic control of the robot’s func-
tionality comprise ACTIVATION, DEACTIVATION, RELEASE CONTROL
and RETAIN CONTROL. For free hands, the most preferred sign for
all four referents is a discrete, static touch of the robotic arm, per-
formed either with the finger or the full hand (43 %). It resembles
a conventional touch gesture on or with a device. Other preferred
options in the top 3 rankings involve basic, discrete actions like
clapping or blinking with the eye (both 14 %), which were chosen
because of their ease, speed, and comfort.

When hands are occupied, participants tend to replace touch-
based interaction by abstract signs. All these signs have in common
that they do not require exhaustive body motions, but are simple
and fast. For instance, to activate the robotic arm, 21 % of the
participants prefer to make a sound with the vocal chords, whereas
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Free Hands

Occupied Hands

Referent r H AR(r) ‘ Top 3 Signs ‘ AR(r) ‘ Top 3 Signs
Activate Tap robot with hand (43 %) Make sound with vocal chord (21 %)
0.07 Clap hands (14 %) 0.06 Blink with eyes (14 %)
Blink with eyes (14 %) Brain signal (14 %)
Deactivate Tap robot with hand (21 %) Make sound with vocal chord (14 %)
0.08 Make sound with vocal chord (7 %) 0.04 Brain signal (14 %)
Brain signal (7 %) Blink with eyes (7 %)
Release Control Tap robot with hand (21 %) Stamp with one’s foot (14 %)
0.03 Do task oneself, robot takes over automatically (14 %) | 0.04 Look at two objects sequentially (7 %)
Clap with hands (14 %) Stare at object, nod to confirm (7 %)
Retain Control Tap robot with hand (29 %) Stamp with one’s foot (36 %)
0.04 Clap hands (7 %) 0.06 Clap feet against each other(14 %)
Stamp with one’s foot (7 %) Shake head (7 %)
Translate Robot follows arm at fixed distance (14 %) Robot imitates directional motion of head/eyes (21 %)
(Object held by robot) || 0.05 Use the hand to drag the robot to target (14 %) 0.06 Robot moves one unit per head tilt (7 %)
Robot imitates directional motion of head/eyes (7 %) Map vocals to directional motions (7 %)
Rotate Gripper imitates tilting of fingers/hands (43 %) Robot imitates directional motion of head/eyes (21 %)
(Object held by robot) || 0.09 Gripper rotates one unit per hand tilt (7 %) 0.21 Robot imitates directional motion of foot/leg (14 %)
Rotate index finger for rotation, point to gripper target Map vocals to rotational directions (7 %)
mid-air to yaw or pitch (7 %)
Translate Follow user’s lead propagated through object (36 %) Follow user’s lead propagated through object (43 %)
(Object held jointly) 0.12 Use free hand to drag the robot to the target (21 %) 0.23 Robot imitates directional motion of head/eyes (14 %)
Robot imitates directional motion of head/eyes (14 %) Robot imitates directional motion of upper body (7 %)
Rotate Follow user’s lead propagated through object (36 %) Follow user’s lead propagated through object (43 %)
(Object held jointly) 0.18 Gripper imitates tilting of free hand (21 %) 0.35 Robot imitates tilting of head (14 %)
Gripper imitates tilting of head (14 %) Robot imitates tilting of foot/leg (7 %)
Pick Up Object Robot follows arm at fixed distance, open/close hand Stare at object (14 %)
0.05 to open/close gripper (21 %) 0.09
Use hand to drag robot close to the object (7 %) Stare at object, nod to confirm (7 %)
Touch object (7 %) Stare at robot and object sequentially (7 %)
Put Back Object Robot follows arm at fixed distance, open/close hand Make sound with vocal chord (14 %)
0.02 to open/close gripper (14 %) 0.10
Use hand to drag robot to target and tap robot (7 %) Move robot to target with hand/eye motions, blink
eyes to open gripper (7 %)
Touch target (7 %) Stare at target, blink eyes to confirm (7 %)
Take Over Object Robot follows arm at fixed distance, open/close hand Hold free hand out open (21 %)
from Robot 0.03 to open/close gripper (14 %) 0.04
Hold free hand out open (14 %) Stare at target (7 %)
Stare at target (14 %) Pull cube out of gripper (7 %)
Hand Over Object to Robot follows arm at fixed distance, open/close hand Shake object (21 %)
Robot 0.02 to open/close gripper (21 %) 0.04
Shake object (14 %) Stare at object (7 %)
Stare at object (7 %) Stare at robot and object sequentially (7 %)
Emergency Stop Touch robot with the hand (43 %) Make sound with vocal chords (29 %)
0.07 Move hand in robot’s way w/o touching it (29 %) 0.06 Stamp one’s foot (29 %)
Make sound with vocal chord (14 %) Move whole body back (14 %)
Get-out-of-my-way Push robot away with the hand (43 %) Shake head (14 %)
0.07 Wave hand aside mid-air ('go away’) (14 %) 0.05 Make sound with vocal chords (7 %)

