Introduction to Fluid Statics and Manometers

Larry Caretto
Mechanical Engineering 390
Fluid Mechanics

January 24 and 29, 2008

Northridge
Northridge

Outline

- Review course introduction
- Pressure independent of direction
- Pressure-density-distance relationship in a static (nonmoving fluid)
- Use of manometers for pressure measurements
- Calculations with manometers.

Review

- Dimensions and units
- SI, BG and EE unit systems
- Fluid density, ρ, (mass/volume) and specific weight (weight/volume), $\gamma=\rho \mathrm{g}$, and specific gravity
- States of matter and vapor pressure
- Viscosity
- Surface tension

Callomisthridge

Review Typical Units			
Quantity	SI units	EE units	BG units
Density	$\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$	slug/ft ${ }^{3}$
Pressure \& shear stress	$\begin{aligned} & \mathrm{kPa}= \\ & \mathrm{kN} / \mathrm{m}^{2} \end{aligned}$	$\begin{gathered} 1 \mathrm{psi}=1 \mathrm{lb}_{\mathrm{f}} / \mathrm{in}^{2}= \\ 144 \mathrm{psf}=144 \mathrm{lb}_{\mathrm{f}} / \mathrm{ft}^{2} \end{gathered}$	
Velocity	m / s	ft / s	
Viscosity	$\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}=$ $\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}$	$\begin{gathered} \mathrm{lb}_{\mathrm{f}} \cdot \mathrm{~s} / \mathrm{ft}^{2}= \\ 32.2 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft} \cdot \mathrm{~s} \end{gathered}$	$\mathrm{Ib}_{\mathrm{f}} \cdot \mathrm{~s} / \mathrm{ft}^{2}=$ slug/ft•s
Specific	$\mathrm{N} / \mathrm{m}^{3}$	$\mathrm{lb}_{\mathrm{f}} / \mathrm{ft}{ }^{3}$	
weight = $\rho \mathrm{g}$	Tabulated values at standard gravity		
Northridge			4

Pressure Relations

- Pressure is a scalar
- The force exerted by a pressure is the same in all directions
- Want to see how pressure changes in a static (nonmoving) fluid
- Look at balance of pressure force and fluid weight over a differential volume element, $\delta x \delta y \delta z$

Northridge

Integrating the Result

- Since $\partial p / \partial x=\partial p / \partial y=0, p=f(z)$ only, and we can write $\partial \mathrm{p} / \partial z=-\gamma$ as $d p / d z=-\gamma$
- Multiply by dz and integrate between two points $\left(p_{1}, z_{1}\right)$ and $\left(p_{2}, z_{2}\right)$

$$
\int_{p_{1}}^{p_{2}} d p=p_{2}-p_{1}=-\int_{z_{1}}^{z_{2}} \gamma d z
$$

- To integrate $\gamma \mathrm{dz}$ we have to know how γ depends on z

Incompressible Fluid

- An incompressible fluid has constant density (and specific weight)
- For an incompressible (constant density) fluid then

$$
\begin{gathered}
p_{2}-p_{1}=-\int_{z_{1}}^{z_{2}} \gamma d z=-\gamma \int_{z_{1}}^{z_{2}} d z=-\gamma\left(z_{2}-z_{1}\right) \\
p_{2}+\gamma z_{2}=p_{1}+\gamma z_{1}
\end{gathered}
$$

Problem

- If the pressure at the surface of a body of water $\left(\gamma=9789 \mathrm{~N} / \mathrm{m}^{3}\right.$ at $20^{\circ} \mathrm{C}$) is 101 kPa , what are the pressures at depths of 10 m and 100 m ?
- Given: $\mathrm{p}_{1}=101 \mathrm{kPa}$ at $\mathrm{z}_{1}=0$
- Find: p at $z_{2}=-10 m$ and $z_{3}=-100 \mathrm{~m}$
- Equation:
$p_{2}+\gamma z_{2}=p_{1}+\gamma z_{1} \Rightarrow p_{2}=p_{1}+\gamma\left(z_{1}-z_{2}\right)$

