Numerical Solutions of Finite— Volume Equations

Larry Caretto
Mechanical Engineering 692

Computational Fluid Dynamics

March 15-17, 2010

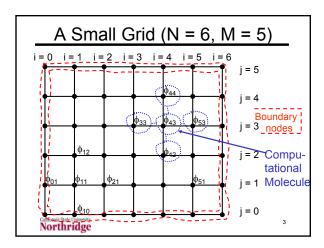
Northridge

Northridge

Equation to Be Solved

- $A_N \phi_N + A_S \phi_S + A_E \phi_E + A_P \phi_P + A_W \phi_W = Q_P$
- $A_N \phi_{iJ+1} + A_S \phi_{ij-1} + A_E \phi_{i+1j} + A_P \phi_{ij} + A_W \phi_{i-1j}$
- Have a set of simultaneous linear equation to be solved algebraically
- A_K coefficients different for u, v, p, but all equations seen here link central (P) node to 4 nearest neighbors
- Sparse matrix system, look at iterative methods for solution

California State University
Northridge



Grid i,j Notation

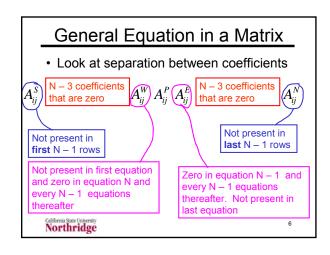
- For system typically use this notation in combination with compass points
- Notation Aii point is general coefficient
 - ij refers to a particular node
 - Point = N(orth), S(outh), E(ast), W(est) refers to neighboring nodes by direction
- General equation shown below

$$\begin{split} A_{ij}^{S} \phi_{ij-1} + A_{ij}^{W} \phi_{i-1\,j} + A_{ij}^{P} \phi_{ij} + A_{ij}^{E} \phi_{i+1\,j} + A_{ij}^{N} \phi_{ij+1} &= b_{ij} \\ A_{ij}^{P} &= -A_{ij}^{S} - A_{ij}^{W} - A_{ij}^{E} - A_{ij}^{N} \quad A_{ij}^{S} &= A_{ij-1}^{N} \quad A_{ij}^{W} &= A_{i-1\,j}^{E} \\ & \text{Northridge} \end{split}$$

Solving the Equations

- Typically have large number of equations forming sparse matrix
 - For $\Delta x = \Delta y = .01$ have 99² equations so matrix has 96x10⁶ potential coefficients
 - Only 48609 (0.051%) are nonzero
- Want data structure and algorithm for handling sparse matrices
- Gauss elimination uses storage for banded matrices
- · Iterative methods used for solutions

Northridge



Sparse Matrix Structure

- 20 equations can have 400 coefficients
- · Here each equation has no more than five coefficients (100 possible)
- Boundaries give another 2(N + M 2) zero coefficients (18 in this example)
- · Thus, we have 82 nonzero coefficients and 400 - 82 = 318 zeros in matrix
 - Nearly 80% of coefficients are zero
 - Fraction increases for larger grids

Northridge

How Sparse is the Matrix?

- The M by N grid has (M − 1)(N − 1) nodes with equations giving $(M - 1)^2(N - 1)^2$ - 1)2 possible coefficients
- Without boundaries we have only 5 (M 1)(N - 1) nonzero coefficients
- Boundaries give 2(N + M 2) = 2(M 1)1) + 2(N - 1) additional zero coefficients

$$\begin{bmatrix} Nonzero \\ Fraction \end{bmatrix} = \frac{5(N-1)(M-1)-2(N-1)-2(M-1)}{(N-1)^2(M-1)^2} = \frac{5}{Northridge} \frac{5}{(N-1)(M-1)} - \frac{2}{(N-1)(M-1)^2} - \frac{2}{(N-1)^2(M-1)^2}$$

What Makes Sparseness?

- · Each node is connected only to a small number of nearest neighbors
 - Problem here has four neighbors
 - Higher order schemes and 3D finitevolume equation can have more neighbors
- Can have complex coefficients so long as number of neighbors is limited
- · Convection-diffusion coefficients with uneven grid spacing are an example of complex coefficients in a sparse matrix

Northridge

Iterative Solutions

- Simplest examples are Jacobi, Gauss-Seidel, and Successive Over Relaxation
- Move from iteration n to iteration n+1
- Iteration 0 is initial guess (often all zero)
- Straightforward approach: solve equation

Iterative Solutions II

- Use superscript (n) for iteration number
- · Jacobi iteration uses all old values

$$|\phi_{ij}^{(n+1)} = b_{ij}^{'} - A_{ij}^{S'} \phi_{ij-1}^{(n)} - A_{ij}^{W'} \phi_{i-1j}^{(n)} - A_{ij}^{E'} \phi_{i+1j}^{(n)} - A_{ij}^{N'} \phi_{ij+1}^{(n)}$$

· Gauss-Seidel uses most-recent values

$$\left| \phi_{ij}^{(n+1)} = b_{ij}^{'} - A_{ij}^{S'} \phi_{ij-1}^{(n+1)} - A_{ij}^{W'} \phi_{i-1j}^{(n+1)} - A_{ij}^{E'} \phi_{i+1j}^{(n)} - A_{ij}^{N'} \phi_{ij+1}^{(n)} \right|$$

