Transient Problems and Stability

Larry Caretto
Mechanical Engineering 692

Computational Fluid Dynamics

April 12, 2010

Northridge

Northridge

Introduction

- · Look at transient problems
- · How to handle time derivatives
- · Various algorithms
- Examine conduction equation as a sample problem
- · Stability analysis (von Neumann)
- · Stability of algorithms

Northridge

The Time Derivative

- · In previous lectures we considered
 - Finite difference approaches
 - Finite volume approaches
 - Finite element approaches
- Although we can treat finite differences in time like any other derivative we have not considered these to date
- Time is typically a one-way coordinate
 - Future events do not affect past ones

Northridge

Time Derivatives II

- Treatment of time is typically by finite differences even when the spatial coordinates are done by finite elements or finite volume
 - There is no complex geometry in time that requires complex models
 - Basic approach is to take any complex equation with a time derivative and write it as $\partial \phi / \partial t = \phi(x, y, z, t)$ and then to model it similarly to ordinary differential equations

Northridge

Time Derivatives III

- Look to solution of ordinary differential equations for models of time derivatives
 - Have several dependent variables y₁, y₂,
 ..., y_N represented by the vector y
 - Solve for the time evolution of each of these variables by a set of ODEs: dφ_i/dt = f_i(t, φ₁, φ₂, ..., φ_N) or dφ/dt = f(t, φ)
 - Let ϕ^n represent the values of the variables, ϕ_i at time $t_n \phi^n = [\phi_1^n, ..., \phi_N^n]$
 - One time step updates ϕ^n to ϕ^{n+1}

Northridge

ODE Algorithms

- Start with initial conditions ϕ^0 at t = 0
- Take one time step, Δt, to φ¹
- Repeat process for all other time steps using ϕ^n as initial condition in the algorithm to get to ϕ^{n+1}
- Basic algorithm to solve $d\phi/dt = f(t,\phi)$ is $\phi^{n+1} = \phi^n + f_{average}\Delta t$
 - Equation-by-equation basis, $\phi_i^{n+1} = \phi_i^n + f_{i,average}\Delta t$

Northridge

ODE Algorithms II

- Explicit Euler Method: $\phi_i^{n+1} = \phi_i^n + f_i^n \Delta t$
- Implicit Euler Method: $\phi_i^{n+1} = \phi_i^n + f_i^{n+1} \Delta t$
- Trapezoid rule: $\phi_i^{n+1} = \phi_i^n + [f_i^n + f_i^{n+1}]/2\Delta t$
- Midpoint rule: $\phi_i^{n+1} = \phi_i^n + f_i(t + \Delta t/2, \phi^{n+1/2}) \Delta t$
- · Many other methods including Runge-Kutta predictor corrector methods that use more terms in faverage
- · Approaches listed here usually ones used for partial differential equations which balance spatial and temporal accuracy

Northridge

Northridge

ODE Algorithms III

- Explicit Euler Method: $\phi_i^{n+1} = \phi_i^n + f_i^n \Delta t$
- Implicit Euler Method: $\phi_i^{n+1} = \phi_i^n + f_i^{n+1} \Delta t$
- Trapezoid rule: $\phi_i^{n+1} = \phi_i^n + [f_i^n + f_i^{n+1}]/2\Delta t$
- Midpoint rule: $\phi_i^{n+1} = \phi_i^n + f_i(t + \Delta t/2, \phi^{n+1/2}) \Delta t$
- · Key difference is implicit versus explicit
 - Explicit algorithms compute ϕ_i^{n+1} from information available at time step n
 - Implicit algorithms, require information from time step n+1, need to be solved by iteration or simultaneous solution of equations

Northridge

Numerical PDE Solutions

- · Define a finite-difference grid in the independent variables (x, y, z, t)
- Place grid points on region boundary whose values are found from boundary conditions for the problem
- · At some grid location convert differential equation into a finite difference equation
 - Observe truncation error in process
 - Neglect truncation error to get set of algebraic equations to solve

Northridge

Conduction Equation

- · Apply difference formulas derived for ordinary derivatives to partial derivatives
- Use notation to consider different coordinate directions
- coordinate directions
 Apply to conduction equation $\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$
- Grids $x_i = x_0 + i\Delta t$ and $t_n = t_0 + n\Delta t$
- · Try finite difference expressions below to get explicit finite-difference equation

$$\frac{\partial T}{\partial t}\Big|_{i}^{n} = \frac{T_{i}^{n+1} - T_{i}^{n}}{\Delta t} + O(\Delta t) \quad and \quad \frac{\partial^{2} T}{\partial x^{2}}\Big|_{i}^{n} = \frac{T_{i+1}^{n} + T_{i-1}^{n} - 2T_{i}^{n}}{(\Delta x)^{2}} + O[(\Delta x)^{2}]$$

Northridge

Conduction Equation II

 Substitute finite difference expressions into differential equation

$$\frac{T_i^{n+1} - T_i^n}{\Delta t} = \alpha \frac{T_{i+1}^n + T_{i-1}^n - 2T_i^n}{(\Delta x)^2} + O[\Delta t, (\Delta x)^2]$$

