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Use of Probability Distribution Functions for Wind
Introduction
The behavior of wind velocity at a given site can be specified as a probability distribution function, f(V).  The quantity f(V)dV represents the fraction of the wind speeds that lie within a range, dV, about the given velocity, V.  These notes discuss the basics ideas of probability distribution functions with specific application to wind velocity and energy distributions.

Probability distribution functions
A probability distribution function (pdf) for a random variable x is written as f(x).  The best known pdf is the normal distribution.
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This distribution has two parameters  and .  Sketches of this distribution for different values of these parameters are shown in the figure to the right.  The distribution is seen to be symmetric about the value of  and the width of the distribution increases as  increases.

All pdf’s are interpreted as follows: the probability that the random variable, x, lies in a differential range, dx, about a value x* is f(x*)dx.  Specific statements about the probability that the random variable, x, lies in a particular range a ≤ x ≤ b, which is denoted by the expression P(a ≤ x ≤ b) is obtained by integrating f(x)dx between the limits of a and b.
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[2]
Probabilities, P, range from zero (no chance of occurring) to 1 (certain to occur).  Because a random variable is certain to lie between its minimum and maximum values,  the probability that a pdf lies between its maximum and minimum values, P(xmin ≤ x ≤ xmax), must be 1.  We can write this as the following equation.  The fact that this integral of the pdf must be one is sometimes called the normalization condition or the normalization integral.
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[3]
Using the geometric definition of the integral as the area under a curve, we see that the area under the pdf between xmin and xmax must be 1.  In the normal distributions shown in the figure above, the distribution for  = 2 has a lower peak, but a wider area, compared to the distribution for  = 1; both distributions have their integral from xmin to xmax equal to 1.

In addition to the pdf, we define the cumulative distribution, F(b) which is the probability that x ≤ b.  This is the probability that x lies between xmin and b.  We can use equation [3] to write this cumulative distribution as follows.
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[4]
We can use the usual relationship for the difference of two integrals with the same lower limit to write the probability that x lies in a certain range in terms of this cumulative distribution.
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The cumulative normal distribution for the same three [image: image89.wmf](
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sets of parameters  and  used in the previous plot of the pdf are shown in the figure at the right.  From equation [4] we see that at b = xmax, the integral for F(b) becomes the same as the normalization condition in equation [3]; thus we must have F(xmax) = 1.  The plots of the cumulative normal distribution shown in the figure at the left show that F(x) approaches a common value of one as x becomes large.  
Tables, equations, or software for the cumulative distribution are used to find the probability that a random variable for a particular distribution lies in a specified range.  The Excel spreadsheet has a normal distribution function, NORMDIST(x, , , cumulative).  In this function x is the value for which the distribution is desired (e.g. a or b in the equations above),  and  are the parameters in the distribution, and the fourth variable is set to true to give the cumulative distribution.  (Setting the fourth variable to false gives the pdf; if this variable is omitted the cumulative distribution is returned.)
Thus the calculation in equation [5] would be obtained by the following Excel formula: NDIST(b, , , true) – NDIST(a, , , true).

Mean and variance

For any pdf the mean, , is defined by the following integral.
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[6]
The variance, 2, is defined as follows.
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[7]
The square root of the variance, , is called the standard deviation.  The parameters in the normal distribution are given the symbols  and  because they can be shown to be the mean and standard deviation for the normal distribution.

The derivation in the footnote
 shows that the following formula can be used to compute the variance.
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[8]
Functions of a random variable

We would like to be able to compute statistical quantities for functions of a random variable, g(x).  For example, the energy in the wind flowing into a wind turbine with velocity V and air density, ,  equals the mass flow rate of the wind, VA, times the kinetic energy in the wind, V2/2.  Here A represents the swept area of the wind turbine = D2/4, where D is the diameter of the turbine blades.  Thus the wind energy flowing into the turbine is V3A/2 = V3D2/8.  In this example, V is the random variable and the function we would like to examine is the power g(V) = V3A/2.  In general, for any pdf, f(x) and any function g(x) we can find the mean value of g(x) as follows.
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[9]
Distributions used for wind speed
Two probability distribution functions are commonly used for wind speed.  The simpler of the two is the Rayleigh distribution which has a single parameter c.
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[10]
The Weibull distribution shown below has two parameters k and c.  The Rayleigh distribution is actually a special case of the Weibull distribution with k = 2.
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Setting k = 2 in the Weibull distribution gives the Rayleigh distribution.  For both distributions, Vmin = 0 and Vmax = (.
The plot at the left shows the Weibull distribution for various valuables of the parameters k and c.  The plot shows that as the value of c increases for a given value of k the shape of the distribution gets wider.  Because of this c is called the scale parameter; it has dimensions of velocity.  The plot also shows that as k increases from 2 to 4 for a given value of c, the maximum in the pdf increases.  Because of this k is called the shape parameter; it is dimensionless.
The following equation for the cumulative Weibull distribution is derived in the appendix.
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[12]
Setting k = 2 in this result gives the cumulative Rayleigh distribution.
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[13]
As shown in the appendix, equations [6] and [8] can be used to compute the mean and variance of the Weibull distribution.  Once these results are known we can set k = 2 to get the mean and variance of the Rayleigh distribution.  Those results are shown below.  Some results use the gamma function (z), which is discussed in the Appendix.
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[15]
The appendix also gives the following equations for the most probable value of velocity (the one that maximizes the pdf).
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[16]
For the Rayleigh distribution the single parameter, c, relates the following three properties:
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[17]
The Rayleigh distribution can be written using Vmp (sometimes using the symbol  for Vmp) or the mean velocity, .  Substituting the equations in [17] into equation [11] gives the following different forms for the Rayleigh distribution.
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[18]
Computing the Rayleigh distribution c parameter from experimental data