· Relaxation basis: Gauss-Seidel provides a correction that can be adjusted

$$\phi_{ij}^{(n+1)} = \phi_{ij}^{(n)} + \widetilde{\omega} \left[\phi_{ij}^{(n+1,GS)} - \phi_{ij}^{(n)}
ight]$$

Collingia Sale (interest)

Relaxation Factor

Example Problem

- · Look at simple system of equations
 - Could solve exactly to find x = 1, y = 2
 - Use to illustrate iteration

Original
$$6x + y = 8$$
 $x = \frac{5}{6}$ Iteration system $2x + 5y = 12$ $y = \frac{12 - 2x}{5}$ Form

• Jacobi – general form and first steps
$$x^{(n+1)} = \frac{8 - y^{(n)}}{6} \qquad x^{(0)} = 0 \qquad x^{(1)} = \frac{8 - y^{(0)}}{6} = \frac{8}{6}$$

$$y^{(n+1)} = \frac{12 - 2x^{(n)}}{5} \qquad y^{(0)} = 0 \qquad y^{(1)} = \frac{12 - 2x^{(0)}}{5} = \frac{12}{5}$$
 Orthridge

Jacobi Example Continued

$$x^{(2)} = \frac{8 - y^{(1)}}{6} = \frac{8 - 12/5}{6} = \frac{28}{30}$$
$$y^{(2)} = \frac{12 - 2x^{(1)}}{5} = \frac{12 - 2(8/6)}{5} = \frac{56}{30}$$

$$x^{(3)} = \frac{8 - y^{(2)}}{6} = \frac{8 - 56/30}{6} = \frac{184}{180}$$
$$y^{(3)} = \frac{12 - 2x^{(2)}}{5} = \frac{12 - 2(28/30)}{5} = \frac{304}{150}$$

- · What is next iteration?
- How do we know we're finished?

 Northridge

Concluding Iterations

- · In general, do not know correct answers
- · Two common measures
 - Residual: $r_i = \Sigma_i a_{ii} x_i b_i$
 - Difference in one iteration $|x_i^{(n+1)} x_i^{(n)}|$
- · Can use relative or absolute measure
- Need vector norm such as maximum absolute value or root mean square
- · Look at summary of iterations for Jacobi

California State University
Northridge

13

14

Jacobi Iteration History

n	X _n	y _n	x residual	y residual	x change	y change
0	0	0	8	12		
1	1.33333	2.4	-2.4	-2.66667	1.333333	2.4
2	0.93333	1.86667	0.533333	0.8	-0.4	-0.53333
3	1.02222	2.02667	-0.16	-0.17778	0.088889	0.16
4	0.99556	1.99111	0.035556	0.053333	-0.02667	-0.03556
5	1.00148	2.00178	-0.01067	-0.01185	0.005926	0.010667
6	0.9997	1.99941	0.00237	0.003556	-0.00178	-0.00237
7	1.0001	2.00012	-0.00071	-0.00079	0.000395	0.000711
8	0.99998	1.99996	0.000158	0.000237	-0.00012	-0.00016
9	1.00001	2.00001	-4.7E-05	-5.3E-05	2.63E-05	4.74E-05

Northridge

Gauss-Seidel Iteration

• Apply Gauss-Seidel Iteration to same set of equations 8-v

Original
$$6x + y = 8$$

system $2x + 5y = 12$

$$x = \frac{6 - y}{6}$$
 Iteration
$$y = \frac{12 - 2x}{5}$$
 Form

 Gauss-Seidel – general iteration form and first step (uses most recent values)

$$x^{(n+1)} = \frac{8 - y^{(n)}}{6} \qquad x^{(0)} = 0$$
$$y^{(n+1)} = \frac{12 - 2x^{(n+1)}}{6} \qquad y^{(0)} = 0$$

$$x^{(1)} = \frac{8 - y^{(3)}}{6} = \frac{8}{6}$$
$$y^{(1)} = \frac{12 - 2x^{(1)}}{5} = \frac{12}{5} - \frac{2}{5} \frac{8}{6} = \frac{56}{30}$$

Gauss-Seidel Iteration II

$$x^{(2)} = \frac{8 - y^{(1)}}{6} = \frac{8 - 56/30}{6} = \frac{184}{180}$$
$$y^{(2)} = \frac{12 - 2x^{(2)}}{5} = \frac{12 - 2(184/180)}{5} = \frac{1792}{900}$$

$$x^{(3)} = \frac{8 - y^{(2)}}{6} = \frac{8 - 1792/900}{6} = \frac{5408}{5400} = 1.00148...$$
$$y^{(3)} = \frac{12 - 2x^{(3)}}{5} = \frac{12 - 2(5408/5400)}{5} = 1.9941...$$