Tap robot with the hand (7 %)

Rotate upper body (7 %)

Table 2: The table contains the agreement rates and the 3 most preferred signs for each referent (1) when hands are free and (2)
when hands are occupied. For each sign, we additionally indicate the percentage of people who preferred this sign in brackets.

others suggest to resort to direct BCI. To release and retain control,
participants preferred to stamp with one’s foot onto the ground (14

% and 36 %), similarly how stamping can signal a human to stop.

Further, we observe that the use of eye gaze, such as staring at one

or multiple objects, is a frequently occurring pattern for RELEASE
CONTROL to signal the robot to work autonomously on the object(s).

4.2.2 Robot Motion. This group includes TRANSLATE, ROTATE, and

their human-robot collaborative counterparts TRANSLATE JOINTLY
and ROTATE JOINTLY. The most preferred signs for all referents in
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this set involve kinemimic motions. These are direction inducing
body motions which the robot follows; e.g., if the user’s hand moves
to the right, the robot also moves in this direction. The most pre-
ferred body parts are the hand and the arm (> 50 % for all 4 referents
in hands-free). For TRANSLATE, participants prefer that the robot
continuously follows their arm at a fixed distance or they manually
drag the robot to the desired position (14 % each). For ROTATE, the
robot’s gripper should mirror the rotations of the human hand (43
%). People particularly expressed the superiority of using hands
and arms over other body parts like head or eyes, and feet or legs:
“[using the hands,] that’s where you can give the most information.
[One] can tell how fast, how slow, how far [the WRA should move]”
(P7), “when you move your head, you do not see what’s here” (P2),
“[using the foot] makes me instable” (P7).

Whilst hands were dominant for hands free, they were replaced
in hands-occupied settings by body parts with similar mobility. For
TRANSLATE and ROTATE, at least 21 % of participants preferred to use
the head. For TRANSLATE JOINTLY and ROTATE JOINTLY, users prefer
to mediate the motion through the object which they hold jointly
with the robot (36 % each). This strong user preference emphasizes
that moving the robot through motions which are mediated through
a jointly carried object is a desirable input strategy.

4.2.3 Object Manipulation. The set of object manipulations in-
volves pick Up, PuT DOWN an object, and their collaborative coun-
terparts TAKE OVER FROM ROBOT and HAND OVER TO ROBOT. More
than half of all suggested signs (56 %) are composed of at least two
separate actions, for instance one action to move the robot to the
target followed by a second action to make the robot use the grip-
per or to confirm the selected target. In contrast, other proposed
actions are atomic, such as touching, pointing, or staring at the
target. The most preferred sign for all four referents is to manually
navigate the robot to the target, followed by using one’s hand to
mimic how the robotic gripper opens and closes (14 - 21 %). For
TAKE OVER FROM ROBOT, atomic actions were equally preferred,
such as holding the non-dominant hand out open while waiting for
the robot to put the object into the hand (14 %).