The usual determination of the mean and standard deviation from experimental data for the normal distribution are well known.  The minimum-least-squares-error (MLE) estimate of the mean of the normal distribution is the arithmetic mean (the sum of all values divided by the number of values).  The formula for the MLE estimate of the variance is also familiar.
  The parameter c in the Rayleigh distribution can be evaluated from a set of N data points on wind velocity, Vi.  When experimental data are used to determine parameters in probability distributions, the computed result is called an estimate of the true parameter.  Here we use the symbol 
[image: image20.wmf]c
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 to indicate that the equation below gives us only an estimate of the true distribution parameter, c.
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[19]
To estimate the parameters c and k for a Weibull distribution from experimental data, it is first necessary to use an iterative procedure to solve the following equation for the estimator
[image: image22.wmf]k
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, typically using an initial guess of 
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= 2.
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[20]
Once the value of 
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 is found, the value of 
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 is found from the equation below.
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[21]
This equation for 
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 is seen to be a generalization of equation [19] from k = 2 for the Rayleigh distribution to the general k for the Weibull distribution.  (If we substitute 
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= 2 in this equation we get equation [19].)  There is a Matlab function wblfit that can be used to find the estimates 
[image: image30.wmf]k
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 and 
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.  If the wind data are stored in a file called 'C:\Users\All Users\windData.txt', the following Matlab commands (following the >> prompt) give the results shown after the ans =; the first parameter is c; the second is k.
>> V=load('C:\ Users\All Users\windData.txt');

>> wblfit(V)

ans =

    8.8393    1.4352
It is also possible to use this function to get confidence limits on the estimated parameters.  See the Matlab help on the wblfit function for directions getting these results.

Distribution of power in the wind
As noted earlier, the power in the wind is the product of the mass flow rate entering the wind turbine blades, VA, and the kinetic energy per unit mass in the wind, V2/2.  (Using the definitions that 1 N = 1 kg·m/s2, 1 J = 1 N·m, and 1 W = 1 J/s, the SI units for this product, V3A/2 are (kg/m3)(m/s)3(m2) = kg·m2/s3 = N·m/s = J/s = W.)  The average power in the incoming wind is given by the following application of equation [9].
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[22]
Equations [A-19] and [A-20] give the following results for the mean of the cubed velocity.
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[23]
Note that there is a difference between the cube of the mean velocity and the mean of the cubed velocity.  These two values are related by equation [A-21]
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[24]
The fraction of the total power in the wind between a velocity of zero and a velocity b can be obtained by numerical integration of the integral in the following equation from the Appendix.
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[25]
Note that the value of this fraction depends only on k the ratio b/c.  A table giving the values of F[0 ≤ P(V) ≤ b] as a function of k and b/c is given at the end of the appendix.

We can regard the integrand in equation [22] as a distribution function for the distribution of power as a function of velocity.  This integrand, multiplied by an arbitrary constant, C, is shown below.
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[26]
The constant C is used to make sure that the integral of g(P) over all velocities equals one.  Integrating equation over all V from V = 0 to V = ( gives.
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[27]
From equations [22] and [23] we see that, for the Weibull distribution,
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[28]
Substituting this result for C into equation [26] gives the final result for the distribution of wind power as a function of velocity for the Weibull distribution. 
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[29]
Because the rA/2 terms cancel out in this equation we see that the distribution for power is really the distribution for V3.  When speaking of power distributions it is common to really refer to a distribution V3.
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The distributions of wind power and wind frequency are compared in the figure at the left for two values of the scale parameter c with the shape parameter k = 2 giving a Rayleigh distribution.  These plots show that almost all of the wind power fraction is contained in the higher velocities for each shape parameter.  At the point where the velocity frequency is a maximum, the fraction of the available wind power is quite small.
For the Rayleigh distribution with c = 2, 
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Wind turbine performance
An actual wind turbine is only operated in a range between a minimum velocity, called the cut-in velocity, and a maximum velocity, called the cut-out velocity.  The power coefficient, cp, is defined as the fraction of the wind power that is actually captured.  (This may be defined either in terms of the wind turbine power to the generator or the generator output power.)  If the potential output power of the wind turbine is more than the maximum input power to the generator, the turbine is controlled to produce only the maximum generator power.