• Faster convergence in Gauss-Seidel

Northridge

Relaxation Methods

- Relaxation factor, ω , greater than or less than 1 is over- or underrelaxation
 - Underrelaxation procures stability in problems that will not converge
 - Overrelaxation procures speed in wellbehaved problems

$$\phi_{ij}^{(n+1)} = \phi_{ij}^{(n)} + \omega \left[\phi_{ij}^{(n+1,GS)} - \phi_{ij}^{(n)} \right] = (1 - \omega) \phi_{ij}^{(n)}$$

$$+ \omega \phi_{ij}^{(n+1,GS)} = (1 - \omega) \phi_{ij}^{(n)} - \omega \left[-b_{ij} + \frac{b_{ij}^{(n)}}{a_{ij}^{(n)}} + \frac{b_{ij}^{(n)}}{a_{ij}^{(n)$$

$$A_{ii}^{S'}\phi_{ii-1}^{(n+1)} + A_{ii}^{W'}\phi_{i-1\,i}^{(n+1)} + A_{ii}^{E'}\phi_{i+1\,i}^{(n)} + A_{ii}^{N'}\phi_{ii+1}^{(n)}$$

Northridge

Relaxation Code (f is ϕ) do iter = 1, maxIter One set of itermaxResid = 0ations (omitted do i = 1, N - 1ol i = 1, N - 1 do j = 1, M - 1 ol d = f(i,j) f(i,j) = (omega - 1) * f(i,j) + omega * (AN(i,j) * f(i,j+1) + AE(i,j) * f(i+1,j) + AS(i,j) * f(i,j-1) + AW(i,j) * f(i-1,j) - b(i,j)) resid - abs((f(i,j) - old) / (f(i,j) resid = abs((f(i,j) - old) /f(i,j)) if (resid > maxResid) then maxResid = resid;Northridge | f

```
Relaxation Code II
do iter = 1, maxIter
  maxResid = 0;
  do i = 1, N - 1
do j = 1, M - 1
        !compute new f(i,j) and maxResid
     end do
  end do
  if ( maxResid <= errTol ) exit</pre>
end do
if ( maxResid > errTol ) then
  print *, "Not converged"
```

Converging Iterations

- · Have three different "solutions"
 - Correct solution to differential equation
 - Exact solution to finite-difference equations
 - Current and previous iteration values
- Iterations should approach correct solution to finite-difference equations
- Since neither correct solution is known. we use norm of error estimates
 - Residual in finite-difference equations

21

23

- Change in iteration value

Northridge

Converging Iterations II

- · At each grid node we can compute a relative change or a residual
 - Both are zero at convergence

call doOutput(f, N, M)

end if

Northridge

$$\begin{bmatrix} \text{Relative} \\ \text{Change} \end{bmatrix}_{ij} = \frac{\phi_{ij}^{(n+1)} - \phi_{ij}^{(n)}}{\phi_{ij}^{(n+1)}}$$

$$\begin{split} & \left[\text{Residual} \right]_{ij} = \phi_{ij}^{(n+1)} + A_{ij}^{S'} \phi_{ij-1}^{(n+1)} \\ & + A_{ij}^{W'} \phi_{i-1\,j}^{(n+1)} + A_{ij}^{E'} \phi_{i+1\,j}^{(n)} + A_{ij}^{N'} \phi_{ij+1}^{(n)} - b_{ij}^{'} \end{split}$$

Converging Iterations III

- · Need some overall measure of convergence error
- Consider error (relative change or residual) at each point as one component of a vector
- Use vector norm for overall error
 - Maximum absolute value (zero norm)
 - Root mean squared error (two norm)

$$\varepsilon_{overall} = \sqrt{\frac{\displaystyle\sum_{all\ nodes}}{N_{nodes}}}$$

Northridge

Simple Numerical Example

- · Look at simple, two-dimensional case with diffusion only (velocities are zero)
- Dirichlet (fixed φ) boundary conditions
- Use finite-volume equation from original work on diffusion with a source term
- · Set source term to zero and use constant grid sizes and Γ
- · Solve finite-volume equation for this case ($\mathbf{v} = \mathbf{0}$, $\Delta \mathbf{x}$, $\Delta \mathbf{y}$ fixed, constant Γ)

Northridge

$\mathbf{v} = \mathbf{0}, \ \Delta \mathbf{x}, \ \Delta \mathbf{y}, \ \Gamma \ \text{constant}$

$$\left[\Gamma_{e}^{(\phi)} \frac{\phi_{E} - \phi_{P}}{x_{E} - x_{P}}\right] \Delta y + \left[\Gamma_{n}^{(\phi)} \frac{\phi_{N} - \phi_{P}}{y_{N} - y_{P}}\right] \Delta x + \left[\Gamma_{w}^{(\phi)} \frac{\phi_{W} - \phi_{P}}{x_{P} - x_{W}}\right] \Delta y + \left[\Gamma_{s}^{(\phi)} \frac{\phi_{S} - \phi_{P}}{y_{P} - y_{S}}\right] \Delta x = 0$$

Divide by ΓΔy/Δx

$$\phi_E - \phi_P + (\phi_N - \phi_P) \left(\frac{\Delta x}{\Delta y}\right)^2 + \phi_W - \phi_P + (\phi_S - \phi_P) \left(\frac{\Delta x}{\Delta y}\right)^2 = 0$$

