Exercise IV – Formats and File Input and Output

Larry Caretto
Computer Science 106

Computing in Engineering and Science

February 21, 2006

Northridge

Northridge

Outline

- · Review exercise three
- Exercise four goals
- Summarize lecture material on formats and file input and output
- · Outline tasks for exercise four
- Review for quiz in laboratory on Thursday covering exercises 1-3 (pp 1-106 of text; homework to February 21)

Northridge

2

Review Exercise Three

- Saw various ways in which type conversion occurs and use of mod (%) operator
- Learned how to translate mathematical equations into C++ statements
- Wrote programs using mathematical functions at an and sgrt
- · Used symbolic constants

Northridge

More on Exercise Three

- Use meaningful variable names
 - R, r, or radius, but not x
 - pi, or PI but not y (p?)

$$a = \frac{w+x}{y-z} \qquad b = \frac{z}{x} \frac{w-x}{2y} \qquad c = \frac{w - \frac{x}{y}}{\frac{z}{y} + wy}$$

$$a = (w + x) / (y - z)$$

Northridge

Exercise Four Goals

- As a result of this exercise you should be able to accomplish the following:
 - write output commands using format manipulators fi xed, sci enti fi c, setw(w), and setpreci si on(p) to print an aligned table
 - write statements to get input from and write data to files
 - write statements that combine file input and output with formatting

Northridge

Northridge

Formatting Output

- · Default output
 - up to six significant figures
 - fixed or scientific determined automatically
- Format requires #include <iomanip>
- · Have manipulators in output commands
 - fi xed/sci enti fi c set appearance
 - setpreci si on(p) for number of digits
 - -setw(w) for width of output

Northridge

-

More Formatting

- · See text for other manipulators
- Format manipulators appear in output statements using the << operator
 - $-\cot << setw(10) << x;$
 - cout << setprecision(6) << setw(8) << x;</pre>
 - $-\cot << setw(10) << x << setw(10) << y;$
- setw(w) is in effect for one variable only
- Other manipulators in effect until changed

Northridge

setprecision(p)

- For default output (i.e. only using setprecision) p specifies number of significant figures
- If the fixed or scientific manipulators are in effect, p specifies the number of places after the decimal point
 - double z = 123.45678;
 - cout << setprecision(5) << z;
 - cout << fixed << setprecision(3) << z;</pre>
 - First gives 123.46; second gives 123.457

Northridge

Input and Output Files

- Requires #include <fstream>
- Files have a name on the operating system and a program variable name
- Associate the two file names as follows
 ofstream outFile("asm4.out"); // for output
 - orstream outFile("asm4.out"); // for outpuifstream inFile("mydata.dat"); // for input
- Use program variable name to read from or write to file

Northridge

File Example

ifstream iFile("myInput.txt");
ofstream out("prog.1"); Operating system names
double x, y;
iFile >> x >> y;
double z = sqrt(x * x + y * y);

out << " x y z";

out << fixed << setprecision(4) <<
 setw(10) << x << setw(10) << y <<</pre>

setw(10) << z; California State University Northridge

Accessing Files

- Access file from any windows program using operating system file name
- Use Visual C++ to create input files and view output files
- Input files must be in project folder
- To display available output files, select "All Files" from the pulldown menu next to files of type in the Open menu

Northridge

Tasks for Exercise Four

- One copy and paste code with various formats; run and study results
- Two Modify task one code to get different output formats
- Three copy and paste code with file input and output; run and study results
- Four Modify task three data file and code for new input data and output formats

California State University
Northridge

11

12

Task One and Two Data

```
doubl e x1 = 123. 45678, y1 = -98. 76543, z1 = 1413. 746352;
doubl e x2 = 23. 45321, y2 = -8. 7, z2 = 3. 745;
doubl e x3 = 1. 23e-16, y3 = -5. 3245e22, z3 = 938457483e-3;
• Change y3 = -5. 3245e22 to y3 = -5. 3245e-2 for task two
```

13

California State University
Northridge

Task One Code Extract

Task Two Background

Example of formats for table output
 13. 625bbb12. 8bbbb-6. 2
 b1. 200bb-78. 6bbb132. 5
 b0. 010bbb-6. 4bbbb12. 8

cout << fi xed << setpreci si on(3) <<
 setw(6) << x1 << setpreci si on(1) <<
 setw(7) << y1 << setw(8) << z1 << endl
 << setpreci si on(3) << setw(6) << x2 <<
 setpreci si on(1) << setw(7) << y2 <<
 setw(8) << z2 <<endl << setpreci si on(3)
 << setw(6) << x3 << setpreci si on(1) <<
 setw(7) << y3 << setw(7) << y3 << setw(7) << y3 <</pre>

Task Two is Printing Table

- Task two output from exercise instructions No. bbbxbval uebbbybval uebbbzbval uebbbbbbb123. 46bbbb-98. 77bbb1413. 75b2bbbbbb23. 45bbbbb-8. 70bbbbbb3. 75b3bbbbbbb0. 00bbbbb-0. 05b938457. 48
- · Is output fixed or scientific?
- How to print header and first column?
- · How many decimals or significant figures?
- What are column spacings for setw?
 Northridge

Task Three: File Input/Output

- To get data file, select Add New Item from Project menu and select text file
- Name file data. i n
- · Copy data from assignment to file
- No screen output after execution
- Open output file, resul ts. out, with <u>Open from File menu and select all files</u>
- Operating system file names set in i fstream and ofstream statements

Northridge

Task Four Steps

- Modify data file (external to program) and save with new name
 - Can do by calculator or by using Excel
- Modify symbolic constants in code
- Modify code to produce output table as shown in instructions
- Print output to both a file and to the screen in same program
- Change output file name
 Northridge

18

Using Excel to Modify Data

- · See instructions in notes
- Demonstration following presentation
- · General process
 - Copy from C++ input or output file to Excel
 - Select Text to columns command from
 Data menu and follow wizard instructions
 - Manipulate data as required in Excel
 - Copy from Excel and paste into Visual C++

California State University
Northridge

19

Reminder on Basics

- Start Visual C++.Net with new project
- Remember to select empty project!
- Define source file for programs (4.cpp)
- Define submission file (4.txt)
- For tasks three and four define input data files and open output files after program is complete
- For file output screen will only display Press any key to continue

Northridge

20

Quiz Review

- Thirty minutes no computer use
- · Use of cin and cout
- Basic program structure
- · Writing correct equations
- Results of operations on data types
- Sequential program execution
 - Get input before doing calculations
 - Complete calculations before output

Northridge

Northridge

21