With this turbine operating pattern the average power output from the wind turbine, for a given probability distribution of the wind can be found from the modified version of equation [22] shown below.
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[30]
In this equation VPmax is the wind velocity at which the maximum power is delivered by the wind turbine to the generator.  This is called the rated wind speed.  By the basic definition of the wind power, the wind power that is delivered by the turbine when the wind velocity is VPmax is cpA(VPmax )3/2.  This gives the following definitions of VPmax, which depends on the definition of cp.  In these equations, Pmax is the average output power of the generator and gen is the generator efficiency.
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[31]
For a wind turbine whose generator output has a maximum of 1.5 MW and whose cp is based on the generator output, VPmax would be computed as follows for power coefficient of 0.45, an air density of 1.2 kg/m3, and a rotor diameter of 60 m, which gives an area of (60 m)2/4 = 2827.4 m2.
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[32]
If the cp were based on the turbine output, the value of VPmax computed above would have to be divided by the generator efficiency to the 1/3 power.  For a generator efficiency of 95%, this would give a value of vPmax = 12.75 m/s.

Substituting the Weibull distribution into the first integral in equation [30] gives.
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[33]
The second integral in equation [30] can be found from the cumulative Weibull distribution from equation [12].
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[34]
Substituting the results of equation [33] and equation [34] into equation [30] gives the following equation for the average power of the generator from a wind turbine which has the following operating pattern: (1) no operation below a cut-in velocity, Vcut-in, (2) all available power from the turbine delivered to the generator between the cut-in velocity and the velocity which delivers the maximum power to the generator, VPmax, (3) turbine output power is limited to maximum generator power between VPmax and a cut-out velocity, Vcut-out, and (4) no operation above the cut-out velocity.
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[35]
If SI units are used (kg/m3 for density, m2 for area, and m/s for all velocities and the scale factor, c) the power will be in watts.  This should be the unit used for Pmax in the calculations.  Reported results can be appropriately scaled to kW or MW.  The appropriate averaging time is one year to account for the annual variations in winds.  In this case the expected value of the energy generated is simply the product of the average power times the number of hours in a year, 8760 hours in a non-leap year or 8784 hours in a leap year.
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Discrete calculation of wind turbine performance
The calculation outlined above assumes that the wind data are well fitted by a Rayleigh or Weibull distribution.  The figure at the left shows actual data that are not well fitted by a Weibull distribution.  In such cases, it is necessary to work with a discrete distribution of the data to determine the average wind power.  This calculation is best described by an example.  The set of discrete wind-speed and frequency data plotted in the figure to the left are shown in the table below.  These data show the percent of the wind speed data for given velocity range.  For example, the fraction of the wind speed data between speeds of 0 and 1 m/s is 0.028747.

	Percent of Wind-Speed Data Between Lower and Upper Velocity Bounds (V in m/s)

	Lower
	Upper
	Percent
	Lower
	Upper
	Percent
	Lower
	Upper
	Percent

	0
	1
	2.8747%
	10
	11
	4.3213%
	20
	21
	0.8028%

	1
	2
	9.8109%
	11
	12
	4.1559%
	21
	22
	0.5310%

	2
	3
	10.307%
	12
	13
	4.1527%
	22
	23
	0.3928%

	3
	4
	9.4960%
	13
	14
	3.9050%
	23
	24
	0.2427%

	4
	5
	8.0058%
	14
	15
	4.0583%
	24
	25
	0.1476%

	5
	6
	6.0967%
	15
	16
	3.4830%
	25
	26
	0.1102%

	6
	7
	5.1868%
	16
	17
	3.0287%
	26
	27
	0.0716%

	7
	8
	4.6691%
	17
	18
	2.1695%
	27
	28
	0.0310%

	8
	9
	4.6374%
	18
	19
	1.6005%
	28
	29
	0.0114%

	9
	10
	4.3865%
	19
	20
	1.2489%
	29
	
	0.0640%


The Weibull distribution shown in the figure above was computed using equations [20] and [21] to determine the MLE estimators for k and c.  As such this is a “best fit” between the actual data and the Weibull distribution.