• Ignore truncation error, solve for T_in+1

$$T_i^{n+1} = \frac{\alpha \Delta t}{\left(\Delta x\right)^2} \left(T_{i+1}^n + T_{i-1}^n\right) + \left(1 - \frac{2\alpha \Delta t}{\left(\Delta x\right)^2}\right) T_i^n$$

 Obtain temperature at x = x_i and t = t_{n+1} in terms of T values at old time step

Northridge

Explicit (FTCS) Method

· Method just derived is called explicit method; can solve one equation at a time

$$T_{i}^{n+1} = \frac{\alpha \Delta t}{(\Delta x)^{2}} \underbrace{\left(T_{i+1}^{n} + T_{i-1}^{n}\right) + \left(1 - \frac{2\alpha \Delta t}{(\Delta x)^{2}}\right)}_{T_{i}^{n}} = f\underbrace{\left(T_{i+1}^{n} + T_{i-1}^{n}\right) + (1 - 2f)}_{T_{i}^{n}} T_{i}^{n}$$

$$f = \frac{\alpha \Delta t}{(\Delta x)^{2}}$$

$$f = \frac{\alpha \Delta t}{(\Delta x)^{2}}$$

• Tin+1 does not depend on other T values at the new time step (n+1)

Northridge

Explicit Method Example

- Pick α = 1, Δx = 0.25, N_x = 4, Δt = 0.01
- $f = \alpha \Delta t / (\Delta x)^2 = 1(.01)/(.25)^2 = 0.16$
- Pick initial T_i⁰ = 1000 and boundaries, T₀ⁿ
 = T₄ⁿ = 0 for time > 0 (n ≥ 0)

Apply
$$T_i^{n+1} = f(T_{i+1}^n + T_{i-1}^n) + (1 - 2f)T_i^n$$

 $T_1^1 = f \left[T_0^0 + T_2^0 \right] + (1 - 2f) T_1^0 = 0.16[0 + 1000] + 0.68[1000] = 840$ $T_2^1 = f \left[T_1^0 + T_3^0 \right] + (1 - 2f) T_2^0 = 0.16[1000 + 1000] + 0.68[1000] = 1000$ $T_3^1 = f \left[T_2^0 + T_4^0 \right] + (1 - 2f) T_3^0 = 0.16[1000 + 0] + 0.68[1000] = 840$

Repeat for subsequent time steps

Northridge

Explicit Method Results f = 0.16

		i = 0	i = 1	i = 2	i = 3	i = 4
		x = 0.00	x = 0.25	x = 0.50	x = 0.75	x = 1.00
	t = 0	1000	1000	1000	1000	1000
n = 0	t = 0+	0	1000	1000	1000	0
n = 1	t = 0.01	0	840	1000	840	0
n = 2	t = 0.02	0	731.2	948.8	731.2	0
n = 3	t = 0.03	0	649	879.2	649	0
n = 4	t = 0.04	0	582	805.5	582	0
n = 5	t = 0.05	0	524.6	734	524.6	0
n = 6	t = 0.06	0	474.2	667	474.2	0
n = 7	t = 0.07	0	429.2	605.3	429.2	0
n = 8	t = 0.08	0	388.7	548.9	388.7	0

California State University
Northridge

14

Explicit Method Results f = 0.16

		i = 0	i = 1	i = 2	i = 3	i = 4
		x = 0.00	x = 0.25	x = 0.50	x = 0.75	x = 1.00
n = 12	t = 0.12	0	262	370.5	262	0
n = 13	t = 0.13	0	237.5	335.8	237.5	0
n = 14	t = 0.14	0	215.2	304.4	215.2	0
n = 15	t = 0.15	0	195	275.8	195	0
n = 16	t = 0.16	0	176.8	250	176.8	0
n = 17	t = 0.17	0	160.2	226.5	160.2	0
n = 18	t = 0.18	0	145.2	205.3	145.2	0
n = 19	t = 0.19	0	131.6	186.1	131.6	0
n = 20	t = 0.20	0	119.2	168.6	119.2	0
Exact	t = 0.20	0	125.1	176.9	125.1	0
Error	t = 0.20	0	5.8	8.2	5.8	0
Northr	nnersity	•				15

Explicit Results f = 0.32

		i = 0	i = 1	i = 2	i = 3	i = 4
		x = 0.00	x = 0.25	x = 0.50	x = 0.75	x = 1.00
	t = 0	1000	1000	1000	1000	1000
n = 0	t = 0+	0	1000	1000	1000	0
n = 1	t = 0.02	0	680	1000	680	0
n = 2	t = 0.04	0	564.8	795.2	564.8	0
n = 3	t = 0.06	0	457.9	647.7	457.9	0
n = 8	t = 0.16	0	162.2	229.4	162.2	0
n = 9	t = 0.18	0	131.8	186.4	131.8	0
n = 10	t = 0.20	0	107.1	151.4	107.1	0
Exact	t = 0.20	0	125.1	176.9	125.1	0
Error	t = 0.20	0	18	25.4	18	0

Northridge

16

Explicit Results f = 0.64

		i = 0	i = 1	i = 2	i = 3	i = 4
		x = 0.00	x = 0.25	x = 0.50	x = 0.75	x = 1.00
	t = 0	1000	1000	1000	1000	1000
n = 0	t = 0+	0	1000	1000	1000	0
n = 1	t = 0.04	0	360	1000	360	0
n = 2	t = 0.08	0	539.2	180.8	539.2	0
n = 3	t = 0.12	0	-35.3	639.6	-35.3	0
n = 4	t = 0.16	0	419.2	-224.2	419.2	0
n = 5	t = 0.20	0	-260.9	599.3	-260.9	0
Exact	t = 0.20	0	125.1	176.9	125.1	0
Error	t = 0.20	0	385.9	422.5	385.9	0

California State University
Northridge

What Happened?

