MATH 250 June 22, 2013

The essential guide for solving problems on local maxima and minima

Below is a summary of the <u>Second Derivative Test</u> (Theorem 3 in 14.7), used to solve problems in that section.

Given a function z = f(x, y):

- 1. Compute the first partials $f_x(x,y)$ and $f_y(x,y)$.
- 2. Find <u>critical points</u> by solving the equations $f_x(x,y) = 0$, $f_y(x,y) = 0$.
- 3. Compute the second partials $f_{xx}(x,y)$, $f_{xy}(x,y)$, and $f_{yy}(x,y)$.
- 4. For each critical point (x_0, y_0) , compute the value $\Delta = AC B^2$, where $A = f_{xx}(x_0, y_0)$, $B = f_{xy}(x_0, y_0)$, $C = f_{yy}(x_0, y_0)$.

(It is convenient to organize the values of the second derivatives into a 2×2 matrix:

$$D^2 f = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}, \text{ then } D^2 f(x_0, y_0) = \begin{pmatrix} A & B \\ B & C \end{pmatrix},$$

and Δ is the determinant of $D^2 f(x_0, y_0)$.)

- 5. (a) If $\Delta > 0$ and A > 0 then the value $f(x_0, y_0)$ is a <u>local minimum</u>
 - (b) If $\Delta > 0$ and A < 0 then the value $f(x_0, y_0)$ is a <u>local maximum</u>
 - (c) If $\Delta < 0$ then (x_0, y_0) is a saddle point (neither a maximum or a minimum)
 - (d) If $\Delta = 0$, the test is inconclusive.