We can define the following variables to use for the calculations with discrete data: the lower limit on velocity for each band, Vk, and the fraction of the time that the wind velocity occurs in a particular band, fk.  In the example above, k ranges from 0 to 29.  The lowest band, k = 0, is bounded by a lower V0 = 0 m/s and V1 = 1 m/s; the value of fk for this band is f1 = 0.028747.  We say that a given band, called band k, extends from velocity Vk to Vk+1 and has the frequency (fraction of time the wind speed in in this velocity range) of fk.  Within this band the probability of any intermediate wind speed is considered uniform.  This corresponds to a uniform probability distribution function (within one band) which is f = 1/(Vk+1 – Vk).  For such a probability distribution, the mean velocity within a band is simply the arithmetic average of the band boundaries.
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[36]
The mean of the cube of the velocity within a given band is given by the following equation (steps of the integration and final algebra not shown).
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[37]
We still have the basic concepts for wind turbine operation: (1) for the time that the wind speed is between the cut-in speed and the rated speed the turbine utilizes all the power available in the wind; (2) for the time that the wind speed is between the rated speed and the cut-out speed the turbine operates at its maximum power.  For discrete data, we have to use a summation over the discrete distribution instead of the integration over the continuous probability distribution function to predict the average operating power.  The total time between a lower velocity, Vk = VL and an upper velocity, Vk+1 = VU is given by the following equation.  Note that the final band is the one in which VU is the upper limit so the appropriate index for this velocity is k = U – 1.  This properly counts all the time in the band whose upper limit is VU.  Since VL is the lower limit of the band the proper initial index is k = L
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[38]
The total “power” over the same range of speeds is given by the following sum using equation [37] for the mean velocity-cubed in a band:
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[39]
We have to consider the general case where any one of the specified wind speeds, generally denoted as Vs, which may be the cut-in, rated, or cut-out speed, lies within a band between Vk and Vk+1.  The total fraction of time within this band is fk.  This time fraction for the total band can be divided into two parts: (1) the time at or below Vs (between Vk and Vs), and (2) the time at or above Vs (between Vs and Vk+1), which are given by the following equations.
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[40]
The power in these two parts of the band can be found by applying equation [37] to the two velocity ranges within the band.
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[41]
We can now consider the general case where the cut-in speed lies in the band between VCI and VCI+1, the rated wind speed lies in the band between VR and VR+1, and the cut-out wind speed lies in the band between VCO-1.  Below the rated wind speed the total power is given by the following sum; each term in the sum is the product of time in a band (or sub-band) times the power in that band (or sub-band).
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[42]
The power between the rated speed and the cut-out speed is given be the following equation, which gives the total time between these two speeds times the cube of the rated speed.
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[43]
Both equations [42] and [43] give the mean of the velocity-cubed.  These values must be multiplied by the term Acp/2 to give the power.  Summing the results of these two equations gives the average expected power over the typical time period for which the data were obtained.
Appendix – Derivation of Equations Used in Text

Introduction
The main part of this appendix contains derivations of formulas for the Weibull and Rayleigh distributions.  All the formal derivations are done for the Weibull distribution.  The results for the Rayleigh distribution are then found by setting k = 2 in the Weibull distribution results.  At the end of the appendix there is a discussion of the gamma function which is used in the derivations.  The final item in this appendix is a table giving the fraction of wind power as a function of velocity.
Cumulative Weibull Distribution

Substituting the Weibull distribution from equation [11] into the definition of the cumulative distribution in equation [4] gives the following result for the cumulative Weibull distribution
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[A-1]
Define a new integration variable, y = (V/c)k.  The limits of the integral V = 0 and V = b become y = 0 and y = (b/c)k.  Differentiating the definition of y gives dy = (kVk-1/ck)dV so that dV = ck/(kVk‑1)dy.  Substituting the definition of y, the new limits and the expression for dV into equation [A-1] gives
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[A-2]
Moments of Weibull distribution

The computations required for the mean, variance and wind power can be simplified by doing a single integration for the moments of the distribution.  The nth moment of any probability distribution, f(V) is defined by the equation below.
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[A-3]
For the Weibull distribution, this moment is given by the following integral; the final arrangement of this integral gives a prefactor equal to the exponent (V/c)k.
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[A-4]
To evaluate this integral we the same integration variable y = (V/c)k that we used in finding the cumulative distribution.  Solving this definition for V gives V = cy1/k.  Differentiating this equation for V gives dV = (c/k)y1/k-1.  The limits of the integral V = 0 and V = ( become y = 0 and y =(.  Substituting the definition of y, the new limits and the expression for dV into the integral in equation [A-4] gives a result in the form of a standard integral known as a gamma function, (x).
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[A-5]
More information about the gamma function, including values of the function for some arguments, a recursion equation that (x+1) = x(x), and the description of Excel and Matlab functions to compute (x), is provided later in this appendix.