- · We are seeing effects of instability
- · Difference equations may not converge
 - Unstable equations grow without bound
 - May have stable equations that produce incorrect results
 - Conditional stability requires step size less than that needed for accuracy
 - Goal of absolute stability not always possible
 - Discussions of stability complex, can sometimes use physical arguments

Northridge

18

Stability of Explicit Method

- If the values of T_{i+1} and T_{i-1} are fixed an increase in T_iⁿ should increase T_iⁿ⁺¹
- If f is greater than 0.5, an increase in T_iⁿ will cause a decrease in T_in+1
- We can avoid this incorrect result by keeping $f = \alpha \Delta t / (\Delta x)^2 \le 0.5$
- · This imposes a time step limit that may be less than the limit required for accuracy in the solution

California State Cohersity Northridge
$$T_i^{n+1} = f\left(T_{i+1}^n + T_{i-1}^n\right) + \left(1 - 2f\right)T_i^n \quad {}_{19}$$

Crank-Nicholson Method

- Seek more accurate time derivative
- · Provides implicit method
 - Value of T_in+1 depends on T_in+1 and T_in-1
 - More work per step, but can take longer time steps with this method
 - Apply to diffusion equation at time n + 1/2

$$\left. \frac{\partial T}{\partial t} \right|_{i}^{n+\frac{1}{2}} = \frac{T_{i}^{n+1} - T_{i}^{n}}{2\frac{\Delta t}{2}} + O[(\Delta t)^{2}] = \frac{T_{i}^{n+1} - T_{i}^{n}}{\Delta t} + O[(\Delta t)^{2}] = \alpha \frac{\partial^{2} T}{\partial x^{2}} \bigg|_{i}^{n+\frac{1}{2}}$$

Northridge

Space Derivative at $t_{n+1/2}$

- Take average of space derivative at time steps n and n + 1
- Show average is second order accurate

$$f_{i+1} = f_i + f_i \dot{h} + f_i^* \frac{h^2}{2} + f_i^* \frac{h^3}{6} + \dots$$

$$+ f_{i-1} = f_i - f_i \dot{h} + f_i^* \frac{h^2}{2} - f_i^* \frac{h^3}{6} + \dots$$

$$f_{i+1} + f_{i-1} = 2f_i + 2f_i^* \frac{h^2}{2} + 2f_i^* \frac{h^4}{24} + \dots$$

$$f_i = \frac{f_{i+1} + f_{i-1}}{2} - f_i^* \frac{h^2}{4} - f_i^* \frac{h^4}{48} + \dots = \frac{f_{i+1} + f_{i-1}}{2} + O(h^2)$$
Collisions State Language
Northridge

Using Space Derivative at t_{n+1/2}

· Apply average to space derivative

$$\left. \frac{\partial^2 T}{\partial x^2} \right|_i^{n+\frac{1}{2}} = \frac{1}{2} \left[\frac{\partial^2 T}{\partial x^2} \right|_i^n + \frac{\partial^2 T}{\partial x^2} \right|_i^{n+1} + O[(\Delta t)^2]$$

• Substitute into diffusion equation
$$\frac{\partial T}{\partial t}\Big|_{i}^{n+\frac{1}{2}} - \alpha \frac{\partial^{2}T}{\partial x^{2}}\Big|_{i}^{n+\frac{1}{2}} = \frac{T_{i}^{n+1} - T_{i}^{n}}{\Delta t} \\ - \frac{\alpha}{2} \left[\frac{T_{i+1}^{n+1} + T_{i-1}^{n+1} - 2T_{i}^{n+1}}{(\Delta x)^{2}} + \frac{T_{i+1}^{n} + T_{i-1}^{n} - 2T_{i}^{n}}{(\Delta x)^{2}} \right] + O[(\Delta t)^{2}, (\Delta x)^{2}] = 0$$

Northridge

Crank-Nicholson Equation

• Introduce $f = \alpha \Delta t / (\Delta x)^2$ and rearrange - Three values at new time step

$$\begin{split} &-\frac{f}{2}T_{i-1}^{n+1} + (1+f)T_{i}^{n+1} - \frac{f}{2}T_{i+1}^{n+1} = \frac{f}{2}\Big[T_{i+1}^{n} + T_{i-1}^{n}\Big] + (1-f)T_{i}^{n} \\ &-fT_{i-1}^{n+1} + 2(1+f)T_{i}^{n+1} - fT_{i+1}^{n+1} = f\Big[T_{i+1}^{n} + T_{i-1}^{n}\Big] + 2(1-f)T_{i}^{n} \end{split}$$