Whilst the most preferred signs mainly involve composed hand
and arm motions when hands are free, participants preferred atomic
signs performed with the head or eyes when hands are occupied.
For pick UP, for instance, users preferred staring at the object of
interest (14 %) and variations similar to this command, such as
confirming the selection through nodding or staring at the robot
after selection (7 % each). For PuT DOWN, 14 % preferred making a
sound with the vocal chords.

4.2.4 Handling Emergencies. Referents to handle emergencies in-
volve EMERGENCY STOP and GET-OUT-OF-MY-WAY. Similar to basic
control, the most preferred signs for handling emergencies involve
a touch of the WRA (43 % each). However, for EMERGENCY STOP,
the sign is a more intense and aggressive touch, usually done with
the entire hand that clearly signals the robot to stop moving. In
contrast, the touch for GET-oUT-OF-MY-WAY tends to dynamically
push the robot away in the opposite direction of its movement.
For hands-occupied, these signs were frequently replaced by
foot motions, head motions, or the use of voice. The most preferred
signs for EMERGENCY STOP are using vocal chords and stamping
(29 % each). For GET-OUT-OF-MY-WAY, shaking the head (14 %) was
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slightly more preferred than the use of voice (7 %). Another strategy
was to reposition or rotate one’s own body to rapidly move the
robot out of the critical area, such that the robot “does not have the
reach” (P3). Whilst the other suggestions would be also applicable
to off-body robots, this strategy is specific for body-worn robots.

4.3 Controlling Robot Motion

Human-robot interaction can comprise different levels of human
control and robot autonomy. We observed that most signs suggested
for basic control and handling emergencies comprise high-level user
commands. These require the robot to understand and take action
accordingly, such as automatic motion and path planning. Contrary,
we found an outstanding variety of user strategies with varying lev-
els of user control for robot motion (TRANSLATE, ROTATE, TRANSLATE
JOINTLY, ROTATE JOINTLY). To better understand the preferences, we
clustered the suggested signs for robot motion based on their under-
lying concepts. This led to five main strategies illustrated in Figure
6: dragging, body remapping, body relocation, device-mediated
control, and targeting. We detail on these in the following:

Dragging. Dragging contains 22 % of all signs in the motion set.
Dragging allows for direct control, as the user physically grabs an
object with the hand and drags it onto the desired position. We
distinguish between two types of dragging:

(1) Robot Dragging (7 %): The user grabs the WRA with their
hand and physically drags it to the target. This allows the
user to have direct control of the robot and the object, while
avoiding touching the (hot, dangerous, slippery, ...) object,
or the need to carry the load of a heavy object.

(2) Object Dragging (15 %): This strategy applies to situations
in which the user and the robot jointly hold and move an
object. With the hand holding the object, the user pushes
or pulls the object in the desired direction, whilst the robot
follows accordingly. In case the object is heavy, users addi-
tionally wished for the robot to take the main physical load
of carrying the object, while they only provide indications
through slight directional forces applied to the object.

Body Remapping. Body remapping is the most frequently sug-
gested strategy, containing 53 % of all suggested motion-related
signs in total. It allows for direct control, as motions of a body
part are directly mapped to the motion of the robotic arm. We can
further divide body remapping into the following sub-categories:

(1) Imitation (7 %): The user moves their dominant arm and
expects the robot to imitate their arm motions by following
it at a fixed distance. This allows the user to continuously
control the robot; however, the distance at which the robot
follows the user must be determined prior to the interaction.
This mapping also limits the robot motions of the robot to
the distance covered by the user’s arm reach.

Continuous Remapping (40 %): The user continuously moves
a body part, such as the foot, the head, or the upper body,
whilst the robot maps the motions accordingly. In contrast
to the previous strategy, however, the participants did not
expect the robot to act on the same scale as the indicated
body motions. Consequently, this requires that the scale
must be defined by the user prior to the interaction.

—
)
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Figure 6: We identified five strategies to control robot motion, ranging from direct physical control of the robot’s motion
(dragging) to high-level selection of the desired target (targeting).