With an equation for the general moment, we can find the mean, variance and mean power by setting n = 1, 2, and 3, respectively.  Once we have the results for the Weibull distribution, we can set k = 2 in those results to obtain the equivalent value for the Rayleigh distribution.  Our general result is summarized below.
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[A-6]
Mean of Weibull and Rayleigh distributions
Substituting the Weibull distribution from equation [11] into the definition of the cumulative distribution in equation [6] gives the following result for the mean of the Weibull distribution,
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[A-7]
From equation [A-6] for the nth moment of a Weibull distribution we can set n = 1 to get the mean as value shown below.
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[A-8]
Setting k = 2 gives the mean value for the Weibull distribution.
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[A-9]
Variance of Weibull and Rayleigh distributions
Substituting the Weibull distribution from equation [11] into the definition of the cumulative distribution in equation [8] gives the following result for the variance of the Weibull distribution



[image: image64.wmf](

)

ò

ò

¥

-

-

=

÷

ø

ö

ç

è

æ

=

=

m

+

s

0

2

/

1

2

2

2

2

max

min

)

(

V

dV

e

c

V

c

k

V

dV

V

f

V

k

c

V

k

V

V


[A-10]
From equation [A-6] for the nth moment of a Weibull distribution we can set n = 2 to get the variance as shown below.
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[A-11]
For the Rayleigh distribution, which is the Weibull distribution with k = 2, we can use the known value of (2) = 1 to obtain.
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[A-12]
Using the expression for the mean of a Rayleigh distribution from equation [A-9] gives
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[A-13]
Similarly, using the mean of the Weibull distribution from equation [A-8] gives
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[A-14]
Maximum of Weibull distribution

The maximum value of a pdf is called the mode or most probable point.  Taking the first derivative of the Weibull distribution in equation [11] and setting that derivative to zero gives.
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[A-15]
We can divide by the factors outside the brackets and rearrange the remaining terms to obtain.
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[A-16]
Solving this equation for V gives the most probable velocity, Vmp.
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[A-17]
For the Rayleigh distribution, k = 2, the most probable velocity is
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[A-18]
Wind power integrals
Equation [22] 
shows that the mean power in the wind is proportional to the mean of the cube of the velocity.  From equation [A-6] for the nth moment of a Weibull distribution we can set n = 3 to get this mean for a Weibull distribution.
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[A-19]
For the Rayleigh distribution we set k = 2 and use the result that (5/2) =31/2/4 to obtain.
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[A-20]
We can compare this mean of the velocity cubed to the cube of the mean velocity.  Cubing both sides of equation [A-9] and dividing the result by equation [A-20] gives the following result for a Rayleigh distribution.
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[A-21]
The fraction of power in the wind between the minimum velocity of zero and a given velocity b can be written as follows:
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[A-22]
The usual substitutions y = (V/c)k, V = cy1/k, dV = (c/k)y1/k-1 can be made here.  The upper limit corresponding to V = b is y = (b/c)k.  This gives
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[A-23]
Substituting equation [A-19] for the mean cubed velocity gives.
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[A-24]
This integral has no exact form and must be found numerically.  The parameter c and the variable v do not occur independently; they only occur in the ratio v/c in the upper limit of the integral.  Thus it is possible to compute a table of F[0 ≤ P(V) ≤ P(b)] as a function of b/c for specified values of k.  Such a table is given at the end of this appendix.

Gamma Functions
The gamma function, (z) is used in various integrals, including probability distribution integrals; it is defined by the following equation.
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[A-25]
We can derive a general recurrence relationship for gamma function values whose argument increases by one using integration by parts with u = tz-1 and dv = e-tdt.
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[A-26]
This recurrence relation is commonly written as follows.
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[A-27]
For z = 1 the evaluation of the gamma function is simply the integral of e-z.
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[A-28]
Using this result and the recurrence relation that (z+1) = z(z) gives (2) = 1(1) = (1)(1) = 1; (3) = 2(2) = (2)(1) = 2; (4) = 3(3) = (3)(2) = 6.  We see that there is a general relationship for positive integers, n.
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[A-29]
We will state without proof the following result that can be obtained using contour integration for complex variables.
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[A-30]
Using the recurrence relationship from equation [A-10] gives the following results:
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[A-31]
Matlab has a function gamma(x) that can be used to compute the gamma function.  The Excel spreadsheet has a function GAMMALN(x) than can be used to compute the natural logarithm of (x).  Use the worksheet formula “= exp(gammaln(x))” to compute (x) in Excel.  The plot of the gamma function shown below was developed in Excel.
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The plot shows some of the values that we have already computed: (1) = (2) = 1 and (3) = 2.  The gamma function is seen to be continuous and positive for positive values of its argument, going to infinity as the (positive) argument approaches zero or infinity.  The gamma function is discontinuous at negative integer values.  Depending on the direction in which the interer value is approached, the value of (x) approaches plus or minus infinity as the integer value is approached.
An abridged table of gamma functions is shown on the next page.  This table gives values for (x) for 0 < x < 1.  Recall that the general recursion formula for gamma functions in equation [A-27] allows us to compute (x+1) = x(x).  We could use the table value for (0.16) and the this recursion formula to compute the gamma function for x = 3.16 as follows: (3.16) = 2.16(2.16) = (2.16)(1.16)(1.16) = (2.16)(1.16)(0.16)(0.16) = (2.16)(1.16)(0.16)(5.81127) = 2.32971.  This calculation procedure can be used with the gamma-function table below for moments of the Weibull distribution which are given in terms of gamma functions.
	Abridged Table of Gamma Functions