· Tridiagonal system of equations easily solved by Thomas algorithm

$$-fT_{i-1}^{n+1} + 2(1+f)T_i^{n+1} - fT_{i+1}^{n+1} = R_i^n$$

California State University Northridge $R_i^n = f \left[T_{i+1}^n + T_{i-1}^n \right] + 2(1-f)T_i^n$ 23

Crank-Nicholson Equations

- · Consider case where boundary temperatures T₀ and T_N are specified
- · Rewrite equations in matrix form to show tridiagonal structure

California State University
Northridge

Crank Nicholson Results

• Results for α = 1, L = 1, Δx = 0.01, Δt = 0.0005, $f = \alpha \Delta t / (\Delta x)^2 = 5$

		i = 0	i = 1	i = 2	i = 3	i = 4		
		x = 0	x = .01	x = .02	x = .03	x = .04		
	t = 0	1000	1000	1000	1000	1000		
n = 0	t = 0+	0	1000	1000	1000	1000		
n = 1	t = 0.0005	0	-73.35	423.96	690.85	834.09		
n = 2	t = 0.001	0	352.75	305.27	440.73	599.81		
n = 3	t = 0.0015	0	25.7	320.81	439.19	533.34		
n = 4	t = 0.002	0	203.86	209.57	347.52	473.02		
n = 5	t = 0.0025	0	56.79	252.91	334.12	422.43		
n = 6	t = 0.003	0	141.46	177.47	298.2	397.48		
	California State University 25							

Northridge

Crank Nicholson Results II

		i = 0	i = 1	i = 2	i = 3	i = 4
		x = 0	x = .01	x = .02	x = .03	x = .04
n = 7	t = 0.0035	0	66.73	209.02	279.22	363.26
n = 8	t = 0.004	0	109.4	160.3	263.81	347.29
n = 9	t = 0.0045	0	68.71	179.63	245.68	324.49
n = 10	t = 0.005	0	90.79	148.2	237.92	311.75
n = 11	t = 0.0055	0	67.5	159.07	222.68	296.08
n = 12	t = 0.006	0	78.99	138.51	217.76	285.25
n = 13	t = 0.0065	0	65.08	144.07	205.56	273.92
n = 14	t = 0.007	0	70.94	130.31	201.68	264.62
n = 15	t = 0.0075	0	62.29	132.69	192.04	255.97
n = 16	t = 0.008	0	65.1	123.21	188.58	247.99
n = 17	t = 0.0085	0	59.5	123.75	180.95	241.06
Northr	University idge					26

Crank Nicholson Results III

		i = 0	i = 1	i = 2	i = 3	i = 4
		x = 0	x = .01	x = .02	x = .03	x = .04
n = 18	t = 0.009	0	60.65	117	177.71	234.21
n = 19	t = 0.0095	0	56.86	116.5	171.59	228.43
n = 20	t = 0.01	0	57.1	111.53	168.52	222.53
n = 21	t = 0.0105	0	54.43	110.47	163.53	217.57
n = 22	t = 0.011	0	54.19	106.68	160.64	212.45
n = 23	t = 0.0115	0	52.22	105.35	156.49	208.11
n = 24	t = 0.012	0	51.73	102.36	153.78	203.64
n = 25	t = 0.0125	0	50.21	100.93	150.27	199.78
Exact	t = 0.0125	0	50.43	100.66	150.48	199.72
Error	t = 0.0125	0	0.216	0.272	0.212	0.061

Northridge

Northridge

Fully Implicit Method

• Discretize diffusion equation at t_{n+1}

$$\begin{split} \frac{\partial T}{\partial t}\bigg|_{i}^{n+1} &= \frac{T_{i}^{n+1} - T_{i}^{n}}{\Delta t} + O(\Delta t) \quad and \quad \frac{\partial^{2} T}{\partial x^{2}}\bigg|_{i}^{n+1} &= \frac{T_{i+1}^{n+1} + T_{i-1}^{n+1} - 2T_{i}^{n+1}}{(\Delta x)^{2}} + O[(\Delta x)^{2}] \\ \frac{\partial T}{\partial t}\bigg|_{i}^{n+1} &- \alpha \frac{\partial^{2} T}{\partial x^{2}}\bigg|_{i}^{n+1} &= \frac{T_{i}^{n+1} - T_{i}^{n}}{\Delta t} - \alpha \frac{T_{i+1}^{n+1} + T_{i-1}^{n+1} - 2T_{i}^{n+1}}{(\Delta x)^{2}} + O[(\Delta t), (\Delta x)^{2}] = 0 \\ &- f T_{i-1}^{n+1} + (1 + 2f) T_{i}^{n+1} - f T_{i+1}^{n+1} = T_{i}^{n} \end{split}$$

- · Tridiagonal system of equations
- · Almost same work as CN and no spurious oscillations, but less accuracy

Northridge

Fully Implicit Results

• Same inputs as CN: α = 1, L = 1, Δx = 0.01, $\Delta t = 0.0005$, $f = \alpha \Delta t / (\Delta x)^2 = 5$