(3) Discrete Remapping (6 %): This strategy is the discrete coun-
terpart of continuous remapping. Here, the robot moves one
unit, e.g., per hand swipe or head tilt in the indicated direc-
tion. As these discrete indications are less similar to how
humans naturally move than continuous indications, this
strategy has been less frequently suggested. However, it of-
fers unique benefits for fine-grained control of the robot’s
position and orientation.

Body Relocation. Body relocating is a strategy specific for on-
body robots. The user moves or rotates one’s own body to move
or rotate the robot, respectively. With this strategy, the human
has the highest level of possible control since there is no active
robotic motion involved. Beside using body relocation to move the
robot for coarse navigation, some participants also suggested it to
handle emergency situations. As suggested by one participant, body
relocation is most suited for coarse motions and longer distances
in horizontal directions. However, as the body’s natural vertical
reach is limited, the control over moving the robot up and down
on a bigger scale is limited. These restrictions might explain why
this strategy was only rarely suggested (2 %).

Device-mediated Control. Seven percent of all suggestions in-
volve using an external device as a controller for robot motion.
Suggestions comprised a portable joystick, a smartwatch, smart-
phone, or a remote control. Hereby, users indicate directions, e.g.,
through directional swipes or buttons which are mapped to direc-
tions. This strategy is easy to use because users are already familiar
with it, e.g., from gaming consoles, and is commonly implemented
for the control of robotic arms [1, 16, 44]. However, this strategy

may be the result of some legacy bias. It must be noted that map-
ping from (usually) two-dimensional input onto three dimensions
of robot movement is less direct and desirable than other strategies.

Targeting. Four percent of all suggestions are discrete, deictic
signs, either executed through pointing to the target or by eye gaze.
Since the user selects the target, but leaves path and motion plan-
ning to the robot, this strategy requires the highest level of robot
autonomy. This allows for quick user commands which might be
helpful in situations where the user is busy with another primary
task. However, targeting has limitations to indicate a point of in-
terest in 3D. The raycasting model underlying indirect pointing or
gaze is limited by occlusions and potential ambiguities. In contrast,
direct touch-contact pointing to a location in 3D is non-ambiguous,
but restricted by the user’s arm reach. Although first approaches to
enrich gaze with depth information to control a robotic arm already
exist [60], the strategy remains challenging for 3D motions.

4.4 Sources of Inspiration: Devices, Body, and
Other Beings

A closer analysis of the suggested signs and participants’ reasoning
underlying their choice revealed three main sources of inspiration,
which apply for both hands-free and hands-occupied situations: the
interaction with already known devices, the naturalness of body
motions, and the intuitiveness of interacting with other beings.

4.4.1 Transferring Device-Specific Metaphors onto the Robot. Many
suggestions involved signs performed on the robot, as the robot’s
proximity to the body makes them comfortable. People tend to
combine these physical affordances of the WRA with known inter-
actions from other devices. We found that this combination makes
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the interaction with the robot easy to use and remember. Specifi-
cally, we observed that touching the robot in the context of basic
control was commonly associated with pressing a button or a touch
sensor on the robot: “just like a phone” (P6) or “like a remote con-
trol” (P14). Similarly, for handling emergencies, several participants
suggested touching the robot to stop and compared this to sliding a
hand in-between closing elevator doors (P2) or in-between a closing
car window (P1), which would stop automatically as soon as they
detect a human hand.

4.4.2  Mapping Body Motions onto the Robot. Participants lever-
aged the ease and directness of body motion for controlling the
robot, particularly for referents within robot motion and object ma-
nipulation. Participants explained that a mapping of body motions
to the robot improves the feeling of control, as it feels “like [their]
hand was the robotic arm” (P12). Ten participants explicitly stated
that the intuitiveness and naturalness of using one’s own hand
makes this type of interaction particularly easy to learn and use.

