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Abstract

This paper deals with the problem of nonparametric regression when the response variable
may be missing but not necessarily at random. Here, we propose a new approach to construct
kernel-type estimators of an unknown regression function based on Horvitz-Thompson inverse
weighting when the data suffers from missing response values. The proposed approach may
be viewed as a two-step procedure: the first step involves constructing a family of kernel-type
regression estimators based on inverse weighting where the members of this family are indexed
by the unknown parameters of the missing probability mechanism (the selection probability).
In the second step, a search will be carried out to find the member of a cover of this family
that has the smallest mean-squared prediction error. Furthermore, we establish exponential
performance bounds on the deviations of the proposed estimators from the true regression
curve in general L, norms; these bounds yield various strong convergence results. We also
study the rates of convergence of these estimators. As an important application of our results,

we consider the problem of statistical classification with incomplete data.

Keywords: kernel regression, convergence in L, norms, classification, partially observed data.

1 INTRODUCTION

This paper considers the problem of kernel regression estimation in the presence of missing response
variables, Y, for the missing not at random (MNAR) setup where the mechanism that causes Y to
be missing is allowed to depend on both the predictor X and the real-valued response variable Y.
The MNAR setup is generally acknowledged to be a difficult problem in incomplete data literature
due to identifiability issues; this is significantly different from the simpler missing at random model
where the absence of Y depends on X only (and not on both X and Y').

More specifically, let (X,Y") € R?xR be a random vector and consider the problem of estimating
the regression function m(x) = E(Y|X = x), based on n independent and identically distributed

(iid) observations (X;,Y;), ¢ = 1,...,n, drawn from the distribution of (X,Y). When the data is
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fully observable, the classical Nadaraya-Watson kernel estimator of m(x) (Nadaraya [26], Watson

[36]) is given by
" i Kx—=Xq)/h)

where the function K : R? — R, is the kernel used with the bandwidth A > 0. A global mea-

sure of the accuracy of my(-) as an estimator of m(-) is given by its L,-type statistic I,,(p) =
[ |, (x) — m (x)|P u(dx), 1 < p < oo, where p is the probability measure of X. The quantity
I,(1) plays an important role in statistical classification; see for example Devroye et al ([7], Sec.
6.2). For the strong convergence of I,,(1) to zero see, for example, Devroye and Krzyzak [8]. In
fact, in the cited paper, Devroye and Krzyzak obtain a number of equivalent results under the
assumption that |Y| < L < oo, one of which states that if the kernel K is regular (the definition
will be given later) then for every ¢ > 0 and n large enough, one has P {I,(1) > ¢} < exp{—cn},
where c is a positive constant depending on € but not on n. For some more recent interesting
results along these lines one may refer to Berrett et al [3].

To appreciate the difficulties involved in constructing (1) in the current setup, suppose that the
response variable Y is allowed to be missing according to the MNAR mechanism and define the
indicator random variable A =0 if Y is missing, and A =1 otherwise. Similarly, for i=1,--- ,n,
let A; =0 when Y is missing (and A; =1 otherwise). Then, it is not hard to see that the estimator
my,(x) in (1) is no longer available. Of course, one might decide (incorrectly) to use the kernel

estimator based on the complete cases only, i.e., the estimator
(%) = S AYVIK((x — X)/h)) S AK((x — Xi)/h). 2)
i=1 i=1

However, mg(x) turns out to be the kernel estimator of the quantity E(AY|X = x)/E(A|X = x)
which, in general, is not equal to the regression function m(x) = E(Y|X = x) under the MNAR
response mechanism.

Regression function estimation under the MNAR setup is challenging, yet some progress has
been made in the literature. For example, one can refer to the results of Bindele et al [4] to
estimate 8 in the model E(Y|X = x) = g(x, 3), where g is completely known, those of Niu et al
[27] and Guo et al [11] for linear regression, and the results of Li et al [15] for functional linear
models. Unlike these results, here we do not assume a linear model. Another relevant result is that
of Mojirsheibani [22] on the limiting distribution of the maximal deviation of certain kernel-type
regression estimators with MNAR missing responses. In the case of functional covariates one can
refer to the work of Ferraty et al [10], Ling et al [16], and Bouzebda et al [5], under the missing at

random assumption.



To present our Horvitz-Thompson type estimators of the unknown regression function m(x) =
E(Y|X = x), we also need to discuss the choice of the selection probability. Let m(x,y) = E[A|X =
X,Y = y] be the selection probability, also called the nonresponse propensity, where the random
variable A =1if Y is observable (and A =0 otherwise). Classical methods such as those of Greelees
et al (1982) assumed a fully parametric model for both the outcome and the selection probabil-
ity. Such model assumptions have been relaxed in recent years, and semiparametric methods that
assume a parametric model for either the outcome or the selection probability (but not both)
have been proposed. Relevant work along these lines includes Shao and Wang [31] who use in-
strument variables to estimate the selection probability without specifying the outcome model for
the distribution of y|x when x € RY, d>2. Similarly, Morikawa et al [25] used kernel regression
estimators to avoid parametric outcome model assumptions, while Tang et al [32] and Zhao and
Ma [38] estimated the outcome model without specifying the selection probability. Miao and Li
[20] employ follow-up subsamples to deal with identifiability without using instrumental variables;
Morikawa and Kim [24] use a parametric model for the selection probability and a fully non-
parametric outcome model for y|x, A=1, and develop a nonparametric test procedure for model
identification. Maity et al [17] propose a likelihood-based method to improve the bias in estimating
logistic regression coefficients; Uehara et al [34] consider a semiparametric response model and use
instrument variables to estimate the selection probability, whereas Sadinle and Reiter [30] propose
a class of nonignorable missingness mechanisms for modeling multivariate data and use auxiliary
information on marginal distributions to identify the underlying models. Zhao et al [39] propose an
adjusted empirical likelihood method in the presense of nonignorable nonresponses for which the
Wilks’” theorem continues to hold. Chen et al [6] study a semiparametric model with unspecified
missingness mechanism and develop maximum pseudo likelihood estimation procedures when the
response conditional density is an exponential family.

For the important case of predictive models (such as regression and classification), in this
paper we consider a versatile logistic-type selection probability model that works as follows. For

any function ¢ > 0 on R, let

1
1+exp{g(x)}-o(y)

Ty (X, y) =

Then we have the following selection probability which is in the spirit of Kim and Yu [13]

1
1+exp {g(x)} - ¢*(v)

E[A|X:X,Y:y] :P{A:HX:X,Y:y}: = T (X,y),

(3)
where @* represents the true function ¢ that can depend on unknown parameters and g is a

completely unspecified function. A popular choice of ¢ is ¢(y) = exp(yy) for some unknown



parameter v (Kim and Yu [13]). It is also well known that estimating the unknown quantities in
(3) can be challenging due to identifiability issues, and a sufficient condition for model identification
is (see, for example, Shao and Wang [31] to assume that there is a part of X, say V, which is
conditionally independent of A, given Y and Z, where X = (Z,V) € R? and Z € RP, with
1 < p < d. On the other hand, this approach fails for the important case where the covariate X is
in R'. Furthermore, finding consistent estimators of ¢* based on the above assumption on X does
not necessarily yield strongly optimal (in L, norms) of kernel regression estimators in general. To
deal with these issues, and as in Kim and Yu [13] and Miao and Li [20], we consider the case
where one has access to a small follow-up subsample of response values selected from the set of
non-respondents. From an applied point of view, an attractive feature of our approach is that the
follow-up subsample size can be negligibly small; we have pressed this issue here to emphasize that
the seemingly unpleasant need for a follow-up subsample can in practice be a non-issue. This fact
is further asserted in our numerical studies where sometimes a subsample of size as small as 2, 1,
or even 0 will do!