	,		,	`	,			
		i = 0	i = 1	i = 2	i = 3	i = 4		
		x = 0	x = .01	x = .02	x = .03	x = .04		
	t = 0	1000	1000	1000	1000	1000		
n = 0	t = 0+	0	1000	1000	1000	1000		
n = 1	t = 0.0005	0	358.26	588.17	735.71	830.39		
n = 2	t = 0.001	0	218.22	408.43	562.69	682.35		
n = 3	t = 0.0015	0	166.26	322.13	460.74	578.96		
n = 4	t = 0.002	0	139.05	272.65	396.35	507.18		
n = 5	t = 0.0025	0	121.84	240.25	352.17	455.26		
n = 6	t = 0.003	0	109.75	217.08	319.77	415.99		
California State (Northr	ulifornia State University Vorthridge							

Fully Implicit Results

		i = 0	i = 1	i = 2	i = 3	i = 4
		x = 0	x = .01	x = .02	x = .03	x = .04
n = 7	t = 0.0035	0	100.65	199.49	294.81	385.13
n = 8	t = 0.004	0	93.50	185.57	274.85	360.14
n = 9	t = 0.0045	0	87.68	174.19	258.43	339.38
n = 10	t = 0.005	0	82.82	164.67	244.62	321.81
n = 11	t = 0.0055	0	78.69	156.56	232.81	306.69
n = 12	t = 0.006	0	75.13	149.54	222.55	293.50
n = 13	t = 0.0065	0	72.00	143.38	213.53	281.87
n = 14	t = 0.007	0	69.24	137.93	205.52	271.52
n = 15	t = 0.0075	0	66.77	133.05	198.35	262.22
n = 16	t = 0.008	0	64.55	128.66	191.88	253.82
n = 17	t = 0.0085	0	62.54	124.67	186.01	246.17
Northr	idge			•		30

Fully Implicit Results

		i = 0	i = 1	i = 2	i = 3	i = 4
		x = 0	x = .01	x = .02	x = .03	x = .04
n = 18	t = 0.009	0	60.70	121.03	180.64	239.17
n = 19	t = 0.0095	0	59.02	117.70	175.71	232.74
n = 20	t = 0.01	0	57.47	114.62	171.16	226.79
n = 21	t = 0.0105	0	56.03	111.78	166.95	221.28
n = 22	t = 0.011	0	54.70	109.13	163.04	216.16
n = 23	t = 0.0115	0	53.46	106.67	159.38	211.37
n = 24	t = 0.012	0	52.30	104.36	155.96	206.88
n = 25	t = 0.0125	0	51.21	102.20	152.76	202.67
Exact	t = 0.0125	0	50.43	100.66	150.48	199.72
Error	t = 0.0125	0	0.779	1.542	2.273	2.956

California State University
Northridge

Richardson/Leapfrog

• Use two time step central differences

$$\frac{\partial T}{\partial t}\Big|_{t} = \frac{T_{t}^{n+1} - T_{t}^{n-1}}{2\Delta t} + O[(\Delta t)^{2}] = \alpha \frac{\partial^{2} T}{\partial x^{2}}\Big|_{t}^{n} = \alpha \frac{T_{t+1}^{n} + T_{t-1}^{n} - 2T_{t}^{n}}{(\Delta x)^{2}} + O[(\Delta x)^{2}]$$

Result is explicit with second order accuracy in time

$$T_i^{n+1} = T_i^{n-1} + \frac{2\alpha\Delta t}{(\Delta x)^2} \left(T_{i+1}^n + T_{i-1}^n - 2T_i^n \right) = T_i^{n-1} + 2f \left(T_{i+1}^n + T_{i-1}^n - 2T_i^n \right)$$

 However result is unstable for any f and cannot be used

California State University
Northridge

31

32

DuFort Frankel

- Modification of Richardson method to provide stability
- Replace 2T_iⁿ in second derivative by average at time steps n+1 and n-1
- Introduces another $O[(\Delta t)^2]$ error

$$\begin{split} \frac{\partial T}{\partial t}\Big|_{i}^{n} &= \frac{T_{i}^{n+1} - T_{i}^{n-1}}{2\Delta t} + O[(\Delta t)^{2}] = \alpha \frac{\partial^{2} T}{\partial x^{2}}\Big|_{i}^{n} &= \alpha \frac{T_{i+1}^{n} + T_{i-1}^{n} - 2T_{i}^{n}}{(\Delta x)^{2}} + O[(\Delta x)^{2}] \\ &\qquad \qquad 2T_{i}^{n} &= T_{i}^{n+1} + T_{i}^{n-1} + O[(\Delta t)^{2}] \\ \frac{T_{i}^{n+1} - T_{i}^{n-1}}{2\Delta t} &= \alpha \frac{T_{i+1}^{n} + T_{i-1}^{n} - T_{i}^{n+1} - T_{i}^{n-1}}{(\Delta x)^{2}} + O\Big[(\Delta x)^{2}, (\Delta t)^{2}, (\Delta t)^{2}\Big] \end{split}$$

