Homework for Sections 13.1, 13.2 + arc length in 13.3

Due on Thursday, October 2, 2014, 3:30pm.

- 1. Sketch the curve with the given vector equation. Indicate the point on the curve that corresponds to t = 0, and show with an arrow the direction in which t increases.
 - (a) $\vec{r}(t) = (t^3, t^2)$
 - (b) $\vec{r}(t) = (3\sin t, \cos t)$
 - (c) $\vec{r}(t) = (\cosh t, 2 \sinh t)$
 - (d) $\vec{r}(t) = (e^t + e^{-t}, e^{2t} + e^{-2t})$; Hint: Compute the square of $e^t + e^{-t}$
 - (e) $\vec{r}(t) = (t^2, t, t)$; Hint: The curve lies in the plane y = z
 - (f) $\vec{r}(t) = (2\sin t, t, \cos t)$ Hint: The curve lies on the cylinder $\frac{x^2}{4} + z^2 = 1$.
- 2. Show that the curve with parametric equations $x = t \cos t$, $y = t \sin t$, z = 2t lies on the cone $x^2 + y^2 \frac{z^2}{4} = 0$, and use this fact to help sketch the curve.
- 3. At what points does the helix with parametrization $\vec{r}(t) = (\sin t, \cos t, t)$ intersect the sphere $x^2 + y^2 + z^2 = 5$?
- 4. Show that the curve with parametric equations $x = t^2$, y = 1 3t, $z = 1 + t^3$ passes through the points (1, 4, 0) and (9, -8, 28) but not through the point (4, 7, -6).
- 5. Find a parametrization for the curve of intersection of the two surfaces:
 - (a) The cylinder $x^2 + y^2 = 4$ and the paraboloid z = xy
 - (b) The semiellipsoid $x^2 + y^2 + 4z^2 = 4$, $y \ge 0$ and the cylinder $x^2 + z^2 = 1$
 - (c) The half-cone $z = \sqrt{x^2 + y^2}$ and the plane 2z = 1 y
 - (d) The half-cone $z = \sqrt{x^2 + y^2}$ and the plane z = 1 + 2y.
- 6. (a) As discussed in class, the curve of intersection of the half-cone $z = \sqrt{x^2 + y^2}$ and the plane z = 1 + y is a parabola, with parametric equations

$$x = t$$
, $y = \frac{t^2 - 1}{2}$, $z = \frac{t^2 + 1}{2}$.

Introduce new coodinates according to the following:

$$X = x$$

$$Y = \frac{y}{\sqrt{2}} + \frac{z}{\sqrt{2}}$$

$$Z = -\frac{y}{\sqrt{2}} + \frac{z}{\sqrt{2}} - \frac{1}{\sqrt{2}}$$

(Remark: the new coordinates correspond to rotation through 45° about the x axis and a parallel-translation by $(0, -\frac{1}{2}, \frac{1}{2})$; the plane z = 1 + y is transformed into Z = 0, the perpendicular plane y + z = 0 is transformed into Y = 0). Show that in the new coordinates the equations of the parabola take the form

$$Z = 0, \quad Y = \frac{1}{\sqrt{2}}X^2.$$

(b) Consider the curve described in problem 5 (d). Show that by introducing new coordinates as follows:

$$X = x$$

$$Y = \frac{y}{\sqrt{5}} + \frac{2z}{\sqrt{5}} + \frac{4}{3\sqrt{5}}$$

$$Z = -\frac{2y}{\sqrt{5}} + \frac{z}{\sqrt{5}} - \frac{1}{\sqrt{5}}$$

the equations of the curve of intersection can be reduced to the form

$$Z = 0$$
, $\frac{Y^2}{a^2} - \frac{X^2}{b^2} = 1$ $(Y > 0)$

(determine the values of a and b).

7. (bonus) Consider the curve described in problem 5 (c). Determine the parameters $\cos \theta$, $\sin \theta$, Y_0 , Z_0 in the transformation

$$X = x$$

$$Y = y \cos \theta + z \sin \theta + Y_0$$

$$Z = -y \sin \theta + z \cos \theta + Z_0$$

so that the equations of the curve are reduced to the following:

$$Z = 0$$
, $3X^2 + \frac{9}{5}Y^2 = 1$.

8. Two particles travel along the space curves

$$\vec{r_1}(t) = (t, t^2, t^3), \quad \vec{r_2}(t) = (1 + 2t, 1 + 6t, 1 + 14t).$$

(Here t is the common parameter which is interpreted as time.) Do the particles collide? Do their paths intersect?

- 9. (i) Sketch the plane curve with the given parametrization. (ii) Find $\vec{r}'(t)$. (iii) Sketch the position vector $\vec{r}(t_0)$ and the tangent vector $\vec{r}'(t_0)$ for the given value of t_0 .
 - (a) $\vec{r}(t) = (t^2, t^3), t_0 = -1$
 - (b) $\vec{r}(t) = (e^t, e^{-t}), t_0 = 0$
 - (c) $\vec{r}(t) = (e^{2t}, e^t), t_0 = 0$
 - (d) $\vec{r}(t) = (2 + 2\sin t, 3 + 3\cos t), t_0 = \pi/2$
- 10. Given a parametrization of a space curve: (i) find the derivative $\vec{r}'(t)$; (ii) find the tangent vector $\vec{r}'(t_0)$ for the given value of t_0 ; (iii) find the unit tangent vector $\vec{T}(t_0)$; (iv) find parametric equations for the tangent line to the curve at the point corresponding to the value $t = t_0$.
 - (a) $\vec{r}(t) = (\sin t, 2\cos t, t), t_0 = \pi/2$
 - (b) $\vec{r}(t) = (1 + 2\sqrt{t}, t^3 t, t^3 + t), t_0 = 1$
 - (c) $\vec{r}(t) = (\sqrt{t^2 + 3}, \ln(t^2 + 3), t), t_0 = 1$
 - (d) $\vec{r}(t) = (e^{-t}\cos t, e^{-t}\sin t, e^{-t}), t_0 = 0.$
- 11. At what point in \mathbb{R}^3 do the curves $\vec{r_1}(t) = (t, 1-t, 3+t^2)$ and $\vec{r_2}(s) = (3-s, s-2, s^2)$ intersect? Find the angle of their intersection, correct to the nearest degree.
- 12. (a) Given $f(t) = \vec{u}(t) \cdot \vec{v}(t)$, $\vec{u}(2) = (1, 2, -1)$, $\vec{u}'(2) = (3, 0, 4)$, and $\vec{v}'(t) = (t, t^2, t^3)$. Find f'(2).
 - (b) Suppose that $f(t) = \vec{u}(t) \times \vec{v}(t)$, and the rest of the data is the same as in part (a). Find f'(2).
- 13. Find the length of the curve with the given parametrization:
 - (a) $\vec{r}(t) = (t, t^2/\sqrt{2}, \frac{1}{3}t^3), 0 \le t \le 2$
 - (b) $\vec{r}(t) = (t, \frac{3}{2}t^2, \frac{3}{2}t^3), 0 \le t \le 2$
 - (c) $\vec{r}(t) = (t, \ln(\sec t + \tan t), \ln \sec t), \quad 0 \le t \le \pi/4$
 - (d) $\vec{r}(t) = (t\cos t, t\sin t, t), \quad 0 \le t \le \pi/2$
 - (e) $\vec{r}(t) = (\sqrt{2}t, e^t, e^{-t}), \quad 0 \le t \le 1.$