Northridge

Solution

Depth $=10 \mathrm{~m}$

$$
p_{2}=p_{1}+\gamma\left(z_{1}-z_{2}\right)=101 \mathrm{kPa}+
$$

$$
\frac{9789 \mathrm{~N}}{m^{3}}[0 \mathrm{~m}-(-10 \mathrm{~m})] \frac{\mathrm{kPa} \cdot \mathrm{~m}^{2}}{1000 \mathrm{~N}}=198.9 \mathrm{kPa}
$$

Depth $=100 \mathrm{~m}$

$$
p_{3}=p_{1}+\gamma\left(z_{1}-z_{3}\right)=101 \mathrm{kPa}+
$$

$$
\frac{9789 \mathrm{~N}}{m^{3}}[0 \mathrm{~m}-(-100 \mathrm{~m})] \frac{\mathrm{kPa} \cdot \mathrm{~m}^{2}}{1000 \mathrm{~N}}=1080 \mathrm{kPa}
$$

Northridge

Free Surface

- Surface of liquid open to atmosphere is called a "free surface"
- Pressure, p_{0}, is atmospheric pressure, p_{0}
- Height, $z_{0}=0$
- In the liquid, $p+\gamma z=p_{0}+\gamma z_{0}$, where $z<0$
- Depth $\mathrm{h}=\mathrm{z}_{0}-\mathrm{z}>0$
$-\mathrm{p}=\mathrm{p}_{0}+\gamma\left(\mathrm{z}_{0}-\mathrm{z}\right)=\mathrm{p}_{0}+\gamma \mathrm{h}$
- Pressure, p , at depth, h , not influenced by size or shape of container
Northridge

$\Delta \mathrm{P}=1 \mathrm{Atm}$ for Water at $20^{\circ} \mathrm{C}$

At $20^{\circ} \mathrm{C}, \gamma_{\text {water }}=9789 \mathrm{~N} / \mathrm{m}^{3}=62.32 \mathrm{lb} / \mathrm{lft}^{3}$ (p 761, text)

$$
h=\frac{p_{2}-p_{1}}{\gamma}=\frac{\frac{14.696 \mathrm{lb}_{f}}{\mathrm{in}^{2}} \frac{144 \mathrm{in}^{2}}{f t^{2}}}{\frac{62.32 \mathrm{lb} f}{f t^{3}}}=33.96 \mathrm{ft}
$$

$$
h=\frac{p_{2}-p_{1}}{\gamma}=\frac{101.325 \mathrm{kPa} \frac{1000 \mathrm{~N}}{\mathrm{kPa} \cdot \mathrm{~m}^{2}}}{\frac{9789 \mathrm{~N}}{\mathrm{~m}^{3}}}=10.35 \mathrm{~m}
$$

16

Northridge

Reference Pressure

- Free surface equation: $\mathrm{p}=\mathrm{p}_{0}+\gamma\left(\mathrm{z}_{0}-\mathrm{z}\right)$
- Apply this to two different pressures
$-p_{1}=p_{0}+\gamma\left(z_{0}-z_{1}\right)$
$-p_{2}=p_{0}+\gamma\left(z_{0}-z_{2}\right)$
- Find $p_{2}-p_{1}$ from these equations -Result: $\boldsymbol{p}_{2}-\boldsymbol{p}_{1}=\mathrm{p}_{0}+\gamma\left(\mathrm{z}_{0}-\mathrm{z}_{2}\right)-\left[\mathrm{p}_{0}+\gamma\left(\mathrm{z}_{0}\right.\right.$ $\left.\left.-z_{1}\right)\right]=\gamma\left(z_{1}-z_{2}\right)$ independent of p_{0} or z_{0}
- Reference pressure cancels in taking pressure differences
Northridge

Gage Pressure

- For taking pressure differences, we can use any reference pressure
- Many pressure measurement methods measure the difference between actual and atmospheric pressure
- We can used this measured pressure difference, called gage pressure, directly in Δp calculations
- $\mathrm{p}_{\text {absolute }}=\mathrm{p}_{\text {gage }}+\mathrm{p}_{\text {atmosphere }}$ Northridge