Northridge

DuFort Frankel

• Rearrange and introduce $f = \alpha \Delta t / (\Delta x)^2$

$$\begin{split} T_i^{n+1} - T_i^{n-1} &= \frac{2\alpha\Delta t}{(\Delta x)^2} \Big(T_{i+1}^n + T_{i-1}^n - T_i^{n+1} - T_i^{n-1} \Big) = 2f \Big(T_{i+1}^n + T_{i-1}^n - T_i^{n+1} - T_i^{n-1} \Big) \\ &\qquad \qquad (1 + 2f) T_i^{n+1} = T_i^{n-1} \Big(1 - 2f \Big) + 2f \Big(T_{i+1}^n + T_{i-1}^n \Big) \end{split}$$

- Result is explicit for values at time n+1
- Explicit start required to get first set of values at time n-1

Northridge

24

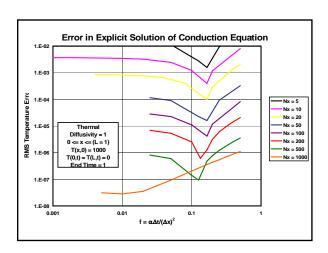
Detailed Truncation Error

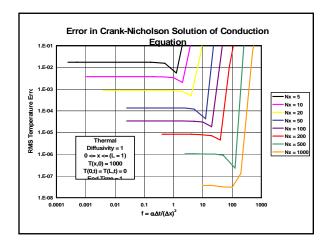
- Look at full infinite series for truncation error [see equations in notes for details]
- Explicit method truncation error [3A-10]

$$TE_{i}^{n} = \alpha \sum_{k=2}^{\infty} (\Delta x)^{2k-2} \left[\frac{2}{(2k)!} - \frac{f^{k-1}}{k!} \right] \frac{\partial^{2k} T}{\partial x^{2k}} \Big|_{i}^{n}$$

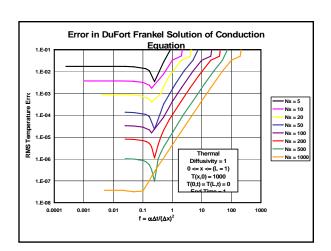
$$TE_i^n = \alpha (\Delta x)^2 \left[\frac{2}{4!} - \frac{f}{2!} \right] \frac{\partial^4 T}{\partial x^4} \Big|_i^n + \alpha \sum_{k=3}^{\infty} \cdots$$

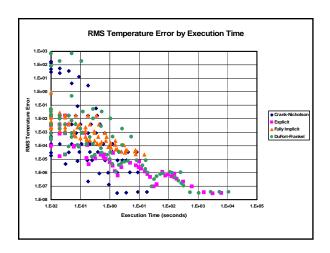
• Lead term vanishes if 2/24 = f/2 or f = 1/6 Northridge











von Neumann Stability

- Examines stability due to differential equation alone
- · Does not consider boundary conditions
- Based on idea that numerical time integration is a series of finite-difference equations that may diverge
- Seeks conditions for which equations will or will not converge
- · Use explicit algorithm as example

Northridge

Northridge

von Neumann Stability II

- · Outline of process
 - Start with finite difference equation
 - Define $D_k{}^n$ as exact solution to finite-difference equation at x_k and t_n
 - Define error, $\varepsilon_k^n = D_k^n T_k^n$ (or = $D_k^n \phi_k^n$)
 - Show that error satisfies same finite difference equation as $T_k{}^n$ (or $\phi_k{}^n$)
 - Model error as discrete complex Fourier series

 $\varepsilon(x,t) = \sum_{m=0}^{M} \varepsilon_m(x,t) \qquad \varepsilon_m(x,t) = e^{at} e^{i\beta_m x}$

California State University
Northridge

41

$$\beta_m = \frac{m\pi}{L}$$

 $m=0,1,2,\ldots M$

42

Fourier Series

 A general function f(x) can be expressed as an infinite series of sines and cosines

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$$

$$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$$
 $a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$ $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$

· Euler formula

$$e^{i\theta} = \cos\theta + i\sin\theta$$

California State University Northridge

Complex Fourier Series

· Write in terms of complex exponentials instead of sines and cosines

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{i\beta_n x}$$
 $c_n = \int_{-\infty}^{\infty} f(x)e^{i\beta_n x} dx$

- · Detailed derivation from trigonometric series to complex series omitted here
- Note that β_n is like nπ/L
 - Just as higher values of $n\pi/L$ imply higher frequencies so do higher values of β_n

Northridge

von Neumann Stability III

- Outline of the process continued
 - From previous chart
 - The error $\epsilon_k^{\ n}$ satisfies same FDE as $T_k^{\ n}$
 - · Use complex Fourier series for the error
 - Want to ensure that error does not grow with time for a given x
 - Define growth factor, G, for error that should be ≤ 1 for all modes, m

$$G = \left| \frac{\varepsilon_m(x, t_{n+1})}{\varepsilon_m(x, t_n)} \right| = \left| \frac{e^{a(t+\Delta t)}}{e^{at}} \frac{e^{i\beta_m x}}{e^{i\beta_m x}} \right| = \left| e^{a\Delta t} \right| \le 1$$

Northridge

von Neumann Stability IV

- Outline of the process concluded
 - Previous charts gave equation for error in Fourier modes and defined growth factor that must be ≤ 1 for all modes, m
 - To apply this substitute error equation into finite difference equation and solve for growth factor, G = |eat|
 - See if G is ≤ 1 for all conditions, some conditions or no conditions
 - Equation below is error for mode m of FDE

$$\mathcal{E}_m(x_k, t_n) = \mathcal{E}_k^n = e^{at} e^{i\beta_m x} = e^{an\Delta t} e^{i\beta_m (x_0 + k\Delta x)}$$