Our contributions in this paper are as follows. (i) We develop a Horvitz-Thompson-type inverse
weighting approach to estimate a regression curve m(x), nonparametrically, in the presence of
MNAR response variables. The proposed method uses a data-splitting approach to estimate ¢* in
(3). (ii) We study convergence properties of the proposed regression estimators in general L, norms
(as well as their rates of convergence). (iv) We apply our results to the problem of classification
where we construct asymptotically optimal nonparametric classification rules in the presence of
MNAR missing data. This constitutes an important application to the field of machine learning
and statistical classification in semi-supervised learning where one usually has to deal with large
amounts of missing labels in the data. Researchers in machine learning have made efforts to
develop procedures for utilizing the unlabeled cases (i.e., missing Y;’s) in order to construct better
classification rules; see Wang and Shen [37]. However, most such results assume that the response
variable is missing completely at random; see, for example, Azizyan et al [1]. Our estimators can
also be used in ensemble methods such as those of Fischer and Mougeot [40].

The rest of the paper is organized as follows. The main results are presented in Section 2
where we construct our regression estimators and study their asymptotic properties in general
L, norms. The presence of missing response variables is handles using a Horvitz-Thompson type
inverse weighting approach. Section 3 deals with the applications of our estimators to the problem
of nonparametric classification with partially observed data, where we also look into the rates
of convergence of the proposed classifiers under different conditions. Section 4 presents some
numerical studies; the results here confirm the good finite-sample performance of the proposed

estimators under different conditions. All proofs are deferred to Section 5.



2 MAIN RESULTS

2.1  The proposed estimator

To present our estimator, we employ a data splitting approach that works as follows. Let D, =
{(X1,Y1,A1),..., (Xn,Ys,Ap)} represent the sample of size n (iid), where A; = 0 if Y; is missing
(and A; = 1 otherwise). Now, randomly split the data into a training sample D, of size m and
a validation sequence D, of size £ = n — m, where D,, UD, = D,, and D,, "D, = @&. Here, it is
assumed that £ — oo and m — oo, as n — oo; the choices of m and ¢ will be discussed later. Also,

define the index sets
T, = {z e {1, ,n}| (X, v, A) e]D)m} and T, — {z e {1, ,n}| (X, v, A E]Dg}.

Let F be the class of functions to which the unknown function ¢* in (3) belongs. In the hypothetical
case where the function m,« in (3) is completely known (unrealistic), a Horvitz-Thompson type
(Horvitz and Thompson [12]) kernel estimator of the regression curve m(x) is given by

n

P m) = Z7W(A}?ZmIC((X—Xi)/h)/;IC((x—Xi)/h), (4)

i=1

Here, (4) is justified (as an estimator of m(x)) by the fact that it is the kernel estimator of

m(X; ) ;:E[Tﬁ)};mjx] - E[E(%(A;W‘XY)‘X} " BlYIX] = m(X).  (5)

Of course, (4) is not quite the right estimator because m,« is unknown and must be estimated
itself. To present our proposed estimators, we start as follows. For each ¢ € F, define

1
1+exp {g(x)} - ¢(y)

To(X,y) = and m(x;my,) = E[

and consider the class of kernel-type estimators of m(x;m,) constructed based on the training

sample D,,, alone, and indexed by ¢ € F, given by
Pt = Y =l k(- X)) ) Y K(-X)/h). peF (D)
y P ;r\cp(X“ 1/;) 9 9

1€Lm 1€Lm

where, for each fixed ¢ € F, the quantity 7, is the estimate of the selection probability 7, based

on the training sample D,,, given by

(X, Yi) = |1 + —=
o(X0Y) (X5 0)

R -1
1 —7m(Xi) SO(Yi)] : (8)




where the quantities ¥, (X;; @) and 7, (X;) are the kernel estimators of the functions v (x; Q) =
E[A go(Y)‘X = X] and n(x) = E[A‘X = x], respectively, and given by

Un(Xisp) = Y AKX —X)/h) + Y K(Xi—X,)/h), ¢€F
JELm, jF#i JELm, jF#i (9)
m(Xa) = D AK(Xi=X)/h) + Y K((Xi—X;)/h),
JE€Lm, jFi JE€ELm, jFi

with the usual convention 0/0 = 0, where K : R? — R, with bandwidth h. The estimator 7, in

(8) is justified by the fact that the term exp{g(x)} in (3) can be expressed as (Kim and Yu [13])

1 —n(x) n(x) = E[A‘X:x]
ex X))} = ———=, whrere 10
ple(X)} Y(x; ) Y(x;0) = E[A@(Y)|X =x], (19)
which in turn means that one can re-write m,(x,y) as
_ 1—n(x) -
moxn) = |1+ o)) (1)

Furthermore, since m, > Tyin > 0 by assumption (A) and since @Zm(Xz, ©) in (9) is the estimator
of the strictly positive quantity E[A;¢(Y;)|X;] > 00, where gg >0 (see assumption (D)), we also
consider the following truncated-type version of the estimator in (8)

-1

1- ﬁm(Xz) ’ (12)

To(X,Y:) = |1 + m‘@(yi)
0 m 2

where my > 0 is a fixed constant whose choice will be discussed later under assumption (A’). Here,
we note that 7, in (12) may be viewed as a one-sided winsorized estimator of 7, (compare this
with 7, in (8)). In applications with either simulated or real data, my can be zero (as in (11)) or
is chosen to be a small positive number such as 107, v > 10; this will also become clear later in
our numerical studies. In fact, the presence of 7y in 12) is only for theoretical purposes.

Next, one has to estimate ¢*. To this end, we employ approaches based on the approximation
theory of totally bounded function spaces. This turns out to be a suitable approach when studying
the global performance of our proposed regression estimators via their L, norms. More specifically,
let F be a given class of functions ¢: [—L, L] — (0, B], for some B < oo. Fix £ > 0 and suppose
that the finite collection of functions F. = {¢1,..., ¢~ }, @it [-L, L] — (0, B], is an e-cover of
F, ie., for each p € F, there is a ¢’ € F. such that ||¢ — ¢'|lec < €; here, || - || is the usual
supnorm. The cardinality of the smallest e-cover of F is called the covering number of the family
F and will be denoted by N¢(F). If N:(F) < oo holds for every € > 0, then the family F is said
to be totally bounded (with respect to || - ||oo). The quantity log(N:(F)) is called Kolmogorov’s



e-entropy of the set F. The monograph by van der Vaart and Wellner ([35]; p. 83) provides more
details on such concepts.