What a Barometer Measures

- It actually measures the local pressure
- A barometer in a undersea submersible, pressurized to 4 times atmospheric pressure would measure this level
- Weather barometer readings are corrected to mean sea level
- Standard atmosphere: 760 mm Hg , 760 torr, 29.921 in $\mathrm{Hg}, 101.325 \mathrm{kPa}$, 14.696 psia, 2116.2 psfa, 1013.25 mbar Northridge

Gage/Absolute Notation

- For pressure differences a specification of gage or absolute is not required
- Traditional notation is psig (or psfg) and psia (or psfg) for gage and absolute pressure, respectively
- Can also use $\mathrm{kPa}(\mathrm{abs})$ or kPa (gage)
- Munson uses psi or kPa for gage pressures and $\mathrm{psi}(\mathrm{abs})$ or $\mathrm{kPa}(\mathrm{abs})$ for absolute pressures
Nothourthidge

Variable Density

- Problem: integrate $d p / d z=-\gamma z$ when density (and hence γ) is not constant
- Simple solution: for gases γ is small so that p does not change much with z
- E. g. air at atmospheric pressure and $\mathrm{T}=$ $20^{\circ} \mathrm{C}$ has $\gamma=11.81 \mathrm{~N} / \mathrm{m}^{3}$
- If $\gamma=11.81 \mathrm{~N} / \mathrm{m}^{3}$ were constant an elevation change of 10 m gives $\Delta \mathrm{p}=(11.81$ $\left.\mathrm{N} / \mathrm{m}^{3}\right)(10 \mathrm{~m})=118.1 \mathrm{~N} / \mathrm{m}^{2}=0.1181 \mathrm{kPa}$

Northridge

Variable Density II

- Result: the pressure change of 0.1181 kPa is only 0.12% of $\mathrm{p}_{\mathrm{atm}}=101.325 \mathrm{kPa}$
- Simple solution: for gases with small elevation changes we can assume that the specific weight is constant!
- This is not valid for changes of several kilometers as in the atmosphere
- Standard atmosphere defined and used for aerospace designs

Northridge

| Piezometer |
| :--- | :--- |

Simple U-Tube Manometer

- $\mathrm{h}_{1}=0.2 \mathrm{~m}, \mathrm{p}_{\mathrm{atm}}=101 \mathrm{kPa}$, and $\gamma_{1}=\gamma_{\text {water }}=9.789 \mathrm{kN} / \mathrm{m}^{3}$
- $p_{\mathrm{A}}=\mathrm{p}_{\mathrm{atm}}+\gamma_{1} \mathrm{~h}_{1}$
$P_{A}=101 \mathrm{kPa}+\frac{9.789 \mathrm{kN}}{\mathrm{m}^{3}}(0.2 \mathrm{~m}) \frac{\mathrm{kPa} \cdot \mathrm{m}^{2}}{1 \mathrm{kN}}$
- $\mathrm{p}_{\mathrm{A}}=103 \mathrm{kPa}$ (absolute)
- $\mathrm{p}_{\mathrm{A}}=1.96 \mathrm{kPa}$ (gage)

- Manometers measure pressure by measuring height differences
- Point A is fluid ($\gamma=\gamma_{1}$) in a pipe
- h_{1} and h_{2} are measured
- Gage fluid has $\gamma=\gamma_{2}$
- What is pressure at A ?

Simple U-Tube Manometer II

- Right side: $p_{3}=p_{a t m}+\gamma_{2} h_{2}$
- Left side: $p_{2}=p_{A}+\gamma_{1} h_{1}$
- $\mathrm{p}_{3}=\mathrm{p}_{2}$ gives
$p_{\text {atm }}+\gamma_{2} h_{2}=$
$\mathrm{p}_{\mathrm{A}}+\gamma_{1} \mathrm{~h}_{1}$
$p_{2}-p_{3}=p_{0}-\gamma_{2} h_{0}$
- Conclusion:
$p_{\mathrm{A}}=\mathrm{p}_{\mathrm{atm}}+\gamma_{2} \mathrm{~h}_{2}-\gamma_{1} \mathrm{~h}_{1}$
Northridge
Figure 2.10, Fundamentals of Fluid Mechanics, $5 / E$ by Bruce Munson, Donald Young,

- Given: Known specific weights and measured heights shown above
- Find: $\mathrm{p}_{\mathrm{A}}-\mathrm{p}_{\mathrm{B}}$ Equation: $\mathrm{p}_{\alpha}+\gamma \mathrm{z}_{\alpha}=\mathrm{p}_{\beta}+\gamma \mathrm{z}_{\beta}$ Northridge

FigureE2.5, Fundamentals of Fluid Mechanics, $5 /$ E by Bruce Munson, Donald Young, and
Theodore Okiishi Copyright $\odot 2000$ by John Wiley \& Sons, Inc. All rights reserved.

