Laboratory VI – Program Control Using Loops

Larry Caretto Computer Science 106

Computing in Engineering and Science

March 9, 2006

Northridge

Outline

- · Exercise six goals
- · Outline tasks for exercise six
- Introduce idea of nested loops and table generation
- · Provide details for some tasks

California State University
Northridge

2

Exercise Six Goals

- As a result of this exercise you should be able to accomplish the following:
 - write looping structures using both the while and for commands
 - write programs with nested loops
 - prepare a table of values for a function of two variables
 - write a program to compute the sum of an infinite series

Northridge

3

Tasks for Exercise Six

- One copy and paste code to produce table of kinetic energy as a function of mass and velocity
- Two modify task one code to create similar table for a different formula
- Three write code with a while loop to sum an infinite series for sin(x)
- Four modify task three code to use a for loop in place of a while loop

Northridge

Task One: Kinetic Energy Table

- $KE = mV^2/2$
- Copy and execute code from exercise
- Code prints table of KE as a function of mass, m, and velocity, V
 - $-1 \text{ kg} \le \text{m} \le 25 \text{ kg}$, with $\Delta \text{m} = 1 \text{ kg}$
 - $-6 \text{ m/s} \le \text{V} \le 15 \text{ m/s}$, with $\Delta \text{V} = 1 \text{ m/s}$
- · Modify this code for task two

Northridge

Nested for Loops

- Can have an inner for loop nested inside an outer for loop
- Example, print table of kinetic energy such as the one below

Velocity values m/s below 6 7 8 9 10

Mass

1 18.0 24.5 32.0 40.5 50.0 2 36.0 49.0 64.0 81.0 100.Q

Kinetic Energy Table

- Use nested for loops
- Inner loop calculates and prints one row of the table
- Outer loop does inner loop for all rows
- Use type int variables for loop indices
- Convert to double before division by 2
- Need initial loop to print headers for each column

California State University
Northridge

Northridge

One Table Row

- Each row prints a mass then prints the KE for each velocity from 6 to 15
- What is loop index for printing a row?

Full Code for One Table Row

How to Get Table?

- · Print column header row
- · Loop over all values of mass
 - -Move output to a new line
 - For each value of mass, use code just developed to print one row
- · End loop over mass

Northridge

10

Code to Produce Table

```
// Put column header code here
for( int m = 1; m <= 10; m++ )
{
    cout << endl;

    //Code for one row
}
cout << endl;</pre>
```

Task One Code

Task Two: Table of A/P Ratio

$\frac{A}{P}$	$=\frac{i}{1-\left(1+i\right)^{-n}}$	$= \frac{0.015}{1 - (1 + 0.015)^{-10}} = 0.10843$
Formula		Example for i = 1.5%, n = 10

- · Modify task one code to prepare table of recurring payment ratio, A/P
- Function of interest rate, i, and periods, n $-0.05\% \le i \le 2\%$, with $\Delta i = 0.05\%$
 - $-6 \le n \le 36$, with $\Delta n = 6$

Northridge

13

Loop termination problems

- Numbers are not represented exactly in the computer
- Code like the following may not give correct end point due to roundoff error

```
for ( double i = .01; i <= .1; i += .005)

    Suggested alternatives

for ( double i = .01; i <= .102; i += .005)
for ( int count = 0; count <= 18; count++)
     double i = 0.01 + 0.005 * count;
 Northridge Could have i = 0.10000000000000001 14
```

Other Task Two Issues

- · Spacing for output
- · Which is in rows and which is in columns? (Hint: what will fit?)
- · Getting column headers to line up with numbers in columns
- · Note initial spacing in column header provided in initial cout statement as blank string, "

Northridge

15

```
cout << "
                           Table of Kinetic
    << "
              Masses, m,
                          in kilograms and
     << "V, in meters per second. \n\"
             " << fixed << setprecision(1);</pre>
for ( int velocity = 6; velocity <=15;
                              velocity++ )
  if (velocity < 10) // adjust format
     cout << "V = " << velocity;
           // 2 spaces before V =
  el se
  {
     cout << "V = " << velocity; V
            // 1 space before V=
```

