

Resour	ces <i>v</i> s. Re	eserves
	Known	Unknown
Economical to Recover	Reserves	Resources
Not economical to recover	Resources	Resources
California State University Northridge		5

 Some recent applications show world oil production peak in next ten years

7

· Many other studies show later peak

California State University Northridge

Wind Turbine Operation No operation until wind velocity reaches a minimum called the cut-in velocity Then operate at full turbine output power until turbine output is greater than generator can accept Limit turbine output power to full generator power at high wind speeds · No operation above maximum velocity called cut-out velocity

33

39

Northridge

TABLE 12-3		TABLE 12-3							
Comparison of the s α_s of some surfaces emissivity e at room	with their		Comparison of the solar absorptivity α_s of some surfaces with their emissivity ε at room temperature						
Surface	α_s	8	Surface	$\alpha_{\rm S}$	ε				
Aluminum			Plated metals						
	0.00	0.00	Black nickel oxide	0.92	0.08				
Polished	0.09	0.03	Black chrome	0.87	0.09				
Anodized	0.14	0.84	Concrete	0.60	0.88				
Foil	0.15	0.05	White marble	0.46	0.95				
Copper			Red brick	0.63	0.93				
Polished	0.18	0.03	Asphalt	0.90	0.90				
Tarnished	0.65	0.75	Black paint	0.97	0.97				
Stainless steel			White paint	0.14	0.93				
Polished	0.37	0.60	Snow	0.28	0.97				
Dull	0.50	0.21	Human skin	0.20	0.57				
			(Caucasian)	0.62	0.97				
Northridge From Çengel, Heat and Mass Transfer									

		CERTIFIED	SOLAR COLLE	CTOR					
CERTIFICATION AND RATING		SUPPLIER: Heliodyne, Inc. 4910 Seaport Avenue Richmend, CA 94804 MODEL: Heliodyne Gobi 408 COLLECTOR TYPE: Glazzel Flat-Plane CERTIFICATION #: 100-1981-085A							
CLEAR	Panel Per Day MILDLY	CLOUDY	CATEGORY	CLEAR	MILDLY	CLOUDY			
	CLOUDY	DAY	(Ti-Ta)	DAY	CLOUDY 1500 Bas/#2-d	DAY 1000 Bts/ft-c			
DAY 23 MJ/m ² -d	17 MJ/m ² -d	11 MJ/m ² ·d	1 1	Btu R2-d	1000 010 10 10	11111111111			
	17 MJ/m ² -d	11 MJ/m ² ·d	A (-9°F)		35	24			
23 MJ/m ² -d			A (-9°F) B (9°F)	Btu'ft ² -d		24 20			
23 MJ/m ² -d 49	37	25		Btu'ft ² -d 46 43 37	33				
23 MJ/m ² -d 49 45	37 33	25 21	B (9°F)	Btu'ft ² -d 46 43	35 32	20			
	legajoules Per	CC OG-100 () COLLECT Iegajoules Per Panel Per Day	MODEL: cOLLECTOR CERTIFICAT. COLLECTOR THERMI ferginates for Paral For Day	4910 Seepont Av Richmend, CA 9. MODEL: Heliod COLLECTOR TYPE Glazed COLLECTOR THERMAL PERFORMA COLLECTOR THERMAL PERFORMA	4910 Senjori Avenue Richmend, CA 94804 MODEL: Heliodyne Gobi 401 COLLECTOR TVPE: Glazed Flat.Place COLLECTOR THERNAL PERFORMANCE RATH COLLECTOR THERNAL PERFORMANCE RATH Impginates Per Paral Per Day Threatends of Re	4910 Senjori Avenue Richmend, CA 94804 MODEL: Heliodyne Gobi 408 COLLSCTOR TVPE: Glazed Flat.Place COLLSCTOR TVPE: Glazed Flat.Place COLLECTOR THERNAL PERFORMANCE RATING Tourstands of Rin Per Pard Per Day Tourstands of Rin Per Pard Per Day			

NI	חבו	1	0	24	1	0	00	、 i	۸	v	٨		~ r	~ ~	
	REL		90	וכ	- 1	9	90		_P		P		er	аć	je
SOLAR	RADIATIO	N FC)R F	LAT	-PLA	TE (COL	LEC	TOR	S F		IG S	олт	ΉА	ГА
	ILT (kWh/r														
Tilt(deg)														Year	
0	Average	2.8	3.6	4.8	6.1	6.4	6.6	7.1	6.5	5.3	4.2	3.2	2.6	4.9	
	Minimum	2.3	3.0	4.0	5.5	5.7	5.6	6.4	6.1	4.4	3.8	2.7	2.1	4.7	
	Maximum														
Lat - 15	Average														
	Minimum	2.9	3.6	4.5	5.8	5.7	5.4	6.3	6.3	4.7	4.4	3.4	2.7	5.2	
	Maximum	4.6	5.7	6.4	7.3	7.3	7.3	7.9	7.2	6.6	5.6	4.9	4.3	5.7	
Lat	Average	4.4	5.0	5.7	6.3	6.1	6.0	6.6	6.6	6.0	5.4	4.7	4.2	5.6	
	Minimum	3.3	3.8	4.7	5.6	5.4	5.0	5.9	6.1	4.8	4.7	3.7	3.0	5.3	
	Maximum	5.4	6.4	6.7	7.2	6.8	6.7	7.3	7.0	6.7	6.0	5.6	5.0	5.9	
Lat + 15	Average														
	Minimum	3.4	3.8	4.5	5.2	4.8	4.4	5.2	5.5	4.5	4.7	3.9	3.1	5.1	
	Maximum														
90	Average	4.1	4.1	3.8	3.3	2.5	2.2	2.4	3.0	3.6	4.2	4.3	4.1	3.5	
	Minimum				2.9										
Califor	Maximum	5.2	5.4	4.5	3.6	2.7	2.3	2.5	3.2	4.1	4.7	5.2	5.0	3.7	
No	rthridge	2													80