4.4.3 Inspiration from Human-Human and Human-Animal Interac-
tions. If not preferred to control the robot through body remapping,
many gestures for collaborative tasks were inspired by real-life
interactions with people or pets. For instance, to hold the hand out
open or move the object close to the robotic gripper resembles how
one would hand or take over an object from another human: “just
like for normal people. When I give something to a colleague: I
hand it over to him [...] and he just takes it in his hand” (P9). To
handle emergencies, many participants took inspiration from their
human instinct to push an object away when it gets into the way, or
to generate an audible warning signal (through stamping or vocal-
ization) “which is a human sign because one also knows stamping
when something should stop” (P9) or “like scaring away a cat” (P1).
Similarly, signs such as pulling an object out of the robot’s gripper
and shaking the object were associated to a playful experience with
a dog, indicating “here is your toy” (P3).

5 DISCUSSION AND DESIGN IMPLICATIONS

From the above quantitative and qualitative findings, we derive the
following implications for the design of interactions with a WRA.

5.1 Input Modalities and Gestures

The study results show versatile strategies of interaction with a
WRA, including touch, gesture, gaze, and voice. However, two
modalities clearly stand out: touch and mid-air gestures. Firstly,
touch is predominantly suggested for basic control and handling
emergencies, and most frequently performed on the robotic arm.
The design of touch interactions that are easy to use and remember
can draw inspiration from existing devices, but also from tactile
interaction with human collaborators. It is noteworthy that the
proposed touch interactions are of rather coarse-grained character,
implying they can be performed when wearing gloves. Secondly,
mid-air gestures are dominating for controlling robot motion and
manipulating objects. Here, our study results show a broad variety
of strategies to navigate the robot. These range from discrete, high-
level actions (e.g., pointing at the target), to continuous interaction
with a high level of control and specific for on-body robots (e.g.,
moving one’s own body to relocate the body-worn robot for coarser
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motions). The most frequently suggested technique, however, in-
volves remapping one’s own body motions to robot movement.
Such direct remapping makes robot control very easy as it is based
on natural human behavior: The naturalness of mapping learned
motor motions onto other body parts is a well-studied phenomenon
in neuroscience research [64]. Lastly, to move an object together
with the robot, the easiest technique is that the robot follows the
user’s lead which is propagated through the jointly held object.

In cases when both hands are occupied by the primary task,
sounds (e.g., through voice or stamping one’s foot) are preferred
for basic control and in emergency situations, whereas head and
eye gaze is a preferred input technique for robot motion.

In consequence, we can cover a large subset of referents with
at least one of the 3 most preferred signs by combining touch and
gaze as input modalities. This accounts for all referents when hands
are free and for 11 out of the 14 referents when hands are occupied.

5.2 Robot as Extension of the User’s Body

It is noteworthy that many of the proposed signs share similarities
with interactions already known from off-body robots, such as
tactile interactions [10], or body remapping for controlling drones,
e.g., [47]. This suggests it may be possible to establish a common
gesture language for off-body and on-body robots, an interesting
question for future work.

However, our results also highlight important differences be-
tween robotic arms that are worn on the body and those that are
not: the WRA moves together with the human body, no matter
whether the user intends it or not. This calls for different modes of
how the robot can respond to body movements. First, the robot’s
end effector could be fixed in space, such that its world coordinates
do not change when the user moves. This is important for con-
struction or assembly tasks where the robot needs to operate at a
fix location or steadily hold an object while the user moves about
for a primary task. Alternatively, the robot’s end effector could be
fixed on body, such that its world coordinates change along with the
user’s body movements. The latter can be used as a fast and direct
means for moving the robotic arm, by rotating one’s upper body,
by stepping side-ways, or leaning forward and back. We anticipate
this will be particularly helpful for coarse and rapid robot motion
that provides a spatial reference, whilst the precision of robotic
actuation is better suited for fine motion as required in precise
manipulative actions. This asymmetric division of macrometric
and micrometric control resembles a serial assembly of two motors
as discussed by Guiard and allows to extend the kinematic chain
model he proposed for bimanual interactions accordingly, through
a chain formed of the human body and the robotic arm [19].