Now, let 0 <&, )0 be a decreasing sequence, as n — oo, and let F., = {¢1,... ,goN(En)} Cc F
be any e,-cover of F; the choice of ¢, will be discussed later in Corollary 1. Also, as explained
in the introduction, here we follow Kim and Yu [13], and Miao and Li [20], and consider the
setup in which one has access to response values for a small follow-up subsample selected from
the set of non-respondents. More formally, let §;, i = 1,--- , £, be iid Bernoulli random variables,

independent of the data ID,,, with the probability of success
pn=P{o;=1}, i=1,---,¢, with p, — 0, as n — oo. (13)

Also recall that A; =0 if Y; is missing and A; =1 otherwise. Then we select a non-respondent to
be in the small follow-up subsample only if (1 — A;)d; = 1. Next, for each ¢ € F., define the

empirical Ly error of m,,(x;7,) in (7) based on the testing sequence Dy by

Emg(ﬁp) = [Z A; }mm XiTp) — —|— Z (1 —A)(:/pn) ‘mm X3 ) — Y;}Q
1€y 1€Ly

= f Z ( ﬂ)‘fhm(xu%@ -Y;

’LEI[ n

2

(14)
Then we use the following two-step procedure to estimate ¢* which will then be plugged into (7)
for the free functional parameter .

Step 1. For each ¢ € F,, use the training sample D,, to compute My, (x;7,) in (7), where 7, is
as in (8). Alternatively, if 7, in (12) is used instead of 7., then one computes m,,(x; 7, ), which

is obtained by replacing 7, with 7, in (7).

Step 2. The proposed estimator of ¢* is then defined by

Bn = argmingcr. Limg(Fp),  if (8) is used,
(15)

)

v

¢ = argming ez Lme(Ty),  if (12) is used,

where Em7g(%@) is as in (14) and Emg(ﬁ@) is obtained upon replacing 7, by 7, in (14). The
subscript n at @, and @, reflects the fact that the entire data of size n has been used here.

Finally, our proposed Horvitz-Thompson type estimator of m(x) is given by
if (8) is used,
if (12) is used,

where M, (x;7,) is as in (7).



2.2 Theoretical goodness of the estimators

How good are the estimators m(x;73,) and m(x;7y,) in (16)? To address and answer this

question, we start by assuming that the kernel K is reqular:

Definition A nonnegative kernel KC is said to be regular if there are real constants b > 0 and r > 0
such that K(u) > bI{u € Sy,} and fSUPyequSo,r K(y) du < oo, where Sp, is the ball of radius r

centered at the origin.

See Devroye and Krzyzak [8] for more on this. In order to study and assess the performance of

the estimators m(x; 73, ) and m(x; 7z, ) in (16), we first state a number of assumptions.

Assumption (A). The selection probability, m,(x,¥), in (3) satisfies infy ; T, (X,y) = T > 0
for all p € F.

Assumption (B). The kernel K in (9) satisfies [pq K(x)dx = 1 and [pq |25 (x) dx < oo for
z; € (x1,---,249)" = x. Also, the smoothing parameter h satisfies h — 0 and mh? — oo, as n

(and thus m) — oo.

Assumption (C). The density function f(x) of X is compactly supported and is bounded away
from zero and infinity on its compact support. Additionally, the first-order partial derivatives of

f exist and are bounded on the interior of its support.

Assumption (D). E[A ¢(Y)|X = x| > o, for p—a.e.x and each ¢ € F, for some constant gy > 0.
Furthermore, E[exp{2¢(X)}] < oo, where g(x) is as in (3).

Assumption (E). The partial derivatives %E[A]X = x| and %E[A e(Y)|X = x| exist for

i=1,...,dim(x), and are bounded on the compact support of f.

Assumption (F). The class F is a totally bounded class of functions ¢ : [-L, L] — (0, B], for

some B < oo and L < oo.

Assumption (A’). The selection probability, 7,(x,y), in (3) satisfies infy y 7T, (X, y) =t T > 0

for all ¢ € F, and the truncation constant 7y in (12) can be any number satisfying 0 < my < .

In passing we note that Assumption (B) is not restrictive because the choice of the kernel
is at our discretion. The first part of Assumption (C) is usually imposed in the literature on
nonparametric regression to avoid unstable estimates of m(x) in the tails of the density, f. The
second part of this assumption is technical. Assumption (D) is quite mild and is justified by

the fact that F[A o(Y)|X] = Elp(Y)E(A|X,Y)|X] > mminE[p(Y)|X] together with the fact that



©(y) > 0 for all y. Assumption (E) is technical and has already been used in the literature.

Theorem 1 Consider the two estimators of the regression function m(x) defined by (16).

(i) Let m(x;73,) be the top estimator in (16). Let the kernel K in (7) be regular and suppose

that assumptions (A)—(F) hold. Then, for every e, > 0 satisfying €, | 0, as n — oo, every t > 0,

and n large enough,

i {/ ’ﬁz(x; Ton) — m(x)‘Qﬂ(dX) = t} < |7 <C9€701°€p%t2+0115m e~ MR e eiclmhd)
(17)

whenever * € F, where |F, | is the cardinality of the set F., and cg—ci4 are positive constants

not depending on m, £, n, ort.

(ii) Let m(x;7y,) be the second estimator in (16) and suppose that assumptions (A’), (B)-(F)
hold. Then, under the conditions of part (i) of the theorem, the bound in (17) continues to hold
(with different constants co—c14) for the probability P { [ |m(x;7p,) — m(x)|?u(dx) > t}.

Remark 1 Although the above theorem is stated in the Lo sense, it is straightforward to show that
Part (i) continues to hold for all p > 2. To appreciate this, first observe that

1 — 7 (X
70 V P (X 75,)
which holds because |1 — 0, (Xg)| < 1 and ¢, (Yy) < B, where 0, (Xy) and Jm(Xk;frg;n) are as in

(9). Therefore, for any p > 2 one can always write

1+

&n(Yr)| < L+ LB/m, (18)

B
3

(o 5,) ~m)|” < (| #g,)] + |m(x)|)p72’fﬁ(x;7”r

where Co = (2L + LB/ﬂ'o)p_2, which in turn implies that the upper bound in (17) continues to
hold for P{ [ |m(x;%p,) — m(x)[Pu(dx) > t}, for all p > 2, but with different constants. On
the other hand, if p € [1,2), it is not hard to show that P { [ |m(x;#%g,) — m(x)["u(dx) >t} <
P{ [|m(x;#g,) — m(x)fu(dx) > t2/P}.

The following result is an immediate Corollary to Theorem 1.

Corollary 1 Consider the two estimators in (16) and let p,, be as in (13). If, as n — oo,

oglF,l o lor(FlvmvO o (@2) A (ki)

O =20 =nl
ent 0, p? mhdp2 logn

— 00, (19)

then, under the conditions of Theorem 1, the top estimator in (16) satisfies the strong convergence

property, EUT?L(X, Ton) — m(X)|2)]D)n] —®5 (0. However, for the second estimator in (16),
E[\m(x; ) — m(X)}p)]Dn] 550, forallp > 2.

9



In passing, we also note that under the conditions of Corollary 1, by Lebesgue dominated con-
vergence theorem one has E|m(X;#g,) — m(X)‘p — 0, for all p € [2,00). However, to study the

rates of convergence here, we state the following theorem.

Theorem 2 Under the conditions of Theorem 1, for all p € [2,00) and n large enough,

Elm(X;7s,) —m(X)|”
< c17 + log £ + logm + log | F¢,, | n 1
- c18 (0 A mhd) p2 c19 (c17 + log € + logm + log | Fz, |) - (¢ A mh?) p2’

. d
+ ci6 |]—}n‘€me cao mA?
where c16—cog are positive constants not depending on m, £, and n.

The following is an immediate corollary to Theorem 2.