	x
	(x)
	x
	(x)
	x
	(x)

	0.01
	99.43259
	0.16
	5.81127
	0.40
	2.218160

	0.02
	49.44221
	0.18
	5.13182
	0.45
	1.968136

	0.03
	32.78500
	0.20
	4.59084
	0.50
	1.772454

	0.04
	24.46096
	0.22
	4.15048
	0.55
	1.616124

	0.05
	19.47009
	0.24
	3.78550
	0.60
	1.489192

	0.06
	16.14573
	0.26
	3.47845
	0.65
	1.384795

	0.07
	13.77360
	0.28
	3.21685
	0.70
	1.298055

	0.08
	11.99657
	0.30
	2.99157
	0.75
	1.225417

	0.09
	10.61622
	0.32
	2.79575
	0.80
	1.164230

	0.10
	9.51351
	0.34
	2.62416
	0.85
	1.112484

	0.11
	8.61269
	0.36
	2.47273
	0.90
	1.068629

	0.12
	7.86325
	0.38
	2.33826
	0.95
	1.031453

	0.13
	7.23024
	For x outside the range (0, 1) you use the relationship that (x+1) = x(x)

	0.14
	6.68869
	


Table of Cumulative Wind Power Distribution Fractions
The table of cumulative wind power fractions, shown below, is used to determine the fraction of the total power in the wind that is between two wind speeds V1 and V2.  To use this table you first compute V1/c and V2/c and find the table entries for these values of V/c at the k value for your wind speed distribution.  If F1 and F2 are the cumulative distribution values from the table corresponding to V1/c and V2/c (with F2 > F1) then the fraction of the total wind power between these two velocities is given by the difference between F2 and F1 multiplied by the total power in the wind given by a combination of equations [22] and [23].
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[A-32]

The average wind power between V1 and V2 is then given by the following equation.
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[A-33]
The procedure outlined above for computing gamma functions can be used here.
	Fraction of Wind Power Between V = 0 and Given V

