

Learning Objectives:
1. Graphing linear inequalities on a Number Line.
2. Write each inequality using interval notation and set-builder notation.
4. Solve problems involving linear inequalities.

1. **Graphing Inequalities on a Number Line**

Definitions:
1. **Linear Inequality**—is an algebraic expression of the form \(ax + b \leq c \) or \(ax + b \geq c \) or \(ax + b < c \) or \(ax + b > c \) where \(a, b \) and \(c \) are real numbers and \(a \neq 0 \).
2. **Solution of a Linear Inequality**—is any replacement for the variable that satisfied the inequality. (Gives true statement results)

3. **Writing Solution Set Using Notations**

<table>
<thead>
<tr>
<th>Interval Notation</th>
<th>Set-builder Notation</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open interval - ((a, b))</td>
<td></td>
<td>–∞→∞</td>
</tr>
<tr>
<td>Closed interval - ([a,b])</td>
<td></td>
<td>–∞→∞</td>
</tr>
<tr>
<td>Half open interval - ([a, b))</td>
<td></td>
<td>–∞→∞</td>
</tr>
<tr>
<td>Half open interval - ((a, b])</td>
<td></td>
<td>–∞→∞</td>
</tr>
<tr>
<td>Interval - ([a, \infty))</td>
<td></td>
<td>–∞→∞</td>
</tr>
<tr>
<td>Interval - ((a, \infty))</td>
<td></td>
<td>–∞→∞</td>
</tr>
<tr>
<td>Interval - ((\infty, a])</td>
<td></td>
<td>–∞→∞</td>
</tr>
<tr>
<td>Interval - ((\infty, a))</td>
<td></td>
<td>–∞→∞</td>
</tr>
<tr>
<td>Interval - ((\infty, \infty))</td>
<td></td>
<td>–∞→∞</td>
</tr>
</tbody>
</table>

Example 1. Graph each inequality on a number line.

1. \(x > -1 \)

2. \(x \leq 4 \)

3. \(-3 < x \leq 5 \)
2. Write each inequality using interval notation

Example 2. Write each inequality using interval notation and set-builder notation.

1. \[\frac{x}{5} - \frac{x}{2} \leq 3 \]

 Interval notation:__________________

 Set-builder notation:__________________

2. \[7 - 2(y - 4) < 5(1 - 2y) \]

 Interval notation:__________________

 Set-builder notation:__________________
3. \[-7 < \frac{3y+1}{2} \leq 8\]

Interval notation: __________________________

Set-builder notation: __________________________

4. **Solving Applications Involving Inequalities**

Key words:

- Less than means \(<\)
- Greater than means \(>\)
- Less than or equal to means \(\leq\)
- Greater than or equal to means \(\geq\)
- Exceed means \(>\)
- At most means \(\leq\)
- At least means \(\geq\)
- No less than means \(\geq\)
- Not equal to means \(\neq\)

Example 3. Revenue Problem.

Suppose the monthly revenue from selling \(x\) boxes of stationery is given by the equation \(R = 2.5x\). The monthly cost of producing the stationery is given by the equation \(C = 0.75x + 455\). For how many boxes of stationery will revenue exceed costs?