
Jr: a Language Designed for Beginners

(Less Is More)

David EpsteinJohn Motil
Computer Science DepartmentComputer Science Department

California Institute of TechnologyCalifornia State University
Pasadena, CA 91125Northridge, CA 91330

depstein@cs.caltech.edujmotil @ csun.edu

Abstract
In summary, by using Jr to initially avoid distracting
details, more material was covered, it was covered faster,
and ultimately better (because of the second pass over
some material). This approach put the principles and the
practice into proper perspective.

This paper describes a way of teaching programming to
beginning students, by first introducing them to basic
principles with a small language having a simple syntax
and student-friendly environment which runs in a
browser. Shortly after the basics, students can convert
quickly and easily from Jr to Java. Less at first results in
more later.

This Jr language was designed in the spirit of Blaise
Pascal, who once wrote that he would have written a
shorter letter if he had more time.

Introduction
Jr is a programming language designed for beginners. It
has minimal punctuation; no semicolons or curly braces
to misplace. It does not have inheritance; inheritance is
not typically introduced in the first half of a beginning
programming course. It has only one-dimensional arrays;
higher dimensions can be created as classes. It aims for
there to be only one way to do anything: one constructor,
one integer type, one real type, one kind of comment, one
repeat form, one choice form, etc. By avoiding the
"many" ways to do similar things, Jr avoids considerable
confusion, and saves an amazing amount of time. This
time can be spent on principles rather than details.

1. WHY: The Problem(s); More is Less

Most programming languages that are being used in
beginning classes are large and complex. These
languages are full featured, with industrial strength
development environments. Even the formerly little
language of Pascal has been abandoned by many
suppliers, or morphed into a larger language (Delphi).
Similarly, the modest Modula has grown into the bigger
"Black Box" (formerly Oberon). Even Basic is big
(Visual Basic). This leaves very few small languages for
beginners[1].

Partway through the semester (before the half-way point)
Jr is transferred into Java, rather quickly and simply,
either manually or automatically (in an environment).
During this transition the previous principles can be
reviewed in Java, with more detail (showing two kinds of
reals, three kinds of comments, four kinds of integers,
and five ways to increment, with their associated
problems). Then more material can be covered
(uncovered) using Java.

Some students learn readily to use the huge
environments, editors, debuggers, workarounds; but
many of the skills are not "portable" and take time away
from principles. They also may give wrong impressions;
for example, no matter what principles the instructors
may try to teach, the computer (compiler) seems to tell
the students "It's the syntax, stupid!".

Previous experiences of teaching large languages
suggested that many beginners have problems with the
sheer size and complexity of such large languages. Even
the better students can become frustrated and change
their major to mathematics, business, or something else.
So we were careful at CSUN when introducing Java for
the first time. The results, however, were lower than
expected. We had not covered as much material as
anticipated, and the students seemed to understand that
smaller amount less. This consensus was confirmed by a
pretest given at the beginning of the following course.

Jr also includes "pure" functions (without side-effects),
assertions (preconditions, postconditions and class
invariants), and exception handling; in essence,
programming by contract. Since the Jr language and
environment is built for beginners, the time saved
compared to using professional languages and
environments can be used to consider these disciplined
programming concepts.

After introducing Jr, this paper also shows another way
to describe syntax using a visual nesting of boxes of
various kinds.

Students felt that they learned a lot, but much of it
involved details which were not fundamental. This
second course used another platform, and student's
"knowledge" did not transfer readily. Some students

forgot the fundamentals but remembered the details
associated with the previous platform and environment!
Unfortunately it is often easier for them to remember
details than to digest concepts.

 If C then if (C) {
 A A;
 Else } else {
 B B;
 D D;
 EndIf } // EndIf

2. HOW: The Evolution of a Solution

In the dozens of years of teaching beginners at CSUN we
used various languages, from Fortran to Pascal, to
Modula, to C++, back to Modula and are now trying
Java. We often introduce basic concepts visually, using
some diagrams (class diagrams, flow blocks, datagrams,
sometimes even flow charts) and use a simple pseudo-
code for "linear" communication before coding into a
"real" language. This is quite effective as the pseudo-
code prevents premature coding with its emphasis on
syntactic details rather than basic principles. However,
students often resist the pseudo-code step, jump directly
into coding, and get bogged down in details.

Notice that in the above case (involving a single action)
the curly brackets in the Java code are not necessary, but
such extra braces are not removed in order to avoid the
dreaded "dangling-else" problem. The dangling refers to
the "else" as in the following Java:
 if (a) if (b) x; else y;
where it is unclear which of the two ifs corresponds to
the single else. Beginners don't even notice that there is a
problem here. This problem cannot occur in Jr, but it
plagues C, C++, Java, and even Pascal.

Use of the Jr environment resulted in less emphasis on
Java (every line of Jr was converted into one line of Java,
correctly), so students did not need to be concerned about
the syntax of Java. Even though they didn't write the Java
(yet), students saw the Java code, they understood it,
usually, but they did not need to get into the details of
Java directly at an early stage. This actually saved
considerable time. Less is more!

The Solution: Jr

The solution seemed simple; program the pseudo-code!
But it took two semesters to work out the details of
essentially another language. Design of a language, even
a small one, was not a simple process. Design by two
people probably doubles the time but results in a nice
creation of combined ideas! Then, what seemed simple to
us was not always simple for students, so the language
went through many refinements.