	V/c
	Fraction for Following Values of k

	
	k = 1.4
	k = 1.6
	k = 1.8
	k = 2
	k = 2.2
	k = 2.4

	0.00
	0
	0
	0
	0
	0
	0

	0.05
	0.000000
	0.000000
	0.000000
	0.000000
	0.000000
	0.000000

	0.10
	0.000005
	0.000005
	0.000004
	0.000003
	0.000002
	0.000002

	0.15
	0.000031
	0.000030
	0.000027
	0.000022
	0.000018
	0.000014

	0.20
	0.000108
	0.000112
	0.000106
	0.000094
	0.000079
	0.000065

	0.25
	0.000280
	0.000305
	0.000303
	0.000281
	0.000250
	0.000215

	0.30
	0.000604
	0.000687
	0.000709
	0.000686
	0.000634
	0.000567

	0.35
	0.001151
	0.001355
	0.001448
	0.001448
	0.001385
	0.001281

	0.40
	0.002000
	0.002425
	0.002668
	0.002750
	0.002708
	0.002579

	0.45
	0.003235
	0.004025
	0.004545
	0.004809
	0.004861
	0.004753

	0.50
	0.004948
	0.006295
	0.007273
	0.007877
	0.008149
	0.008156

	0.55
	0.007229
	0.009380
	0.011060
	0.012227
	0.012916
	0.013200

	0.60
	0.010169
	0.013427
	0.016118
	0.018147
	0.019530
	0.020338

	0.65
	0.013856
	0.018575
	0.022654
	0.025925
	0.028369
	0.030047

	0.70
	0.018369
	0.024959
	0.030868
	0.035837
	0.039800
	0.042794

	0.75
	0.023784
	0.032697
	0.040936
	0.048133
	0.054158
	0.059017

	0.80
	0.030166
	0.041893
	0.053010
	0.063024
	0.071728
	0.079088

	0.85
	0.037569
	0.052630
	0.067210
	0.080672
	0.092725
	0.103285

	0.90
	0.046036
	0.064971
	0.083615
	0.101180
	0.117277
	0.131769

	0.95
	0.055600
	0.078952
	0.102268
	0.124585
	0.145414
	0.164557

	1.00
	0.066279
	0.094589
	0.123163
	0.150855
	0.177061
	0.201517

	1.05
	0.078082
	0.111870
	0.146256
	0.179887
	0.212033
	0.242361

	1.10
	0.091003
	0.130760
	0.171457
	0.211508
	0.250044
	0.286651

	1.15
	0.105026
	0.151202
	0.198636
	0.245483
	0.290712
	0.333812

	1.20
	0.120122
	0.173115
	0.227629
	0.281520
	0.333573
	0.383162

	1.25
	0.136255
	0.196401
	0.258236
	0.319279
	0.378098
	0.433935

	1.30
	0.153376
	0.220943
	0.290233
	0.358382
	0.423715
	0.485322

	1.35
	0.171430
	0.246610
	0.323375
	0.398430
	0.469830
	0.536504

	1.40
	0.190353
	0.273260
	0.357401
	0.439009
	0.515849
	0.586691

	1.45
	0.210074
	0.300740
	0.392043
	0.479706
	0.561197
	0.635151

	1.50
	0.230519
	0.328893
	0.427029
	0.520117
	0.605340
	0.681244

	1.55
	0.251609
	0.357557
	0.462093
	0.559861
	0.647801
	0.724440

	1.60
	0.273260
	0.386569
	0.496975
	0.598588
	0.688167
	0.764331

	1.65
	0.295387
	0.415769
	0.531431
	0.635986
	0.726106
	0.800640

	1.70
	0.317906
	0.445000
	0.565233
	0.671782
	0.761365
	0.833217

	1.75
	0.340729
	0.474112
	0.598174
	0.705755
	0.793773
	0.862034

	1.80
	0.363773
	0.502961
	0.630071
	0.737728
	0.823238
	0.887166

	1.85
	0.386953
	0.531415
	0.660764
	0.767575
	0.849741
	0.908779

	1.90
	0.410188
	0.559351
	0.690123
	0.795214
	0.873330
	0.927108

	1.95
	0.433400
	0.586656
	0.718039
	0.820610
	0.894105
	0.942437

	2.00
	0.456514
	0.613231
	0.744433
	0.843764
	0.912215
	0.955080

	2.05
	0.479458
	0.638988
	0.769248
	0.864717
	0.927840
	0.965365

	2.10
	0.502166
	0.663854
	0.792453
	0.883537
	0.941185
	0.973617

	2.15
	0.524576
	0.687766
	0.814037
	0.900318
	0.952468
	0.980147

	2.20
	0.546630
	0.710674
	0.834009
	0.915173
	0.961913
	0.985244

	2.25
	0.568276
	0.732539
	0.852395
	0.928230
	0.969742
	0.989168

	2.30
	0.589468
	0.753336
	0.869238
	0.939627
	0.976167
	0.992147

	2.35
	0.610161
	0.773048
	0.884592
	0.949505
	0.981389
	0.994378

	2.40
	0.630321
	0.791669
	0.898521
	0.958009
	0.985592
	0.996026

	2.45
	0.649913
	0.809201
	0.911098
	0.965281
	0.988942
	0.997226

	2.50
	0.668912
	0.825655
	0.922402
	0.971457
	0.991586
	0.998089

	2.55
	0.687294
	0.841048
	0.932515
	0.976668
	0.993653
	0.998700

	2.60
	0.705043
	0.855406
	0.941523
	0.981036
	0.995254
	0.999127

	2.65
	0.722143
	0.868757
	0.949511
	0.984674
	0.996482
	0.999422

	2.70
	0.738586
	0.881135
	0.956564
	0.987684
	0.997415
	0.999622

	2.75
	0.754365
	0.892580
	0.962764
	0.990159
	0.998117
	0.999756

	2.80
	0.769479
	0.903130
	0.968193
	0.992181
	0.998640
	0.999845

	2.85
	0.783929
	0.912830
	0.972925
	0.993822
	0.999027
	0.999903

	2.90
	0.797719
	0.921724
	0.977034
	0.995146
	0.999310
	0.999940