Tasks Three and Four

- Write code to evaluate infinite series for sine of an angle, x
- Do this using both a for loop and a while
- For large angles, compute the sine of an equivalent angle between 0 and 2π
- · See exercise for more details on computation of infinite series for ex and modification of this code to compute sin

Northridge

Equivalent Angles Sine has period of 2π so we can compute the sine of a large angle, y, as

sine of $x = y - 2\pi N$, where $N = int(x/2\pi)$

Northridge

Northridge

Infinite Series for ex

$$\mathbf{e}^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \qquad n! = n(n-1)(n-2)\cdots(3)(2)(1)$$

$$n! = n(n-1)! \qquad or \qquad (n-1)! = \frac{n!}{n}$$

$$(n-1)! = \frac{n!}{n} \implies 1! = (2-1)! = \frac{2!}{2} = 1 \qquad and \qquad 0! = (1-1)! = \frac{1!}{1} = 1$$

$$\mathbf{e}^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = \frac{1}{0!} + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \dots$$
Collecting State University
Northeridge

Ratio of Terms in ex Series

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = \sum_{n=0}^{\infty} T_{n} \qquad \Rightarrow \qquad T_{n} = \frac{x^{n}}{n!}$$

$$\left(\frac{T_n}{T_{n-1}} = \frac{\frac{x^n}{n!}}{\frac{x^{n-1}}{(n-1)!}} = \frac{x^n}{x^{n-1}} \frac{(n-1)!}{n!} = x \frac{(n-1)!}{n(n-1)!} = \frac{\hat{x}}{n}\right)$$

California State University
Northridge

Coding the Series

$$e^x = \sum_{n=0}^{\infty} T_n$$
 where $T_0 = 1$ and $T_n = \frac{x}{n} T_{n-1}$

 Code for this approach newTerm = oldTerm * x / n; seriesSum = seriesSum + newTerm oldTerm = newTerm;

Northridge

Alternative Coding for Series

- Code from last page
 newTerm = oldTerm * x / n;
 seri esSum = seri esSum + newTerm
 oldTerm = newTerm;
- Simpler Code uses one term variable term = term * x / n; sum = sum + term;
- Still Simpler Code term *= x / n; sum += term;
- Must initialize sum and term properly

Northridge

Starting the Loop

```
const int maxN = 100;
const double maxError = 1e-12;
bool converged = false;
double term = 1; // change this!
double sum = term;
int n = 0;
while (!converged && n < maxN)
{
    // see next slide</pre>
```

California State University
Northridge

Loop Body

California State University
Northridge

23

24

25

27

Why did we exit the loop?

California State University
Northridge

Sine Series

$$\sin(x) = \sum_{n=0}^{\infty} T_n = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$$

$$\left(\frac{T_n}{T_{n-1}}\right) = \frac{\frac{(-1)^n x^{2n+1}}{(2n+1)!}}{\frac{(-1)^{n-1} x^{2(n-1)+1}}{[2(n-1)+1]!}} = \frac{(-1)^n}{(-1)^{n-1}} \frac{x^{2n+1}}{x^{2n-1}} \frac{(2n-1)!}{(2n+1)!!} = \frac{-x^2}{2n(2n+1)}$$

- Similar, but more complicated, than ex
- First term in series is x, not 1

California State University
Northridge

26

Using a for Loop

- Continuation condition can be complex
- Remember while condition for series while (!converged && n < maxN)
- · Can have similar condition in for loop
- Can also have multiple initializations or conditions separated by a comma

for (n = 0, converged = false; !converged && n < maxN; n++)

· Watch first n value and increment

Northridge

Style: Indent Structures

Bad Style

while(inFile.good()){inFile<<hours<<
rate; if(hours>40)pay=rate*(40+1.5*(
hours-40)); else pay=rate*hours;
outFile<<pay<<endl; }</pre>

California State University
Northridge

29