Simple U-Tube Manometer III

- Result for absolute pressure:
$p_{\mathrm{A}}=\mathrm{p}_{\mathrm{atm}}+\gamma_{2} \mathrm{~h}_{2}-\gamma_{1} \mathrm{~h}_{1}$

- Result for gage pressure: $\mathrm{p}_{\mathrm{A}}=\gamma_{2} \mathrm{~h}_{2}-\gamma_{1} \mathrm{~h}_{1}$

Combine first set of equations

$$
\begin{aligned}
& p_{A}=p_{1}+\gamma_{1} h_{1} \quad p_{1}^{\prime}=p_{2}=p_{3} \quad p_{3}=p_{4}+\gamma_{2} h_{2} \\
& p_{A}=p_{1}+\gamma_{1} h_{1}=p_{3}+\gamma_{1} h_{1}=p_{4}+\gamma_{2} h_{2}+\gamma_{1} h_{1}
\end{aligned}
$$

Incline Manometer Problem

- Incline used to increase accuracy for small pressure differences
- Want to find $p_{B}-p_{A}$ when we know γ_{1},

Incline Manometer Problem II

Solving Manometer Problems II

- Write equations for (1) pressures at two open depths in same fluid and (2) equal pressures at same level (with same fluid) at all branches in manometer.
- Eliminate intermediate pressures from equations to get desired $\Delta \mathrm{P}$
- Watch units for length, psi or psf, N or kN
Northridge - For gases $\gamma \Delta z \approx 0$

Problem

- Given: air at $0.50 \mathrm{psig}, \mathrm{p}_{\mathrm{A}}=2 \mathrm{psig}$, and $\gamma_{\text {oil }}=54.0 \mathrm{lb}_{\mathrm{f}} / \mathrm{ft}^{3}$ and other data shown on diagram. Find: z and h

Problem Continued

- Given: air at 0.50 psig, $\mathrm{p}_{\mathrm{A}}=2 \mathrm{psig}$, and $\gamma_{\text {oil }}=54.0 \mathrm{lb}_{\mathrm{f}} / \mathrm{ft}{ }^{3}$ and other data shown

Problem 2.38 Part 3

- Rearrange equations from previous slide and substitute given data

$$
\begin{gathered}
P_{\text {left }}=P_{\text {shell }}+\gamma_{\text {Hg }}(0.735 \mathrm{~m})=P_{\text {right }}=P_{\text {ocean }}+\gamma_{\text {sea }}^{\text {water }}(10.36 \mathrm{~m}) \\
P_{\text {ocean }}=P_{\text {shell }}+\gamma_{\text {Hg }}(0.735 \mathrm{~m})-\gamma_{\text {sea }}(10.36 \mathrm{~m}) \\
P_{\text {shell }}=\gamma_{\text {Hg }} h_{\text {baro }}=\left(\frac{133 \mathrm{kN}}{\mathrm{~m}^{3}}\right)(0.765 \mathrm{~m})=\frac{101.745 \mathrm{kN}}{\mathrm{~m}^{2}} \\
P_{\text {ocean }}=\frac{101.745 \mathrm{kN}}{\mathrm{~m}^{3}}+\frac{133 \mathrm{kN}}{\mathrm{~m}^{3}}(0.735 \mathrm{~m})-\frac{10.1 \mathrm{kN}}{\mathrm{~m}^{3}}(10.36 \mathrm{~m}) \\
\text { Northridge }
\end{gathered} P_{\text {occean }}=\frac{94.9 \mathrm{kN}}{\mathrm{~m}^{2}}=94.9 \mathrm{kPa} \quad{ }^{48} .
$$