Corollary 2 Suppose that (19) holds. Then, under the conditions of Theorem 1, for all p > 2,

E|a(Xi ) - mX)[ = 0 <\/1°g<Wmv \fsm) |

(¢ Amhd) - p2

Here we note that for the special case where m = a-n and £ = (1 — «) - n, where a € (0, 1), under

the above conditions one finds that for all p > 2,

R . P log(n V |Fz,|)
Corollary 2 shows that choosing ¢ and m to satisfy either £/n — 0 or m/n — 0 can generally result

in estimators with convergence rates worse than the case where m = |an| for any « € (0,1).

Remark 2 The rates of convergence in Corollary 2 are generally mot optimal as compared to
those of kernel regression estimators based on no missing data. A better rate would be of order
O(\/W) which is achievable if the following conditions hold: (i) p, = ¢ € (0,1] for some
fized probability c instead of p, = o(1), (ii) the cardinality of the e,,-cover satisfies log|F¢,| = O(n),
and (iii) m is chosen as m = |an] for some a € (0,1). It is also well-understood in the framework
of kernel regression (with no missing data) that under additional assumptions such as the Lipschitz
continuity of the regression function m(x), one can establish rates as fast as O((nh?)~* + h?) for
the usual kernel estimator in (1) based on the naive kernel; see, for example, Gyorfi et al (2002;
Sec. 5.3). Unfortunately, such rates do not seem to be available for our estimators with MNAR
missing data where the estimation process involves many steps and many components. In fact,

to the best of our knowledge, such fast rates are not available even for the simpler case of MAR

10



missing data. Additionally, the dependence of the rate of convergence on py in Corollary 2 shows
that if obtaining a follow-up subsample is convenient, then one can have good rates by taking py
to be a fized percentage, such as 15%, of the entire data (as in Kim and Yu [13]). Otherwise, by
choosing p, = o(1) appropriately, one requires a much smaller subsample size while still retaining

the convergence in (20), but at rates slower than O(y/logn/nh? ).

3 APPLICATIONS TO CLASSIFICATION WITH POSSIBLY
MISSING LABELS

Here we consider the following two-group classification problem. Let (X,Y) € R% x {0,1} be a
random pair where the class label Y has to be predicted based on the covariate X. More specifically,

the goal is to find a function g : RY — {0, 1} for which the misclassification error, i.e.,

L(g) :== P{g(X) # Y}, (21)
is as small as possible. The optimal classifier, also referred to as the Bayes classifier, is given by

1 if m(x) > 3

gs(x) = (22)

0  otherwise,

where m(x) := E[Y|X = x] is the regression function; see, for example, Chapter 2 of Devroye et

al [7]. Of course, in practice, the distribution of (X,Y’) is almost always unknown and therefore

finding the best classifier gy is impossible. But suppose that we have access to n iid observations
iid

(the data), Dy, := {(X1,Y1), -+, (X, Y,)}, where (X;,Y;) = (X,Y), i =1,--- ,n, and let g, be

any classifier constructed based on the data D,,. Also, let
Ln(gn) = P{Z]\n(X) # Y| Dn} (23)

be the conditional misclassification error of g,. Now, let m(x) be any estimator of the regression

function m(x) := E[Y|X = x] and consider the plug-in type classifier

1 if m(x) > 3

gn(x) = 24
" 0  otherwise. 29
Then the following bound follows from Devroye et al ([7]; Lemma 6.1)

Ln(Gn) — L(ge) < 2E[|M(X) —m(X)]|Dn], (25)

and thus E[Ly(Gn)] — L(gs) < ZE’ﬁz(X) — m(X)|. Now, suppose that some of the Y;’s may be

missing not at random (MNAR). Consider our proposed regression estimators given by (16) and

11



denote the corresponding plug-in classifiers by

PR 1 if m(x7p,) > & y . 1 if m(x;7g,) >
gn(x;7) = .’ v 2 and  gu(x;7) = . v
0  otherwise, 0  otherwise,

1
(20)

where m(x; 73, ) and m(x; 7z, ) are as in (16). To study the asymptotic performance of the classifier
in (26), we also state the following so-called margin condition which can be found in [2].

Assumption (G) [Margin condition.] There exist constants ¢ > 0 and a > 0 such that
1
P{O < ‘m(X) - 5’ < t} < ct®, forallt > 0. (27)

A number of authors have studied applications of (27) to classification; these include Mammen
and Tsybakov [18], Massart and Nédélec [19], Audibert and Tsybakov [2], Tsybakov and van de
Geer [33], Kohler and Krzyzak [14], and Doring et al [9].

Theorem 3 Let g, and g, be the two classifiers in (26). If (19) holds then, under the conditions

of Theorem 1, we have
(i) P{Gu(Xs7) £ Y|Du} =% Plga(X) £ Y} and P {gu(X%) £ Y [Da} =5 Plgs(X) £ V).

(i) If the margin condition (27) holds then

PA{gn(Xs7) # Y} = P{ga(X) #Y} = O <<log(€ i mn')) H) ,

(¢ Amh) - p

where o is as in (27).

In passing we also note that for large values of « in part (ii) above, one obtains rates closer to
(log(¢ v mV|F.,|)/[(¢ A mh) -pi])l/2 which is similar to that of the winsorized-type regression

estimator in (20); see Corollary 2.

4 NUMERICAL STUDIES

This section provides some numerical examples to illustrate the performance of our proposed
estimator m defined via (16), under different settings. To carry out numerical work, we generated

n = 50 and n = 100 observations from each of the following two models:

Model A, X~ N5(1,%) and Y = p, — X1 4 X3Xy4 — X3 4 exp(—X;5) + N(0,07)
Model B. X ~ Ny(0,%) and Y = X; + (2X, — 1)? + 525057805 4 sin(27X,) + 2 cos(2m Xy)

+ 3sin?(27Xy) + 4 cos?(27Xy) + N(0, o),
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where Ng(p,¥) is the d-dimensional normal distribution with mean g and covariance matrix
3 = (04j)ij>1 with oy = 2-1i=il+1 in Model A and 0y = 2-1i=Jl in Model B. As for oy, two values
are considered, 0.5 and 4 (high variance model); in Model A we used two values of ,: 1 and 2.6.
Here, Model B is as in Meier et al. (2009). We also considered two choices for the function ¢*
in (3), ¢*(y) = exp(7*y) as in Kim and Yu [13] and ¢*(y) = [0.1 + ('y*y)Q]_l. Next, we consider

some models for the selection probability.

The following choice of coefficients result in approximately 50% missing rate in Model A:

—1
(A1) m(x,y) = (1 +exp {Bo+ X0y Bis} - exp{vy})
with (8o, -+, 85) = (0.6, 0.8, 0.25, —0.35, —0.3, 0.75), v = —0.98, and 1, = 2.6.

1
(A2) m(x,y) = (1 +exp {fo + Z?Zl Bjx; + Bsy s} - exp{fyy})
with (B, B1, -+ , B5) = (0.50, 0.75, —0.25, 0.25, —0.25, 0.75), 7 = —0.98, and 1, = 1.

The following choices of coefficients result in approximately 50% missing rate in Model B:

(B1) m(x,y) = (1 +exp {Boy + 2oy Bjwy - (0.1 + 72y2)_1) -

with (8o, , 81) = (0.85, 0.6, 0.35, —0.45, 0.55) and = 0.16.