It is a well-known phenomenon that wearable devices, tools, and
objects might map to the user’s body schema after a prolonged use
and are perceived as an extension of the own body [6, 37, 42]. Partic-
ipants’ quotes (e.g., “as if [their] hand were the robotic arm” (P12))
and suggested strategies (e.g., shifting the body to move the robotic
arm) suggest that also the WRA could ultimately be perceived as an
extension of users’ own bodies, given that interactions are designed
naturally. However, the extent to which this is desirable from a
user-perspective remains subject of future studies.
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5.3 On-Body Robots as Tool and Collaborator

Our findings demonstrate that on-body robots can and should take
a different role depending on the task. This comprises the role of a
collaborator which is able to react to high-level commands without
requiring further user guidance, able to understand implicit clues
(e.g., removing a cube out of the robotic gripper to make it stop
building the tower), or to learn user-specific behavioural patterns
over time. But the robot can also take the role of a purely functional
tool which allows for precise and direct control, not involving any
intelligent decisions or automatic behaviour. Our observations con-
firm prior discussions in literature that these roles are not exclusive,
or binary. Rather, the robot should act on a spectrum of auton-
omy [39, 63]. Participants of our study have even suggested signs,
which combine both collaborative and purely functional traits. An
example comprises manually dragging the robot towards the object,
followed by holding it there for some time to ’show’ the object to the
robot, expecting the robot to understand it should pick up the object
on its own. These non-exclusive design patterns for the interaction
with on-body robots might allow designers to overcome prevailing,
purely functional vs. anthropomorphism- or zoomorphism-inspired
design strategies [20], and ultimately create interactions that are
in-line with the hybrid character of WRAs.

5.4 Sensing Interactions with WRA

The interactions proposed by participants of our study can be cap-
tured using various sensor technologies, either deployed on the
robot, or on the user, or both.

Augmenting robots with a sense of touch, through buttons or
touch sensors up to interactive skin covering the full robot, has been
of interest for a long time [10]. For our suggested touch interactions,
a low resolution touch sensor matrix which is attached around the
robotic arm and easily reachable for the user is sufficient. Hereby,
we could use a capacitive sensor matrix, e.g., as suggested in [68].
Adding continuous force sensing, instead of touch contact alone, al-
lows for capturing directional forces. Alternatively, motions which
involve coarse-grained forces exerted on the robotic arm, such as
dragging the robot onto the desired position, can also be sensed by
torque sensors deployed inside the joints of the robot.

Various signs within the top three of both hands-busy and hands-
free conditions involve discrete gestures, such as opening and clos-
ing the fist, rotating the hand, or stamping. These can be captured
using body-worn sensors. Notable examples include vision-based
approaches with body-worn cameras [9, 24, 25], sensing with Iner-
tial Measurement Units [76, 80], or through EMG signals [46, 67].
To track continuous limb motions, such as translatory or rotational
motions of the hand, arm, head, or foot which the robot should
mimic, IMUs are a straightforward choice. However, the pure use
of IMUs attached to the user’s body is not suited for precise con-
trol control because of accumulating errors and delays [56]. Here,
vision-based approaches are most promising.

It is still an open research issue to reliably detect gestures and
limb motions only through robot-integrated sensors [4], and de-
tecting gaze is even more demanding. We can, however, expect
that with technological advances, user’s limb motions can be accu-
rately captured through robot-integrated fish eye cameras or radar.
Also, given the robot is mounted on the body, it may be able to
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detect body motions with built-in IMUs, just from the way it moves
with the body. Future research should investigate robot-deployed
technologies for sensing user interactions, to ease the ergonomic
deployment of WRAs for everyday activities.