Northridge

Northridge

$$\mathbf{v} = \mathbf{0}, \ \Delta \mathbf{x}, \ \Delta \mathbf{y}, \ \Gamma \ \text{constant II}$$

$$\phi_{N} = \phi_{ij+1}$$

$$\phi_{E} = \phi_{P} + (\phi_{N} - \phi_{P}) \left(\frac{\Delta x}{\Delta y}\right)^{2} + \phi_{W}$$

$$\phi_{W} = \begin{array}{c} \Delta \mathbf{x} \\ \phi_{i-1j} \end{array}$$

$$\phi_{E} = \begin{array}{c} \phi_{E} \\ \phi_{i+1j} \end{array}$$

$$\phi_{W} - \phi_{P} + (\phi_{S} - \phi_{P}) \left(\frac{\Delta x}{\Delta y}\right)^{2} = 0$$

$$\phi_{S} = \phi_{ij-1}$$
• Define $\beta = \Delta \mathbf{x}/\Delta y$ and rearrange terms
$$\phi_{E} + \phi_{W} + \beta^{2} (\phi_{N} + \phi_{S}) - 2(1 + \beta^{2}) \phi_{P} = 0$$

$$\phi_{i+1j} + \phi_{i-1j} + \beta^{2} (\phi_{ij+1} + \phi_{ij-1}) - 2(1 + \beta^{2}) \phi_{ij} = 0$$
California State University
Northridge

Finite-difference Equation

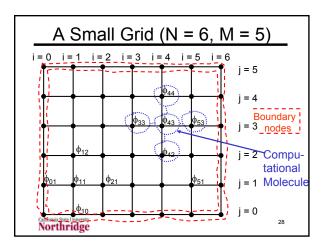
- Finite-volume form typical of twodimensional Laplace equation
- If $\beta = \Delta x/\Delta y = 1$, ϕ_{ij} is the average of its four nearest neighbors

$$\phi_{ii-1} + \phi_{i-1 \ i} - 4\phi_{ii} + \phi_{i+1 \ i} + \phi_{ii+1} = 0$$

- · Consider Dirichlet boundary conditions
 - φ_{ii} known at all boundary nodes
 - Need to find (N-1)(M-1) unknown values of φ_{ij} on grid

Northridge

Northridge



Execution Times and Errors

- Examine square region with zero boundary conditions at x = 0, x = x_{max}, and y = 0; two cases for y = y_{max}
 - Case 1: constant value of $\phi_N(x) = 1$
 - Case 2: $\phi_N(x) = \sin(\pi x)$
- First case has discontinuity for y = y_{max} at x = 0 and x = x_{max}
- Use overrelaxation (SOR) with variable relaxation factors

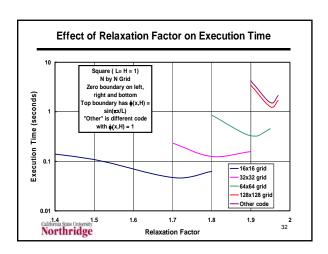
Northridge

Execution Times and Errors II

- Iterate until maximum iteration difference in ϕ_{ii} is about machine error
 - Case 1: constant value of $\phi_N(x) = 1$
 - Case 2: $\phi_N(x) = \sin(\pi x)$
- First case has discontinuity for y = y_{max} at x = 0 and x = x_{max}
- Compare solutions to exact solution of differential equation and exact solution of finite difference equations

Northridge

31

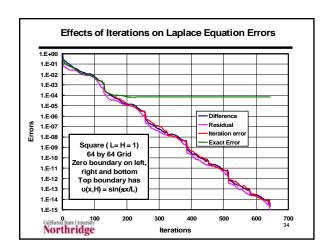


Effect of Iterations on Errors

- Compare three error measures using the maximum value on the grid
 - True iteration error: difference between the current value and the value found by an exact solution of the *difference* equations
 - Difference in ϕ_{ij} between two iterations
 - $-\operatorname{Residual} = \phi_{i+1j} + \phi_{i-1j} + \phi_{ij+1} + \phi_{ij-1} 4\phi_{ij}$
 - Exact error is difference between iteration value and exact solution of differential equation

Northridge

33



Will Iterations Converge?

- How do we ensure that an iterative process converges?
- Look at general example of solving a system of simultaneous equations by iteration
- Write equation in matrix form $\mathbf{A}\phi = \mathbf{b}$
- Develop general iteration algorithm in matrix form
- · Look at criterion for error to decrease

Northridge

35

Matrix Equation Form

- Advanced solution techniques treat matrix for finite-difference equations
- · Leads to dimensional confusion
 - Start with 2D grid (x and y indices)
 - Treat as matrix equation where unknowns ϕ_{ii} form a column vector (one-dimensional)
 - The coefficients in the matrix form a twodimensional display
 - Examine small grid example
 - Take $A_E = A_W = A_N = A_S = 1$, $A_P = -4$