(B2) m(x,y) = (1 + exp {Bo + Z?:l Bjxj + Bayxa} exp{yy}) !

with (B, 81, -, B1) = (2.6, 0.6, 0.35, —0.45, 0.4) and = —0.36.

To estimate v, we used the data-splitting approach outlined earlier in Sec.2 with m =0.7n and
{=n — m=0.3n, where 7 is selected to minimize (14) over a grid of equally-spaced values of
v in [-M, M]. Here, we took M = 15 but a smaller value such as M = 5 would have been
sufficient. A small follow-up subsample was selected from the set of non-respondents in D, with
each non-respondent having probability p,, of being selected where p,, = ((log n)025 / (n)\d)l_o‘) 1/2
with A=0.95 and o =0.01. This choice of p, guarantees that the follow-up subsample sizes will
be very small on average (see the results in tables 1 and 2). Here we used the Gaussian kernel
where the smoothing parameters were selected using the cross-validation method of Racine and Li
[29] available from the R package “np”; see Racine and Hayfield [2008].

To assess the performance of the proposed estimators we computed their empirical Lo errors
committed on a validation set of 1000 additional observations generated from the distribution of

the data under each of models A and B. We also computed the empirical L errors of our estimators.

The above process was repeated a total of 400 times, each time using a sample of size n (50 and

13



then 100) and a validation set of size 1000, and the average empirical errors of the estimators in (16)
were computed for mop=0 (the top classifier in (16)) as well as my = 10710,10729 ... [ 1073% (for the
bottom classifier in (16)). The results were virtually the same. We also found the corresponding
results for the complete-case estimator mf(x) in (2). Finally, we computed the same errors for
the usual estimator with no missing data; this allows us to see how different the results could have
been with no missing values. Table 1 illustrates the results for the case of low noise (o, =0.5) in

Table 1: Empirical L; and Ly errors when o, =0.5 (low noise) in models A and B. Here, the proposed
estimator m(x;7g,) is as in (16), the complete-case estimator mg°(x) is given by (2), and the estimator

My, (x) based on no missing data is given by (1). The numbers in parentheses are standard errors and those
in square brackets are the average follow-up subsample sizes drawn from the set of non-respondents in Dy.

Model n  w(x,y) Errors | m(x;73,) mee(x) M (X)
A 50 Al Lo 22.82 36.34 15.92
(0.3580), [1.62]  (0.4673) (0.3983)

Ly 3.09 4.15 2.54
(0.0191) (0.0327) (0.0282)

A2 Ly 28.72 37.07 15.71
(0.3094), [1.60]  (0.5000) (0.4314)

Ly 3.46 4.21 2.38
(0.0186) (0.0345) (0.0240)

100 Al Lo 20.98 30.61 11.89
(0.2684), [1.99]  (0.3775) (0.2305)

Ly 2.88 3.68 2.07
(0.0196) (0.0314) (0.0153)

A2 Lo 25.39 32.70 13.31
(0.3463), [2.08]  (0.4472) (0.3420)

Ly 3.16 3.83 2.14
(0.0198) (0.0353) (0.0218)

B 50 B1 Lo 51.64 55.64 45.72
(0.4477), [1.46]  (0.7276) (0.5857)

Ly 4.76 5.88 4.61
(0.0238) (0.0584)  (0.0384)

B2 Lo 53.31 57.69 43.88
(0.6894), [1.49]  (1.0273) (0.6160)

Ly 4.83 6.09 4.55
(0.0320) (0.0749) (0.0419)

100 B1 Lo 48.77 55.30 42.78
(0.4280), [2.05]  (0.6627) (0.6404)

Ly 4.59 5.92 4.45
(0.0199) (0.0538) (0.0425)

B2 Lo 49.00 55.56 42.38
(0.7387), [2.21]  (0.6890) (0.6419)

Ly 4.62 6.04 4.44
(0.0239) (0.0550) (0.0417)
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Models A and B; the numbers in parentheses are the standard errors and those in square brackets
are the average follow-up subsample sizes drawn from the set of non-respondents in D, over 400
Monte Carlo runs. Table 2 gives the same results for the high noise setup (o, =4) in models A

and B. Figures 1 and 2 illustrate the boxplots of the Lo errors.
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Figure 1: Box plots of the empirical Ls error rates for the case of n=>50.
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Figure 2: Box plots of the empirical Lo error rates for the case of n=100.

As these results show, the proposed estimator shows good performance with errors that are sig-

nificantly better than those of the complete case estimators, in fact, these tables show that the
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error of the proposed estimator can sometimes be quite close to the one based on no missing data;
see, for example, Table 2, rows 1,2, 3, 5, 6, 11, 12, 14, 15, and 16. Perhaps more importantly, the
tables show that the average follow-up subsample sizes used for our proposed estimators is around
2 when n =100 and about 1.5 when n=250. In other words, the undesirable need for a follow-up
subsample here is virtually a non-issue in practice.

Table 2: Empirical Ly and Ly errors when o, =4 (high noise) in models A and B. Here, the proposed
estimator m(x;7g,) is as in (16), the complete-case estimator mZ(x) is given by (2), and the estimator

My (X) based on no missing data is given by (1). The numbers in parentheses are standard errors and those
in square brackets are the average follow-up subsample sizes drawn from the set of non-respondents in Dy.

Model n  w(x,y) Errors | m(x;7z,) mse(x) My (X)
A 50 Al Ly 47.28 66.72 43.29
(0.3584), [1.56] (0.5866) (0.3593)

Ly 0.14 6.30 4.94
(0.0161) (0.0306) (0.0156)

A2 Lo 49.40 65.81 42.15
(0.4065), [1.63]  (0.6055) (0.4552)

Ly 5.24 6.23 4.85
(0.0129) (0.0253) (0.0168)

100 Al Ly 43.66 64.58 36.75
(0.2802), [2.35]  (0.4400) (0.3297)

Ly 4.96 6.23 4.59
(0.0150) (0.0236) (0.0146)

A2 Lo 47.29 63.39 36.13
(0.3230), [1.85]  (0.4634) (0.4264)

Ly 5.16 6.14 4.53
(0.0137) (0.0234) (0.0205)

B 50 B1 Lo 68.68 73.91 61.07
(0.4144), [1.35]  (0.4299) (0.3908)

L, 6.01 6.83 5.72
(0.1225) (0.1307) (0.1195)

B2 Lo 66.27 79.36 61.82
(0.4097), [1.32]  (0.9226) (0.4473)

Ly 5.90 7.21 5.74
(0.0101) (0.0557) (0.0214)

100 Bl Ly 65.09 74.09 60.23
(0.6243), [2.09]  (0.6603) (0.5538)

Ly 5.80 6.85 5.63
(0.0222) (0.0397) (0.0245)

B2 Lo 63.96 81.30 59.47
(0.4172), [2.11]  (0.8187) (0.5854)

Ly 5.84 7.38 5.64
(0.0197) (0.0466) (0.0270)
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5 PROOFS OF THE MAIN RESULTS

We start by stating a number of lemmas. In what follows, we use the notation of Section 2, where
F is a totally bounded class of functions ¢ : [-L, L] — (0, B], for some B < oco. Also, for any
e > 0, let F. be any e-cover of F (see Section 2). Let T,(x,y), m(x;m,), and Emj(%w) be as in
(8), (6), and (14), and for each ¢ € F define the quantities

|2

m(x;my) = E[i‘X = x}, ¢ = argmin E|m(X;m,) —Y|",  $.=argmin Em,g(%w).

pEF: peFe
(28)

Lemma 1 Let m(x;7,) be as in (28), where m, is as in (3), and suppose that assumption (G)

holds. Then, for every ¢ and oo in F,

Im(x; g, ) —m(x;mp,)| < L-exp{g(x)} sup |oi(y) — e2(y),
L<y<L

where g(x) is the function in (3) and L is as in assumption (F).