Northridge

Applying von Neumann

- · Example: explicit conduction algorithm
- · See notes for more details
- · State with FDE for T and substitute error

$$T_{k}^{n+1} = f \left[T_{k+1}^{n} + T_{k-1}^{n} \right] + (1 - 2f) T_{k}^{n}$$

$$\varepsilon_{k}^{n+1} = f \left[\varepsilon_{k+1}^{n} + \varepsilon_{k-1}^{n} \right] + (1 - 2f) \varepsilon_{k}^{n}$$

 $\mathcal{E}_{k}^{n}=e^{an\Delta t}~e^{ieta_{m}(x_{0}+k\Delta x)}$ Substitute error expression into FDE

Northridge

Applying von Neumann II

· Result of substituting error into FDE

• Result of substituting error into FDE
$$\varepsilon_k^{n+1} = f \left[\varepsilon_{k+1}^n + \varepsilon_{k-1}^n \right] + (1-2f)\varepsilon_k^n$$

$$\varepsilon_k^n = e^{an\Delta t} e^{i\beta_m(x_0 + k\Delta x)}$$

$$e^{a(n+1)\Delta t} e^{i\beta_m(x_0 + k\Delta x)} + e^{an\Delta t} e^{i\beta_m[x_0 + (k-1)\Delta x]} + e^{an\Delta t} e^{i\beta_m[x_0 + (k-1)\Delta x]} + (1-2f)e^{an\Delta t} e^{i\beta_m(x_0 + k\Delta x)}$$
 See common factor of

Northridge

 $e^{an\Delta t}e^{i\beta_m[x_0+k\Delta x]}$ 48

Applying von Neumann III

• Divide out common factor of $e^{an\Delta t}e^{i\beta_m[x_0^++k\Delta x]}$

$$\begin{cases}
e^{an\Delta t} e^{i\beta_m(x_0 + k\Delta x)} e^{a\Delta t} = \left(e^{an\Delta t} e^{i\beta_m(x_0 + k\Delta x)}\right) \bullet \\
f\left[e^{i\beta_m\Delta x} + e^{-i\beta_m\Delta x}\right] + (1 - 2f)\left(e^{an\Delta t} e^{i\beta_m(x_0 + k\Delta x)}\right)
\end{cases}$$

$$e^{a\Delta t} = f \left[e^{i\beta_m \Delta x} + e^{-i\beta_m \Delta x} \right] + (1 - 2f)$$

Substitute: $e^{i\beta_m\Delta x} + e^{-i\beta_m\Delta x} = 2\cos(\beta_m\Delta x)$

$$e^{a\Delta t} = 2f\cos(\beta_m x) + (1 - 2f) = 2f[\cos(\beta_m x) - 1] + 1$$

Northridge

Applying von Neumann IV

• Use this equation $\cos(\theta) - 1 = -2\sin^2\left(\frac{\theta}{2}\right)$

$$e^{a\Delta t} = 2f[\cos(\beta_m x) - 1] + 1 = 2f\left[-2\sin^2\left(\frac{\beta_m x}{2}\right)\right] + 1$$

$$e^{a\Delta t} = 1 - 4f \sin^2\left(\frac{\beta_m x}{2}\right)$$

 Take absolute value to get growth factor, G = |e^{a∆t}|, and see if G ≤ 1

Northridge

Applying von Neumann V

Consider both negative and positive values of absolute value argument

$$G = \left| e^{a\Delta t} \right| = \left| 1 - 4f \sin^2 \left(\frac{\beta_m x}{2} \right) \right| \le 1$$

$$1 - 4f \sin^2\left(\frac{\beta_m x}{2}\right) \le 1 \quad and \quad 4f \sin^2\left(\frac{\beta_m x}{2}\right) - 1 \le 1$$

Always true since both f and sin² are positive

$$f \le \frac{2}{4\sin^2\left(\frac{\beta_m x}{2}\right)}$$

Northridge

Applying von Neumann VI

 We can be sure that G ≤ 1 for all β_mx if G ≤ 1 when sin² has its maximum value

$$f \le \frac{2}{4\sin^2\left(\frac{\beta_m x}{2}\right)}$$
 is satisfied $f = \frac{\alpha \Delta t}{\left(\Delta x\right)^2} \le \frac{1}{2}$

This is same result obtained by physical arguments

Northridge

52

50

Crank Nicholson Stability

- · See notes for more details
- State with FDE for T and substitute error

$$-\frac{f}{2}T_{k-1}^{n+1} + (1+f)T_k^{n+1} - \frac{f}{2}T_{k+1}^{n+1} = \frac{f}{2}\left[T_{k+1}^n + T_{k-1}^n\right] + (1-f)T_k^n$$

$$-\frac{f}{2}\varepsilon_{k-1}^{n+1}+(1+f)\varepsilon_k^{n+1}-\frac{f}{2}\varepsilon_{k+1}^{n+1}=\frac{f}{2}\Big[\varepsilon_{k+1}^n+\varepsilon_{k-1}^n\Big]+(1-f)\varepsilon_k^n$$

$$\mathcal{E}_{k}^{n}=e^{an\Delta t}\,\,e^{ieta_{m}(x_{0}+k\Delta x)}$$
 Substitute error expression into FDE