Northridge

 ϕ_{11}

 ϕ_{12}

 ϕ_{13}

 ϕ_{14}

 ϕ_{15}

 ϕ_{21}

 ϕ_{22}

 ϕ_{23}

 ϕ_{45}

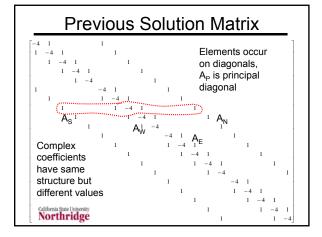
41

General Matrix Structure

- Confusion about two twodimensional representations
- Grid has two space dimensions with (N – 1)(M – 1) unknown nodes
- ϕ_{ij} forms a one dimensional column matrix of unknowns (at right)
- · Coefficient matrix has five diagonals
- · Right-hand side has boundary values

$$A_{ij}^S\phi_{ij-1}+A_{ij}^W\phi_{i-1\,j}+A_{ij}^P\phi_{ij}+A_{ij}^E\phi_{i+1\,j}+A_{ij}^N\phi_{ij+1}=b_{ij}$$
 California State University

California State University
Northridge



General Solution Matrix, A

- · Like the one on the previous chart
 - Has more rows for more grid points
 - Coefficients may not be the same
 - Will be generally sparse
 - Has regular structure for simple grids
 - Unstructured grids do not give simple structure, but keep a sparse matrix
 - We want to solve $\mathbf{A}\phi = \mathbf{b}$ where ϕ is a vector of all the unknowns on the grid

Northridge

General Iteration Approaches

- We want to solve $\mathbf{A}\phi = \mathbf{b}$ by iteration
- As the solution to the finite-difference equations, φ has truncation error even with perfect iteration solution
- Define iteration error as $\varepsilon^{(n)} = \phi \phi^{(n)}$
- Define residual, $\mathbf{r}^{(n)} = \mathbf{b} \mathbf{A} \mathbf{\phi}^{(n)}$
- Combine equations: $\mathbf{r}^{(n)} = \mathbf{b} \mathbf{A} \phi^{(n)} = \mathbf{A} \phi$ - $\mathbf{A} \phi^{(n)} = \mathbf{A} (\phi - \phi^{(n)}) = \mathbf{A} \epsilon^{(n)}$
- $\mathbf{r}^{(n)} = \mathbf{A} \boldsymbol{\epsilon}^{(n)}$ relates computable $\mathbf{r}^{(n)}$ to $\boldsymbol{\epsilon}^{(n)}$ that we want to control but can't compute

Northridge

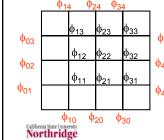
General Iteration Approaches II

- One iteration step takes the old values, φ⁽ⁿ⁾, to the new values, φ⁽ⁿ⁺¹⁾
- General iteration: $\mathbf{M}\phi^{(n+1)} = \mathbf{N}\phi^{(n)} + \mathbf{b}$
- Methods select M and N to accelerate convergence of iterations
- At convergence, $\phi^{(n+1)} = \phi^{(n)} = \phi$, so that $\mathbf{M}\phi^{(n+1)} = \mathbf{N}\phi^{(n)} + \mathbf{b}$ is $(\mathbf{M} \mathbf{N})\phi = \mathbf{b}$
- We are solving Aφ = b, so we must have M – N = A

Northridge

Example of **M** and **N** Matrices

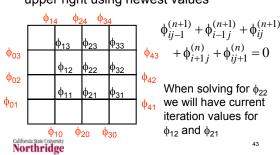
 Heat conduction with constant properties and no source term with N_x = N_y = 4

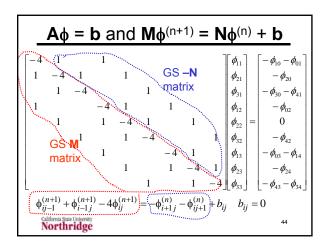


- System of equations with hine unknowns
 - Boundary values known
- ϕ_{41} Solve $\mathbf{A}\phi = \mathbf{b}$

Example of M and N Matrices II

 Iterate Gauss Seidel from lower left to upper right using newest values





M Matrix for SOR

$$\begin{bmatrix} -4 & & & & & & \\ \omega & -4 & & & & & \\ \omega & -4 & & & & & \\ \omega & & -4 & & & & \\ \omega & & \omega & -4 & & & \\ & \omega & \omega & -4 & & & \\ & \omega & \omega & -4 & & & \\ & \omega & \omega & -4 & & & \\ & \omega & \omega & -4 & & \\ & \omega$$

Next Steps

• Look at general iteration equation: $\mathbf{M} \phi^{(n+1)} = \mathbf{N} \phi^{(n)} + \mathbf{b}$

Northridge

- Get equation for evolution of error vector, ε⁽ⁿ⁾, representing error in each unknown φ at step n
- How does error at new step, ε⁽ⁿ⁺¹⁾ depend on error at old step, ε⁽ⁿ⁾
- How can we guarantee that error does not grow at each step?