Proof of Lemma 1.

First observe that for each ¢ in F,

s =2 2 (o [x0) I = [s e - e )

Therefore, in view of the definition of 7, in (3),

1
s
T (X, Y) 7y (X, Y)

Im(x;mp,) — m(x;7mp,)| < E {‘Y'ww(X,Y)‘ . ’

IN

L-E “1 +exp {g(X) o1 (Y) — 1 —exp {g(X)}wz(Y)’ ‘X = X}
< L-exp{g(x)} I lo1(y) — @2(y)]-

a

Lemma 2 Let Emyg(%w) and My (x;7,) be as in (14) and (7), respectively. Also, let m(x;my),
e, and o be as in (28). Then, under the conditions of Theorem 1, for every e > 0 we have

2 2 —~
EUﬁzm(X;?@)—m(X;w%))’ Dn} < swp Eﬂmm(x;@,)—yj \Dm]—Lm,g(@)
peESe
+ sup |Lp, o(7y) E‘mX ) Y‘ ’
pEFe
+ ey B [[n(%75) - mOG B, (9

where Cy is a positive constant not depending on n or €.
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Proof of Lemma 2.
Observe that E || (X;Tp,) — Y2 |Dn] = E[|mm(X;75,) — m(X; my, ) |2 [Dy] + Elm(X; 7y, ) = Y
+ 2B [ (X5 75.) — m(X;7p,)) (m(X; 7. ) — V) |Dy]. Also, let ¢* be as in (3) and note that

B | (7o (%) = (X)) (X mp) - ) [
= B[ (X 72— (X)) (X, = (K m) + m(Ximr) = ¥)

= 5| (i) ~ (X)) (m(Xi ) = (X))

8
where we have used the fact that in view of (5), E[Y|X = x] := m(x) = m(x; my+). Therefore

2
D

D, - Elm(Xiior) - v’}

E Um(x; 7o) — m(Xsm,)

2
- {E Umm(x;%@) —Y‘

_9E [(mm(x;%@) - m(X;W%)) (m(X;W%) — m(X; %*)) Dn}
= I, + II,. (30)

To deal with the term I, , let Em,g(ﬁw) be as in (30) and observe that

2

2
I, — Eﬂmm(x;%)—y‘ Jnf.

]D)n] — inf E|m(X;7,) — Y]

~

2 . .
= sup {E Uﬁ’bm(X;%@) — Y‘ Dn} — L o(Tp) + Lino(Typ) — Lim o(73.)

pEFe

+ Ena(Rz) - Elm(Xim,) - v}

)

< (E Umm(x; 75.) —Y‘Z

- ~ -~ ~ 2
Dn] - LM(%)) + su£ ‘Lm,g(%) — E\m(x;%) — Y\
peESe

where the last line follows since Eml(%@s) < Emj(ﬁp) holds for all ¢ € F. (because of the definition
of ¢. in (28)). Therefore

+ sup , (31)

IL.| < sup Lino(7p) = E|m(X;mp) =Y |*
peFe

2
E Umm(x; ) — Y‘
pEFe

]Dm] — Lo o(7p)

where the conditioning on D, in the above expression reflects the fact that m,,(X;¢) depends on

Dy, only (and not the entire data D,,). Furthermore, by Cauchy-Schwarz inequality

L, < 2\/E [\mm(x;%@) —m(X;7,,) 2‘]@4 : \/E\m(X; mo) —m(Xsme ). (32)
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Now, let ¢ € F. be such that ¢* € B(p,¢); such a ¢f € F. exists because ¢* € F and F. is an
e-cover of F. Then, using the fact that E|m(X;7,,) — Y‘2 = Elm(X;mye) — Y‘2 +Elm(X;m,,) —

m(X; mpx) ?, one finds

= inf Elm(X;m) —Y]P - Elm(X;mpe) - Y|

E X — X_ *
}m( 77"%) m( v”w) ST

= inf E|m(X;m,) — m(X; ) ’ < Elm(X;7 ) — m(X;mpr) 2
peFe
2
< 12B(exp{20X)})| sw [¢f(w) — " w)|| , (by Lemma 1)
—L<y<L
< C-&, (33)

because p* € B(pf,¢), where C' = LQE(exp {2g(X)}) < o0 is a positive constant not depending

on n or ¢ (see the second part of assumption (D)). Therefore, in view of (32) and (33), one finds

L[| < = ¢ \/E [\mm(x;%@)—m(x;ﬂ%) Z‘Dn}, (34)

for a constant C7 >0 not depending on n or €. Now Lemma 2 follows from (30), (31), and (34).

(]
Proof of Theorem 1
Part (i). First observe that by Lemma 2 one can write
[ 1o 75.) = b ) Pt
. ~ 2 S~ S~ 2
< sup ‘E “mm(X;WY,) - Y‘ ‘]D)m} — Lo (Tp)| + sup |Lpm(T,) — Elm(X;my,) — Y‘
pEFe pEFe
+ -y \//W’Lm(X;%@) —m(x; 7, )| p(dx), (35)

where, ¢, and @, are as in (28). Therefore, in view of (35), for every constant ¢ > 0

p{ / i (33 75.) — ;)

ud) > th = P{ [ [ () - mixim)

2 ~
E Umm(x;aﬂ) — Y‘ \Dm} — Lino(7y)

< P sup
peFe

St
3

+P{sup Zm,g(@)—E)m(x;%)—Y(z'>;}, (36)

peFe

where ¢y = (3C7)? with Cy as in (35). But observe that for every constant 3 > 0

P < sup
pEFe

Toe(F) = E Umm(x; 7.) — Y]Q}Dm] ‘ > 5} (37)
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< P{ sup ! Z (Ai + w) ‘ﬁ?m(xi;ﬁo) -Y;

2 2
_E “mm(x; ) — Y‘ ‘Dm} > 8
On the other hand, for every ¢ € Z,, we have
NN | N 2
|: ) l)‘mm(xi;ﬂ'go)_y;
2

o]

because J; is independent of the data D,, (with E(J;) = p,), and the fact that A; is independent
of Iy, for all i € Z,. Moreover, by the definition of 7,(X,Y) in (8), one finds

)

‘ m(Xi; ) = Y;

ms s L4y my 4%y La, m

1} + ;j;E {1 -
E(6;)
P

}) D

2(1 - %*(Xz’,ifi))‘]l))m}

2
- EUmm(Xi;@,) ~Yi| 7,

Dm] n E “mm(xi;@) _y,

=F “mm X7 7r<p

T (Xis)| < e [An¥e/Fo (X, )| < L'(”é&%ﬁi

|- B]. 38
Vm(Xk; ¢) ) %)

2, 1 € Iy, are independent

)

Thus, conditional on D, the terms (Ai+(1—Ai)5i/pn) ‘fﬁm(X“ Tp)—
nonnegative random variables bounded by (2L?/p,){4 + B? max%elm ll/ﬂ;m (Xk; gp)‘} Therefore