	2.95
	0.810855
	0.929856
	0.980586
	0.996208
	0.999515
	0.999963

	3.00
	0.823348
	0.937274
	0.983646
	0.997054
	0.999662
	0.999978

	3.05
	0.835208
	0.944021
	0.986271
	0.997724
	0.999766
	0.999987

	3.10
	0.846449
	0.950144
	0.988514
	0.998251
	0.999840
	0.999993

	3.15
	0.857086
	0.955686
	0.990423
	0.998664
	0.999892
	0.999996

	3.20
	0.867136
	0.960691
	0.992041
	0.998985
	0.999927
	0.999998

	3.25
	0.876616
	0.965198
	0.993409
	0.999233
	0.999952
	0.999999

	3.30
	0.885546
	0.969249
	0.994559
	0.999424
	0.999968
	1.000000

	3.35
	0.893944
	0.972881
	0.995524
	0.999570
	0.999979
	1.000000

	3.40
	0.901832
	0.976130
	0.996330
	0.999680
	0.999987
	1.000000

	3.45
	0.909229
	0.979030
	0.997000
	0.999764
	0.999992
	1.000000

	3.50
	0.916156
	0.981612
	0.997556
	0.999826
	0.999995
	1.000000

	3.55
	0.922635
	0.983906
	0.998016
	0.999873
	0.999997
	1.000000

	3.60
	0.928686
	0.985940
	0.998394
	0.999908
	0.999998
	1.000000

	3.65
	0.934330
	0.987739
	0.998704
	0.999933
	0.999999
	1.000000

	3.70
	0.939588
	0.989328
	0.998958
	0.999952
	1.000000
	1.000000

	3.75
	0.944480
	0.990728
	0.999165
	0.999966
	1.000000
	1.000000

	3.80
	0.949025
	0.991958
	0.999333
	0.999976
	1.000000
	1.000000

	3.85
	0.953243
	0.993037
	0.999468
	0.999983
	1.000000
	1.000000

	3.90
	0.957154
	0.993983
	0.999578
	0.999988
	1.000000
	1.000000

	3.95
	0.960774
	0.994809
	0.999666
	0.999992
	1.000000
	1.000000

	4.00
	0.964122
	0.995529
	0.999736
	0.999994
	1.000000
	1.000000

	4.05
	0.967214
	0.996156
	0.999793
	0.999996
	1.000000
	1.000000

	4.10
	0.970067
	0.996701
	0.999837
	0.999997
	1.000000
	1.000000

	4.15
	0.972697
	0.997173
	0.999873
	0.999998
	1.000000
	1.000000

	4.20
	0.975118
	0.997582
	0.999901
	0.999999
	1.000000
	1.000000

	4.25
	0.977344
	0.997935
	0.999923
	0.999999
	1.000000
	1.000000

	4.30
	0.979389
	0.998240
	0.999941
	1.000000
	1.000000
	1.000000

	4.35
	0.981266
	0.998502
	0.999954
	1.000000
	1.000000
	1.000000

	4.40
	0.982986
	0.998727
	0.999965
	1.000000
	1.000000
	1.000000

	4.45
	0.984562
	0.998920
	0.999973
	1.000000
	1.000000
	1.000000

	4.50
	0.986003
	0.999085
	0.999979
	1.000000
	1.000000
	1.000000

	4.55
	0.987321
	0.999226
	0.999984
	1.000000
	1.000000
	1.000000

	4.60
	0.988524
	0.999347
	0.999988
	1.000000
	1.000000
	1.000000

	4.65
	0.989621
	0.999449
	0.999991
	1.000000
	1.000000
	1.000000

	4.70
	0.990621
	0.999537
	0.999993
	1.000000
	1.000000
	1.000000

	4.75
	0.991531
	0.999611
	0.999995
	1.000000
	1.000000
	1.000000

	4.80
	0.992360
	0.999673
	0.999996
	1.000000
	1.000000
	1.000000

	4.85
	0.993112
	0.999726
	0.999997
	1.000000
	1.000000
	1.000000

	4.90
	0.993795
	0.999771
	0.999998
	1.000000
	1.000000
	1.000000

	4.95
	0.994415
	0.999809
	0.999998
	1.000000
	1.000000
	1.000000

	5.00
	0.994977
	0.999841
	0.999999
	1.000000
	1.000000
	1.000000


� EMBED Equation.3  ���








� Because f(x)dx represents a fraction, it is a dimensionless quantity.  Thus the pdf, f(x), must have dimensions of 1/x.  In the normal distribution function in equation [1], x, , and  must all have the same dimensions.  (This is required because the arguments to transcendental functions like the exponential must be dimensionless.)  The normal distribution in equation [1] has dimensions of 1/ which is the same as the dimensions of 1/x which is required for the pdf, f(x).


� Start with the definition of the variance and expand the (x – )2 term in the integrand.


� EMBED Equation.3  ���


The next to lasts integral, � EMBED Equation.3  ���, is simply the definition of the mean, , and the final integral, � EMBED Equation.3  ���=1 since any pdf integrated between xmin and xmax = 1.  Making these substitutions gives


� EMBED Equation.3  ���


� For the normal distribution, s2 = � EMBED Equation.3  ���is the MLE estimator of 2, where� EMBED Equation.3  ���, the arithmetic mean, is the MLE estimator of .


� Here we use the result that (3/2) = (1/2)(1/2)= and (1/2) = 1/2 to get (3/2) = 1/2/2.
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