California State University
Northridge

47

Convergence

- Start with $\mathbf{M}\boldsymbol{\phi}^{(n+1)} = \mathbf{N}\boldsymbol{\phi}^{(n)} + \mathbf{b}$
- Subtract Mφ⁽ⁿ⁾ from each side
- Result is $\mathbf{M}(\phi^{(n+1)} \phi^{(n)}) = \mathbf{b} (\mathbf{M} \mathbf{N})\phi^{(n)}$
- But we said that $\mathbf{M} \mathbf{N} = \mathbf{A}$, so result is
- $\mathbf{M}(\phi^{(n+1)} \phi^{(n)}) = \mathbf{b} (\mathbf{M} \mathbf{N})\phi^{(n)} = \mathbf{b} \mathbf{A}\phi^{(n)}$
- We defined $\mathbf{b} \mathbf{A} \phi^{(n)} = \mathbf{r}^{(n)} = \mathbf{A} \epsilon^{(n)}$, so
- $M(\phi^{(n+1)} \phi^{(n)}) = b A\phi^{(n)} = r^{(n)} = A\epsilon^{(n)}$

California State University
Northridge

Convergence II

- From last chart: $\mathbf{M}(\phi^{(n+1)} \phi^{(n)}) = \mathbf{r}^{(n)} = \mathbf{A} \varepsilon^{(n)}$
- Define update = $\delta^{(n)} = \phi^{(n+1)} \phi^{(n)}$
- $M(\phi^{(n+1)} \phi^{(n)}) = M\delta^{(n)} = r^{(n)} = A\epsilon^{(n)}$
- Have two computable measures of error, $\varepsilon^{(n)}$; these are $\delta^{(n)}$ and $r^{(n)}$
- · What makes error decrease?

Northridge

49

51

53

Does the Error Decrease?

- Iteration equation: $\mathbf{M} \boldsymbol{\phi}^{(n+1)} = \mathbf{N} \boldsymbol{\phi}^{(n)} + \mathbf{b}$
- At convergence, $\phi^{(n+1)} = \phi^{(n)} = \phi$, so that $\mathbf{M}\phi = \mathbf{N}\phi + \mathbf{b}$
- Subtract $\mathbf{M}\phi = \mathbf{N}\phi + \mathbf{b}$ from $\mathbf{M}\phi^{(n+1)} = \mathbf{N}\phi^{(n)} + \mathbf{b}$ giving $\mathbf{M}(\phi^{(n+1)} \phi) = \mathbf{N}(\phi^{(n)} \phi)$, which gives $\mathbf{M}\epsilon^{(n+1)} = \mathbf{N}\epsilon^{(n)}$
- New error given by $\varepsilon^{(n+1)} = \mathbf{M}^{-1} \mathbf{N} \varepsilon^{(n)}$
- Does the error go to zero as we take more iterations?

Northridge

50

Matrix Eigenvalues: $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$

- · Used to determine convergence
- If a matrix, A, multiplies a vector x and produces a constant λ times x
 - x is an eigenvector of A
 - $-\lambda$ is the eigenvalue associated with \mathbf{x}
 - An n by n matrix can have up to n linearly independent eigenvalues
 - If the n eigenvectors are linearly independent we can expand any n component vector in terms of the eigenvectors

Northridge

Error Decrease Depends on M-1N

- Assume that M-¹N has a complete set of K eigenvalues, x_(k) so we can expand the initial error vector in terms of these eigenvectors ε⁽⁰⁾ = Σ_k a_kx_(k)
- Iteration process gives following results where λ_k is eigenvalue ($\mathbf{M}^{-1}\mathbf{N}\mathbf{x}_{(k)} = \lambda_k \mathbf{x}_{(k)}$)

$$\begin{split} & \boldsymbol{\varepsilon}^{(1)} = \mathbf{M}^{-1} \mathbf{N} \boldsymbol{\varepsilon}^{(0)} = \mathbf{M}^{-1} \mathbf{N} \sum_{k=1}^K a_k \mathbf{x}_{(k)} = \sum_{k=1}^K a_k \mathbf{M}^{-1} \mathbf{N} \mathbf{x}_{(k)} = \sum_{k=1}^K a_k \lambda_k \mathbf{x}_{(k)} \\ & \boldsymbol{\varepsilon}^{(2)} = \mathbf{M}^{-1} \mathbf{N} \boldsymbol{\varepsilon}^{(1)} = \mathbf{M}^{-1} \mathbf{N} \sum_{k=1}^K a_k \lambda_k \mathbf{x}_{(k)} = \sum_{k=1}^K a_k \lambda_k \mathbf{M}^{-1} \mathbf{N} \mathbf{x}_{(k)} = \sum_{k=1}^K a_k \lambda_k^2 \mathbf{x}_{(k)} \\ & \overset{\text{Colliformia State University}}{\mathbf{Northridge}} \end{split}$$

General Error Equation

 Reasoning by induction from the last two equations gives ε⁽ⁿ⁾ as follows

$$\mathbf{\varepsilon}^{(n)} = \sum_{k=1}^{K} a_k \lambda_k^n \mathbf{X}_{(k)}$$

- For error to become small as iterations increase, we must have all $|\lambda_k| < 1$
 - Largest $|\lambda_k| = |\lambda_1|$, called spectral radius, will dominate sum for large n
 - $\boldsymbol{\varepsilon}^{(n)} \approx a_1 \lambda_1^n \boldsymbol{x}_{(1)}$