(37) < |F|sup E [P{‘Lme(mp Umm (X5 7p) Y’ ’D ” > B’ H

peFe

_9pA2,2
< 2‘}}} sup F |exp 2057 P

_ e (39)
peF. 4LA {4 + B2 maxzezm !1/¢m(Xk§ CP)‘}

via Hoeffding’s inequality. Now let gy be the constant in Assumption (D) and observe that since
the exponential function in (39) is always bounded by 1, the expectation on the right side of (39)
is bounded by

_26521% - | o
o ALt {4 +maxj g }B/Qz)\m(Xk§<P)‘}2 H{ ke@m WMX}C’ °) 25 } }
+ FE ]I{ U [lzm(Xkup) < 90/2} }]
k€L
< exp {4L4 {4_432622(5;@0)2}2 } + kezz:m P{{Z)\m(Xkﬁ p) < 90/2}. (40)

Now, as in (10), let ¥ (Xy; ) = E[Are(Y))|Xk] and observe that by assumption (D) one can write
Plm(Xi;9) < 2} < P{ = bn(Xi;9) +9(Xis9) > 00 — L} < P{|n(Xi; ) — 0(Xp; 0)| >

20



2 1. However, straightforward but tedious arguments (as in Mojirsheibani [23]) show that, under

assumptions (B), (C), and (E)
P{|m(Xp; 0) — 0(Xi: )| > 00/2} < Cig exp { — Crymh?}, (41)

for n (and thus m) large enough and positive constants C1g and C17 not depending on n. Thus,

in view of (37), (39), (40), and (41), for every 8 > 0 and n large enough one finds

P { sup | L o(7p) — E Umm(x;@,) - Y‘Z‘]D)m} ‘ > 5}
pEFe
—208%p2 } e >
< 2|F| <exp{4L4{4+BQ(2/g0)2}2 + Cigm exp { — Ciymh®} ) . (42)

To complete the proof, we also need to deal with the last probability statement on the right side
of (36). To that end, let Emj(@,) be as in (14) and define the quantities

Qnilp) = mt(Tp) 7 Z ( )51))m(Xi;7r¢) -Y; ’ (43)
ZGIZ TL
Quale) = |73 (a+ S22 fismy) - vif - Blm(im) Y| ()
i€y

and observe that for every 5 > 0,

P{Sup Lo (7)) E‘mX@, Y’ ’>B}
pEFe
< P{ sup |Qn1 )‘ > g} —i—P{ sup ‘ang(cp)‘ > g} = Qn1+Qn2- (45)
pEFe peFe
But (A; 4+ ((1— A;)d;)/pn) < 1/pn and
| (Xi37p)| < L max 1+’7’”(X’“)¢(Yk)‘ < L+ max AB‘.
1<k=m wm(ka ) 1<k<m wm(XkHO)

Therefore, by the definition of Em,f(%go) in (14) and the fact that |a? — b?| < |a — b||a + b|, one has

Qui < P{ sup % > [(a+ (1—pnAz‘)5i)
1 >§}

pESe €Ly
B
B N — ) > ﬁ
wm(XM 90) 2L

x \mm(xi; 7,) — m(Xa; %)Hmm(xi; 7)) + m(Xi; ) —

IN

T (Xi3 7) — m(Xs; %)’ (4 + max

1 1
P < sup |- Z —
peFe T n
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IA

| F2| sup Z ( {“mm(xi;%@) _m(Xi;ﬂap)’(4+B/(Q0/2)) >

peFe =
m[ N {PnXnie) > 9;}]}+ > P{on(Xiiv) < ";})

k€Lm k€Lm

7| sup Z( {[m(Xis70) = m(Xismp)| > CeB) } + 3 Plom(Xiso) < on}>

PEFe jeT, k€T m

B pn
2L

IN

where
Ce(B) = Bpn/ (2L (4+2B/e0) ). (47)
But the first probability statement in (46) can be bounded as follows. First, observe that
P {[fin (X3 ) = m(Xii )| > Col(B)}

Cééﬁ)} + P {}T?Lm(Xz'; o) — m(Xy; 7790)’ >

< P{‘mm(Xz-;m) _mm(x,-;%)) > Cé(ﬁ)}

However, in view of (8) and (11) we can write

Pu(f) = P{ 3 [(@(xk,m)1—(m<xk,yk>)1] ZA??K,S(?{ _X;ﬁj)/f,i) Cﬁéﬁ)}
k€T J€
< 2{a |(Foomem)” - (o) | > S
< ¥ P{ (%@(Xk,yk))_l = (ﬂ@(Xk,Yk }
ke,
1—m(Xg) [1—A‘Xk} C 5)
: kEZImE P{ om(Xpsp)  B[AG(YV)[X,] | S Xk’Yk} )

where 9, (Xy; @) and 7, (X)) are as in (9). Next to bound (49), let n(X) = E[A|X] and (X; ¢) =
E[Ap(Y)|X] be as in (10) and observe that

1—n(Xp) B[l - AXy]

_ '_1—%(&) In(Xei ) = (X 0) | nx1) = i (X)

@m (Xk; ) E [ASO(Y) ‘Xk:] Jm (Xk; ) (X3 ) Y(Xps )
1 — m(Xy) ¢m(Xka ©) — Y (Xkip) ‘U(X) — 1 (Xk)
bm(Xi; ) (X ¢) V(Xpip) |

Therefore, the conditional probability in (49) can be bounded as follows

b { 1= im(Xp) _ E[1=AXy] Cu(B) Xk’yk}

bn(Xiip)  E[Ap(Y)|X4]

oY
o(Yr) > 5T
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1= i (%) | (B)o
# {1000 = (0] > 2 v
=: Py1(k) + Py2(k), (50)

where we have used the facts that ¢(y) € (0,B], B > 0, and ¥(x;¢) > go holds by assumption
(D). But using standard arguments it is not difficult to show that (B), (C), and (E), and n (and
thus m) large enough

Ppa(k) < Cia fcwmh%iﬂza (51)

where C12 and C3 are positive constants not depending on k, m, ¢, or 3. As for the term P, ;(k)
in (50), put
By (Xp) = {m(Xis ) > 00/2},

where g is as in assumption (D), and note that

1—ﬁmCXw
Ym (Xk§ 90)

+ P{Bﬁn(xk)\xk,yk}

Ce(B) oo
4BL

[ (X 0) = w(Xis )| > 1 B(Xy)

Poa(k) < P{

leyk}

= P (k) + Py (k).