5.5 Limitations

In our study setup, participants stood in front of a table in a quiet
environment. The preferred signs and interaction strategies might
vary when interacting with the arm whilst moving, sitting, or with
external bystanders nearby. This should be subject to future studies.
We used a light-weight, passive WRA prototype, which was
manually moved either by the experimenter or the participant. Al-
though the prototype fulfills common design characteristics of a
WRA in terms of mounting location, dimensions, and workspace,
its non-functionality might have influenced participants’ behaviour
as they did not need to fear any unexpected behavior and were not
confronted with the true strength and speed of a WRA. Also, the
exact way a sign is executed might vary with the WRA’s detailed
link-and-joint-based structure. Whilst this might affect the WRA’s
joint space and the angle at which the end effector is approaching a
target, the absolute position of the end effector and the user’s over-
all goals, physical abilities, and preferences stay the same. Thus, we
believe that our results generalize to more complex WRAs. Further-
more, the WRA was designed to have a reach similar to that of a real
human arm. Signs might vary for controlling a robotic arm with an
extended reach or one designed for microscopic manipulation.
We opted for abstract cubes instead of concrete objects to get
a principled understanding of underlying models and interaction
strategies that generalize beyond a specific application domain. Sim-
ilarly, we chose domain-agnostic referents which can be transferred
to various application cases with physical objects. Evaluating the
individual effects of different object sizes, weights, and affordances
are beyond the scope of this study and subject to future work.
During our study, we observed that our prototype occasionally
hindered movements of the human arm and vice versa. Our study
did not investigate this aspect further. Future work should discuss
strategies to resolve such collisions in a shared workspace, including
considerations of where the WRA should be attached to the body.
Lastly, our results showed that BCI was a rarely suggested input
modality. This might be a consequence of our study method, as
unlike gestures, users cannot demonstrate BCI to the experimenter
easily. The extent to which BCI is a desirable technique to control
a third, robotic arm should be investigated in future work.

6 CONCLUSION

This paper contributed findings from the first elicitation study for
the interaction with WRAs. We systematically investigated user
preferences when hands are free and occupied and provided a com-
prehensive list of signs preferred by the participants. Our analysis
revealed that overall users prefer mid-air gestures performed with
hands and arms to navigate the robot and manipulate objects, and
on-robot hand gestures for all other tasks types, such as physically
pushing away the robot in an emergency. When hands are occupied,
users generally preferred sounds for basic control and in emergency
situations, such as stamping, whereas they proposed head and eye
gaze as a desirable mitigation strategy to navigate the robot. When
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user and robot jointly hold an object, it was found most desirable
to control the robot by moving the object and expecting the robot
to follow the user’s lead. Our findings reveal three main sources of
inspiration. For basic control, inspiration can be drawn from the
interaction with existing devices. To handle emergencies and for
collaborative tasks, interactions can be inspired by human-human
interaction, whereas body motion is a natural way to steer the ro-
bot. Our findings also confirm that body-worn robots should offer
different levels of autonomy which range from directly controlling
the robot like a tool all the way to collaborating with an intelligent
partner that is able to understand high-level commands or even
implicit cues. We derived various implications for sensing technol-
ogy, which can be deployed on the robot, or on the human user.
We see our findings as a first step toward immersive interactions
with WRASs that reflect on user’s behavior. Future research can use
our results as a starting point to understand how WRAs should be
designed to best support users in their daily lives.
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A STUDY DETAILS

Before starting the study, we introduced the participants to Wear-
able Robotic Arms and the goal of the study by reading out the
following text:

“A Wearable Robotic Arm is a device that is attached to

your body and can act like a third hand that helps you in

everyday life. Imagine, e.g., a scenario where your hands

are busy holding some packages whilst you need to open

a door, or you are cooking and need to move a hot dish.

A robotic arm might support you in such situations. We

aim to understand how people would want to control

and interact with such a wearable robotic arm. However,

in our study, we don’t consider real-life scenarios such

as the ones mentioned, but a more abstract setting where

we use cubes for interaction. The cubes are chosen as

neutral representations of our real-world examples.”

Below, we list the descriptions that we read out to the user.

Task 1: Activation. The robot is in standby mode and must be
activated before it can follow any commands. How would you
activate the robotic arm?

Task 2: Deactivation. The robot is activated. You want to deac-
tivate it to make it go back into standby mode. How would you
deactivate the robotic arm?