Want this to reach desired error, δ Northridge

General Error Equation II

- To control error in $\varepsilon^{(n)} \approx a_1 \lambda_1^n \mathbf{x}_{(1)}$ require factor $a_1 \lambda_1^n = \ln \left(\frac{\delta}{a_1} \right)$ $\approx \delta$ or $\lambda_1^n = \delta/a_1$ $n \approx \frac{1}{1 + \delta}$
- Take logs of both sides and $\frac{n}{\ln \lambda_1}$ solve for n
- Recall that ln(1 + x) ≈ x for small x
- When λ₁ is close to 1, ln λ₁ will be a small number and n will be large
- Seek iteration matrices with small λ₁

California State University
Northridge

SOR Spectral Radius

- Use MATLAB to compute the spectral radius, λ_1 = maximum $|\lambda|$ for SOR
 - Find optimum ω (minimum $\lambda_1)$ by trial and error

N = M = 11		N = M = 21		N = M = 41				
ω	λ_1	ω	λ ₁	ω	λ_1			
1	0.9206	1	0.9778	1	0.9941			
1.56	0.5759	1.74	0.7562	1.85	0.8968			
1.57	0.5700	1.75	0.7500	1.86	0.8600			
1.58	0.5800	1.76	0.7600	1.87	0.8700			
California State University Northridge 55								

Diagonal Dominance

- The real requirement is that the largest eigenvalue be less than one in absolute value
- This is guaranteed in the solution matrix is diagonally dominant
- This means that the diagonal coefficient (in absolute value) is greater than or equal to the sum of the absolute values of all other coefficients in the equation

Northridge

56

Diagonal Dominance II

- If the coefficients in the A matrix are a_{km}, the rules for diagonal dominance in an N x N matrix are
- $|a_{kk}| \ge \sum_{m} |a_{km}|$ for $1 \le k \le N$
- $|\mathbf{a}_{\mathbf{k}\mathbf{k}}| > \Sigma_{\mathbf{m}} |\mathbf{a}_{\mathbf{k}\mathbf{m}}|$ for at least one value of \mathbf{k}
- General finite-difference equations satisfy the >= condition and boundary conditions satisfy the > condition
- · Upwind difference diagonally dominant

Northridge

٠.

Advanced Methods

- · See text for greater discussion
- Methods use different iteration matrices to get faster convergence
 - Alternating Direction Implicit (ADI)
 - Stone's Method
 - Conjugate Gradient
 - Multigrid
- Multigrid generally considered fastest method for CFD calculations

Northridge

58

Multigrid Method

- Solve equations on a set of different grids
- Analysis of error shows that convergence rate depends on grid size
- Getting a solution to a coarse grid then using those results for the fine grid gives solution faster
- Use prolongation and restriction to get results between fine and coarse gride

Northridge

Multigrid Method II

- Different patterns used; example below
 - Start with fine grid
 - After partial convergence on find grid use coarser grid and do iterations to get more convergence on that grid
 - Continue to coarsest grid and get convergence there
 - Prolong solution to finer grids and get converged solution on each grid
 - Finally get converged solution on finest grid

Northridge

--

Thomas Algorithm

- Used for simple solution of onedimensional problems
- Can be extended to improved iteration approach for two- or three-dimensional problems
- Basic problem: $a_W \phi_W + a_P \phi_P + a_E \phi_E = b_K$
- Generalized one-dimensional problem
 - $A_k f_{k-1} + B_k f_k + C_k f_{k+1} = D_k$
 - Look at matrix form

Northridge

Northridge

Thomas Algorithm II

• General format for tridiagonal equations $\begin{bmatrix} B_0 & C_0 & 0 & 0 & \cdots & 0 & 0 \\ A_1 & B_1 & C_1 & 0 & \cdots & 0 & 0 \\ 0 & A_2 & B_2 & C_2 & \cdots & 0 & 0 \\ 0 & 0 & A_3 & B_3 & 0 & 0 & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & B_{N-1} & C_{N-1} \\ 0 & 0 & 0 & 0 & \cdots & A_N & B_N \end{bmatrix} \begin{bmatrix} \phi_0 \\ \phi_1 \\ \phi_2 \\ \vdots \\ \phi_{N-1} \\ \phi_N \end{bmatrix} = \begin{bmatrix} D_0 \\ D_1 \\ D_2 \\ \vdots \\ D_{N-1} \\ D_N \end{bmatrix}$

Thomas Algorithm III

- The matrix is called a tridiagonal matrix
 Has principal diagonal,
 - one diagonal above principal diagonal, and
 - one diagonal below principal diagonal
- Can apply traditional Gauss elimination for solution of simultaneous linear equations to get simple upper triangular form
- Simple equations to obtain this

Northridge

63

61

Thomas Algorithm IV

· Gauss elimination upper triangular form

$$\begin{bmatrix} 1 & -E_0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & -E_1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & -E_2 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 1 & & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & -E_{N-1} \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} \phi_0 \\ \phi_1 \\ \phi_2 \\ \vdots \\ \vdots \\ \phi_{N-1} \\ \phi_N \end{bmatrix} = \begin{bmatrix} F_0 \\ F_1 \\ F_2 \\ \vdots \\ \vdots \\ F_{N-1} \\ F_N \end{bmatrix}$$