However, since |1 — 7, (X)| < 1, straightforward but tedious arguments show that

Cu(B)0d

1) < P[0 - vXii0)| >

_ d.2 a2
kayk} < Cl4€ C1smh Pnﬁ,

for n (and thus m) large enough, where C14 and Ci5 are positive constants not depending on
m, £, or B. As for the term P)/,(k), we have P, (k) = P{Jm(X;{;go) — (X ) < 00/2 —
V(Xi; 0) | X, Vi } < P{Wm(xk;w) —(Xp; )| > 00/2| Xy, Vi } < Cig exp{—Ci7 mh?}, where we
have used the fact that ¢ is bounded by assumption (D); here Ci6 and C17 are positive constant

not depending on m or £. Putting these bounds together, we find
Poi(k) < Phy(k)+ Pry(i) < Cie Csmus 4 gyge=Crmmhe, (52)
Therefore, putting together (52), (51), (50), and (49), one finds for n large enough

Pat(B) < Y (Punlk) + Paa(k)) < Cigme Comhvis® 4 Cygme=Crrmh®,
JE€EIm
where Ci6—Chg are positive constants not depending on m, ¢, or f. Regarding the term P,2(5)

in (48), tedious but straightforward arguments can be used to show that for n (and thus m) large
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enough there are positive constants Cog and Cs1, not depending on m, £, or 3, such that
Pra(B) < Cgge Crrmhivnf?,

It was shown earlier (see the paragraph before (52)) that P{qzm(Xk; @) < 00/2| X, Y3} = Py (k) <
C6 exp{—C17 mh?®}, where C1¢ and C}7 are positive constant not depending on m or £. Therefore
in view of (46) and (48) one finds

Qn1 < | F| (Cls me~CromhPL B | Oy emCamhPL Bt 1 o0 m‘ffcnmhd) ; (53)

for n large enough, where @y, 1 is as (45). To deal with the term @, 2 in (45), first we note that for
1 € I, the terms (Ai +(1- Ai)di/pn) . ‘m(XZ, o)=Y }2 are independent bounded random variables
taking values in [0 , L? (1 +1/ wmin)Q / pn]. Therefore an application of Hoeffding’s inequality gives

1 (1 — Aq)ds . ik . of _ B
Qnz < |7 sup P fezz: (ai+ T))m(xi,m ¥ - Bm(X;mp) - Y| > 2
< 2|Ffexp{ = 2002 (8/2)%/ [0+ 1/mn) ] }. (54)

Putting together (45), (53), and (54), for every 8 > 0 and n large enough, one has

P < sup
pEFe

~ 2
Ling(Tp) — E‘m(X; Tp) — Y’ ‘ ” 5} < || (Clsﬁme_clgmhdpi B 4 CyplmeCosmh’
+ 27O, (55)

Now, for any decreasing sequence 0 < &, | 0, let m(x; 7, ) and ¢., be as in (28). Then arguments

similar to those that led to (33) gives

[ a7z~ me[uax) = [ |meza,) - mixim,) + mioxim, )~ mo)| n(dx
< 2 [ |mbas,) - mxm,.,)| (i
+2 [ |mGxim, ) = mixsme)| ()
< 2 [ |bs,) - mixin,)| udx) + 2023, (56)

because m(x) = m(x;m,-), where C = L?E(exp{2g(X)}) < oo. Therefore, in view of (56) and
(36), for every constant t > 0 we have

1 A 2

2P{/ ‘m(x;w%) —m(x)’ p(dx) > t}

< 5 P{ [|Abcra) - mexg.)

2M(dx) > t/2 — C’e%}
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IN

P [ [t 7,) — s e)

= { [ [tsa) — mss ) nia) > 2 - 020 )

(for n large enough, where ¢4 > 0 is as in the first line of the Lh.s. of (36))

t/2 —
P<{ sup 7/ Cen
‘Pej:fn

3
+ P4 sup M )
pEFen, 3

Finally, choosing n large enough so that (t/2 — Ce2)/3 > t/12 and using the bounds in (42) and
(55), we find

(dx) > t/2 — Cai}

IN

>

B [ (Xi7,) = Y] [Ba] - Le()

L, 2(7y) E’m (X;my) Y‘

2t2

2
P{/)m(X;ﬁ%) *m(x)‘ p(dx) > t} < \EJ(C% e~ Col PRt | Oy o = Cas b ph
+ Cog tm e~ C3omh’ 4 Oy e~ Co2trn t2),

for n large enough where Cos—Css are positive constants not depending on m, ¢, or t. This

completes the proof of part (i) of the theorem.

Part (ii). The proof of part (ii) is virtually the same and, in fact, easier and therefore will not be

given here.

Proof of Corollary 1

The corollary follows from the Borel-Cantelli lemma in conjunction with (19), the bound in The-

orem 1, and Remark 1.

Proof of Theorem 2

We first note that, by Remark 1, it is sufficient to prove the theorem for the case of p = 2. The

proof is along standard arguments and goes as follows. Observe that

Bl (is,) - mOP = 8| [ [mxins,) - mo ula]

- [
0 R?
(2+B/m0)2 L2

-
0 R4
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A #,) — m(x)‘z,u(dx) > t} dt




where the last line follows because in view of (18) one has

2
| 7g,) = m(x)|* < (J(x;7p,)| + |mx)])? < ((1 + i)L +L> = (24 B/mo)’L*.

Therefore, by Theorem 1, for n large enough we have

u (24B/m0)2L2 (24B/m0)2 L2
2 42 d 2 42
(57) < / dt + 015‘]‘}”}' / e—ew0ltPatt g 4 fm/ e—cr2mhipntt gy
0 u ”

L [(24B/m)?L?
+ e c1amh / dt|, where ci5=c9V c11V c13 and cg—c14 are as in (17)
u
B0 - d
< u-+ 2015‘.75” }Em/ e~ (croner)((Amhpt® gy o c15((2+B/my)L)? "an ‘fm ecumh
u
2 c15|Fe, [ Im o0
< ud 15’ 5"‘ / efv2/2d’u + 016‘-/."5” fme™ 1 mh
\/(Cl(] A\ 612)(6 A mhd)p% u\/(c10/\012)(£/\mhd)p%
(which follows from the change of variable v = ¢ v/(c19 A c12)(¢ A mhd)p2 )
2eci:| Fo | 0m —(croAc12) (EAmMAhY)p2 u? /2
< u+ 15| 7| ‘ + c16|Fe, |[0m e—cramh? (58)

View Ae)(( AmhDpE /lew Aer) (€ AmhDp? -u
where the last line follows from the upper bound of the Mill’s ratio; see, for example, Mitrinovic
([21]; p. 177). Now, put ¢ = 2¢15|Fz, |[¢m and N = (c19 A c12)(¢ A mh®)p? /4, and observe that the
right side of (58) can be written as

C  _oNy? - hd
u—l—me Y 6| Fe, |[fmem (59)
But the term u + ;3 e~2Nv? in (59) is approximately minimized by taking u = +/log(c)/(2N),

and the corresponding minimum of (59) becomes

log(c) 1 et mhd
\/ Fe, |tmemezm
2N + 8N log(c) + el Fe, |me

B \/017+log€+logm+log\}"€n\+ \/ 1

c18 (€ A mhd) p2 19 (017 +log ¢ + logm + log | Fe, |) - (6 Amhd)p2’

+ C16 ‘fsn | Im e 14 mhd,

where cy4, c16—c19 are positive constants not depending on m, ¢, and n.

O
Proof of Theorem 3
Part (i). By (25), we have
P{Gu(Xi7) £ Y[Dn} - Plon(X) £V} < 2B [|(Xi75,) - m(X)| D] (60)
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P {gn(x; ) # Y‘Dn} ~Plgs(X)#£Y)} < 2E Um(x; #5,) — m(X)| ‘Dn} . (61)

Now part (i) follows from (60), (61), and Corollary 1 with p=2, in conjunction with the Cauchy-

Schwarz inequality.

Part (ii). By a result of Audibert and Tsybakov [2] (Lemma 5.2), under assumption (G) we have

1+«

PR A V)= Pl £ Y} < (Blatims) -meo )L 6

where « is as in (27). The result now follows from Corollary 2 with p=2.
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