Task 3: Translate. The robot is activated and holds a cube. You
want to move the cube to this position (position was demonstrated
by the experimenter) on the left/right, forward/backward, upward/
downward. How would you instruct it to do so?

Task 4: Rotate. The robot is activated and holds a cube. You want
to rotate the robotic arm by this angle (position was demonstrated by
the experimenter) clockwise/counter-clockwise, forward/backward,
left/right. How would you instruct it to do so?

Task 5: Pick Up Object. The robot is activated. There are several
white cubes and one marked one on the table. You want the robot
to pick up the marked cube. How would you instruct the robotic
arm to pick up the object for you?

Task 6: Put Back Object. The robot is activated and holds a cube.
You want the robot to place it down somewhere on the table. How
would you instruct the robotic arm to do so?

Task 7: Translate Object Jointly. The robot is activated. You are
holding the big cube in your left hand together with the robotic
arm. You want to jointly move the robotic arm to this position
(position was demonstrated by the experimenter) on the left/right,
forward/backward, up/down. How would you instruct the robotic
arm to jointly move the object to these positions?

Task 8: Rotate Object Jointly. The robot is activated. You are
holding the big cube in your left hand together with the robotic arm.
You want to jointly rotate the robotic arm by this angle (position
was demonstrated by the experimenter) clockwise/counter-clockwise,
forward/backward, left/right. How would you instruct it to do so?

Task 9: Take Over Object From Robot. The robot is activated and
holds a cube. You want the robot to hand it over to your left hand.
How would you instruct the robotic arm to do so?


https://doi.org/10.1007/978-3-642-13408-1_35
https://doi.org/10.1007/978-3-642-13408-1_35
https://doi.org/10.1016/j.bspc.2018.07.010
https://doi.org/10.1016/j.bspc.2018.07.010
https://doi.org/10.1109/ICRA48506.2021.9561152
https://doi.org/10.1145/3170427.3188683
https://doi.org/10.1145/2702123.2702223
https://doi.org/10.1109/ROMAN.2017.8172421
https://doi.org/10.1109/ICRA.2018.8461212
https://doi.org/10.1109/ICRA.2019.8793978
https://doi.org/10.1145/2556288.2557239
https://doi.org/10.1145/2858036.2858223
https://doi.org/10.1145/1518701.1518866
https://doi.org/10.1145/1518701.1518866
https://doi.org/10.1145/3532525.3532531
https://doi.org/10.1145/3532525.3532531
https://doi.org/10.1109/ICARM.2019.8833774
https://doi.org/10.1145/3338286.3340130
https://doi.org/10.1145/3338286.3340130

I Need a Third Arm! Eliciting Body-based Interactions with a Wearable Robotic Arm

Task 10: Hand Over Object to Robot. The robot is activated. You
are holding a cube in your left hand. You want the robot to take
over the object. How would you instruct the robotic arm to do so?

Task 11: Release Control. The robot is activated. Your goal is to
get a tower of cubes where all cubes on the table are stacked one
onto the other. However, this is a tedious task and you want the
robotic arm to do the work for you autonomously. This means
the robotic arm should stack the cubes without your help all by

itself. The robot knows the task of building a tower out of cubes.

Furthermore, it knows where all cubes are located on the table and
how to move and stack them. How would you make the robot start
stacking the cubes autonomously?

CHI 23, April 23-28, 2023, Hamburg, Germany

Task 12: Retain Control. The robot is activated. The robot is stack-
ing cubes on the table autonomously. However, you want the con-
trol over the robot back such that it stops working by itself but
listens to your commands again. How would you instruct the robot
to stop working autonomously?

Task 13: Emergency Stop. The robot is activated. There is a stack
of cubes on the table. The robot is in autonomous mode and sud-
denly moves into the direction of the cubes, risking knocking over
the stack. You want it to stop immediately. How would you instruct
it to do so?

Task 14: Get-out-of-my-way. The robot is activated and is moving
in front of your face, blocking parts of your view as it is invading
your workspace. You want the robotic arm to move out of your
way. How would you instruct it to do so?
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