California State University
Northridge

Crank Nicholson Stability II

 Substitute error into FDE and eliminate common factor of e^{anΔt}e^{iβ_m[x₀+kΔx]}

$$-\frac{f}{2}e^{a(n+1)\Delta t}e^{i\beta_{m}[x_{0}+(k-1)\Delta x]} + (1+f)e^{a(n+1)\Delta t}e^{i\beta_{m}(x_{0}+k\Delta x)}$$

$$-\frac{f}{2}e^{a(n+1)\Delta t}e^{i\beta_{m}[x_{0}+(k+1)\Delta x]} = \frac{f}{2}\left[e^{an\Delta t}e^{i\beta_{m}[x_{0}+(k+1)\Delta x]}\right]$$

$$+e^{an\Delta t}e^{i\beta_{m}[x_{0}+(k-1)\Delta x]} + (1-f)e^{an\Delta t}e^{i\beta_{m}(x_{0}+k\Delta x)}$$

Northridge

Northridge

54

Crank Nicholson Stability III

Divide out e^{anΔt}e^{iβ_m[x₀+kΔx]} and rearrange

$$e^{a\Delta t} \left[1 + f - \frac{f}{2} \left(e^{i\beta_m \Delta x} + e^{-i\beta_m \Delta x} \right) \right]$$
$$= \frac{f}{2} \left[e^{i\beta_m \Delta x} + e^{-i\beta_m \Delta x} \right] + (1 - f)$$

$$e^{i\beta_m \Delta x} + e^{-i\beta_m \Delta x} = 2\cos(\beta_m \Delta x)$$

$$e^{a\Delta t} \left[1 + f - f \cos(\beta_m x) \right] = f \cos(\beta_m x) + (1 - f)$$

 $\cos(\beta_m \Delta x) = 1 - 2\sin^2\left(\frac{\beta_m \Delta x}{2}\right)$ so the control of the co

Crank Nicholson Stability IV

$$e^{a\Delta t} \left[1 + f - f + 2f \sin^2 \left(\frac{\beta_m x}{2} \right) \right]$$

$$= f - 2f \sin^2 \left(\frac{\beta_m x}{2}\right) + (1 - f)$$

$$G = \left| e^{a\Delta t} \right| = \left| \frac{1 - 2f \sin^2 \left(\frac{\beta_m x}{2} \right)}{1 + 2f \sin^2 \left(\frac{\beta_m x}{2} \right)} \right| \le 1$$

Northridge

Crank Nicholson Stability V

• Growth factor is |(1-z)/(1+z)| where z is positive; this is always < 1

$$G = \left| e^{a\Delta t} \right| = \left| \frac{1 - 2f \sin^2 \left(\frac{\beta_m x}{2} \right)}{1 + 2f \sin^2 \left(\frac{\beta_m x}{2} \right)} \right| \le 1$$

- · Conclusion: Crank Nicholson method is unconditionally stable
- · Large f values produce physically unreasonable solutions, however Northridge

Convection Equation

- Look at simplest convection equation with a constant velocity
- · Examine stability of FTCS (forward time, central space differences)

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0 \qquad u_i^{n+1} = u_i^n - \frac{c\Delta t}{2\Delta x} \left[u_{i+1}^n - u_{i-1}^n \right]$$

$$G = \left| e^{a\Delta t} \right| = \left| 1 - \frac{c\Delta t}{\Delta x} \right| \left[1 - 2\sin^2\left(\frac{\beta_m \Delta x}{2}\right) \right] \le 1$$

Northridge

Convection Equation II

- · Growth factor limit requires an equation that cannot be satisfied and therefore FTCS is unstable
- Lax proposed replacing u_iⁿ by average of two nearby space nodes (i ± 1)

$$\begin{split} \left. \frac{\partial u}{\partial t} \right|_{i}^{n} &= \frac{u_{i}^{n+1} - \frac{u_{i+1}^{n} + u_{i-1}^{n}}{2}}{\Delta t} + O[\Delta t, (\Delta x)^{2}] \\ \frac{\partial u}{\partial t} \right|_{i}^{n} &= \frac{u_{i+1}^{n} - u_{i-1}^{n}}{2\Delta x} + O[(\Delta x)^{2}] \\ \frac{\text{California State University}}{\text{Northridge}} \end{split}$$

Lax's Method

· Lax's Method is stable if the Courant number, $N_C = c\Delta x/\Delta t \le 1$

$$u_{i}^{n+1} = \frac{\left[u_{i+1}^{n} + u_{i-1}^{n}\right]}{2} - \frac{c\Delta t}{2\Delta x} \left[u_{i+1}^{n} - u_{i-1}^{n}\right]$$

$$G = \left| e^{a\Delta t} \right| = \sqrt{\left[1 + \left(N_C^2 - 1 \right) \sin^2(\beta_m x) \right]} \le 1$$

Northridge