California State University
Northridge

Thomas Algorithm V

- Forward computations
 - Initial: $E_0 = -C_0 / B_0$ $F_0 = D_0 / B_0$

– For i = 1,... N-1:

$$E_i = \frac{-C_i}{B_i + A_i E_{i-1}}$$
 $F_i = \frac{D_i - A_i F_{i-1}}{B_i + A_i E_{i-1}}$

- Get last x value first $x_{N} = F_{N} = \frac{D_{N} A_{N}F_{N-1}}{B_{N} + A_{N}E_{N-1}}$
- Back substitute: $x_i = F_i + E_i x_{i+1}$

Northridge
Northridge

Thomas Example

$$\begin{bmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 5 & 0 \\ 0 & 6 & 7 & 8 \\ 0 & 0 & 9 & 10 \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \end{bmatrix} = \begin{bmatrix} 10 \\ 34 \\ 40 \\ 28 \end{bmatrix} \quad E_0 = \frac{-C_0}{B_0} = -\frac{2}{1} = -2$$

$$F_0 = \frac{D_0}{B_0} = \frac{10}{1} = 10$$

$$E_1 = \frac{-C_1}{B_1 + A_1 E_0} = \frac{-5}{4 + 3(-2)} = \frac{5}{2}$$

$$F_1 = \frac{D_1 - A_1 F_0}{B_1 + A_1 E_0} = \frac{34 - 3(10)}{4 + 3(-2)} = -2$$

• Continue to find E_2 , F_2 , E_3 , and F_3 Northridge

Thomas Example II

 Back (shows F and E results)

Back substitution (shows F and E results)
$$\phi_2 = F_2 + E_2 \phi_3 = \frac{26}{11} + \left(-\frac{4}{11}\right) 1 = \frac{22}{11} = 2$$

$$\phi_1 = F_1 + E_1 \phi_2 = -2 + \frac{5}{2} 2 = 3$$

$$\phi_0 = F_0 + E_0 \phi_1 = 10 + (-2)3 = 4$$

 Original equation set shows results are correct

Northridge

$$\begin{bmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 5 & 0 \\ 0 & 6 & 7 & 8 \\ 0 & 0 & 9 & 10 \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \end{bmatrix} = \begin{bmatrix} 10 \\ 34 \\ 40 \\ 28 \end{bmatrix}$$

Thomas for Two Dimensions

- Two dimensional equation: a_Nφ_{ii+1} + a_Sφ_{ii-1} + $a_E \phi_{i+1j}$ + $a_P \phi_{ij}$ + $a_W \phi_{i-1j}$ = b_{ij}
- Look at one-dimensional approach in x direction: $a_E \phi_{i+1j} + a_P \phi_{ij} + a_W \phi_{i-1j} = b_{ij} - a_W \phi_{i-1j} = b_W \phi_{i-1j} = b$ $a_N \phi_{ij+1} - a_S \phi_{ij-1}$
- · Use Thomas algorithm in x-direction

$$\begin{split} a_{W}\phi_{i-1\,j}^{(n+1)} + a_{P}\phi_{ij}^{(n+1)} + a_{E}\phi_{i+1\,j}^{(n+1)} &= b_{ij} - a_{N}\phi_{ij+1}^{(n)} - a_{S}\phi_{ij-1}^{(n)} \\ A\phi_{i-1\,j}^{(n+1)} + B\phi_{ij}^{(n+1)} + C\phi_{i+1\,j}^{(n+1)} &= D \end{split}$$

· Next apply algorithm in y direction

Northridge

Thomas for Two Dimensions II

· v-direction form

$$a_{S}\phi_{ij-1}^{(n+1)} + a_{P}\phi_{ij}^{(n+1)} + a_{N}\phi_{ij+1}^{(n+1)} = b_{ij} - a_{E}\phi_{i+1j}^{(n)} - a_{W}\phi_{i-1j}^{(n)}$$
$$A\phi_{i-1}^{(n+1)} + B\phi_{ii}^{(n+1)} + C\phi_{ii+1}^{(n+1)} = D$$

- This approach involves more calculations per iteration, but it can reduce error more quickly by getting simultaneous solutions of results along one coordinate direction
- · Can be extended to three dimensions

Northridge

69

Unstructured Grids

- Do not have ijk indexing system that regular grids have
- · Nodes numbered sequentially with single index
- Must store information on numbers of nearest neighbors for each node
- Equation matrix is still sparse, but not so well structured
 - Do not have all coefficients on 5 or 7 diagonals

Northridge

Nonlinear Problems

- · CFD equations are nonlinear system of difference equations
- · Have terms like ub and uu
- Have to solve for u, v, w, T, p, etc.
- · Typically linearize problem by writing terms like $u\varphi$ as $u^{(n)}\varphi^{(n+1)}$ to solve for $\varphi^{(n+1)}$
- · Once iteration n is complete, update linearized terms
- Usually requires underrelaxation

Northridge