2

Introduction to Fluid Statics and Manometers

Larry Caretto Mechanical Engineering 390 *Fluid Mechanics*

January 24 and 29, 2008

California State University Northridge

Outline

- Review course introduction
- Pressure independent of direction
- Pressure-density-distance relationship in a static (nonmoving fluid)
- Use of manometers for pressure measurements
- Calculations with manometers.

California State University Northridge

Northridge

3

California State University Northridge

Review Typical Units				
Quantity	SI units	EE units	BG units	
Density	kg/m ³	lb _m /ft ³	slug/ft ³	
Pressure & shear stress	kPa = kN/m²	1 psi = 1 lb _f /in ² = 144 psf = 144 lb _f /ft ²		
Velocity	m/s	ft/s		
Viscosity	N⋅s/m² = kg/m⋅s	lb _f ⋅s/ft² = 32.2 lb _m /ft⋅s	lb _f ⋅s/ft² = slug/ft⋅s	
Specific weight = ρg	N/m ³	lb _f /ft ³		
	Tabulated values at standard gravity			

Problem			
 If the pressure at the surface of a body of water (γ = 9789 N/m³ at 20°C) is 101 kPa, what are the pressures at depths of 10 m and 100 m? 			
• Given: p ₁ = 101 kPa at z ₁ = 0			
 Find: p at z₂ = -10 m and z₃ = -100 m Equation: 			
$p_2 + \gamma z_2 = p_1 + \gamma z_1 \implies p_2 = p_1 + \gamma (z_1 - z_2)$			
California State University 13			

23

California State University Northridge