Beginners often "imprint" to their first language or
paradigm, and if it is too strongly engrained in them they
may find difficulties in changing to another. To prevent
such a "single mindset" we introduce two paradigms.
First we briefly teach the procedural (imperative, top-
down, control-flow, action-oriented) with the simple
choice form and loop form. We are careful not to spend
too much time on algorithms with complex nests of
choices and especially loops. Then we quickly cover
some data-flow concepts to introduce methods (functions
and routines) and encapsulation, before introducing
object-oriented programming. Admittedly, this multi-
view may be somewhat confusing to beginners, but it
prevents perverse preferences in the long run. This
constitutes real teaching versus only training.

During the first semester, Jr was used mainly as a
pseudo-code, strictly on paper. The constructs were such
that each line of Jr converted to one line of Java code.
But students did this conversion line by line manually, an
error prone process. Jr was at that time essentially a
subset of Java, but Java was still "lurking" in the
background, providing weird error messages and
tempting students to venture outside of the subset, often
wasting valuable learning time.

By the second semester of this experiment the language
was rather refined. Also, a programming environment
was created to convert the Jr code to Java code,
automatically. The environment has two panels side by
side; Jr code is entered into the left panel, and it is
converted automatically (and correctly) into Java in the
right panel. Any errors in the Jr programare displayed
below, in a bottom third panel; only one error is shown at
a time. When the conversion is completed (we say that
the "Java is brewed")students can compile and run this
Java code on whatever Java system they wish; we used
various versions of the Sun JDK. In later versions the Jr
code is rundirectly from the web.

3. WHAT: The Language; Jr

The language Jr is small and simple. It has very few
punctuation symbols. It has no colons, semicolons, curly
brackets, or other such symbols which are extremely
common in most other languages (and often have have
many meanings in a language). Since it has no
semicolons only one instruction is permitted on any line;
this is not a big problem for beginners. If they don't have
semicolons or curly braces they cannot misplace them!
Less is more!

A typical conversion showing the one-to-one side-by-
side similarily follows:

Uniqueness is a special feature of Jr, in the sense that
there is only "one" of most things; one integer type (an
int, rather than a short, a long, a byte, etc.). It has only
one real type (rather than a float and a double). It has one
string type (not both a string and a character type);

characters are simply short strings. There is only one
Repeat form and one Choice form (an If, but no case
form). It allows only one constructor, not many as in
most modern object oriented languages. There is only
one kind of comment, not 3 as a Java. There is only one
way to increment. Later, after converting to Java,
students can learn many (5 or more) ways to increment,
and the associated problems. For beginners, one way is
sufficient; more ways, and reasons to choose among the
many different ways, can come later.

 Repeat
 <instructions, if any>
 ExitOn <boolean expression>
 <instructions, if any>
 EndRepeat

It has been shown (by Soloway [4] and others [3]) that
such a repeat construct which has a "closer cognitive fit"
with individuals preferred cognitive strategy is easier to
use effectively and is less prone to error.

Jr has no BEGIN-END (like Pascal) and no curly {}
braces (like C or C++) because each form, such as the If
has a corresponding EndIf, each Class has an EndClass,
each Function has an EndFunction, etc. This bracketing
or "sandwiching" has a consistency and simplicity which
is appealing to students. This kind of construct also
prevents problems, such as the "dangling-else" problem
(previously mentioned).

An important goal of Jr is to be a beginner's language,
and to move on to Java quickly. For this reason various
limits were imposed on the language. Data structures are
limited in Jr. it has only single-dimensional arrays; there
are no arrays of two or more dimension. However, the
class structure of Jr can be used to easily create multi-
dimensional arrays. Growing larger programs is done
using composition and the has-a relation; inheritance, the
is-a relation is left for Java. Inheritance seems too
complex a concept to introduce at too early a stage.

3.1 New Syntax Notation; nested boxes

Syntax of a language can be expressed in many ways
(BNF, EBNF, syntax diagrams, etc), but yet another way
was discovered here. It consists of a kind of template,
skeleton or outline of nested boxes. Boxes with dashed
lines surround those parts that are optional, i.e. can
appear zero or one time. Dotted boxes surround those
parts which can be repeated any number of times
(including zero). In the following syntax definition of the
Choice form, the "ElseIf Part" can occur often, whereas
the "Else Part" can occur once at most. The number of
occurrences is suggested by the number of symbols (few
dashes, many dots); that is very easy for beginners to
remember

Jr includes many intrinsic or built-in functions (involving
strings, trigonometry, etc) which in Java are more
awkwardly called from various Java classes (involving
the name of the classes, such as Math.sin(X)). However,
this language does also allow the importing of classes
from Java.

Input and output in Junior are most convenient for
beginners. Most introductory Java texts create their own
input libraries (with a method for each type, such as
ReadInt, ReadDouble, ReadString, WriteInt, WriteFloat,
etc), whereas Jr has a single "Input x" instruction for
whatever type x may be.

 If <expression> then Very few new words are introduced in this language. The
name "box" is used instead of variable, to avoid
confusion with the mathematical concept of that name.
This keeps the newer, more dynamic concept from
interfering with the older "static" concept. The word
"slot" is used instead of parameter or argument, and it is
represented graphically as a slot.

 <instructions>

 : ElseIf :
 : :
 : <instructions> :

 +---------------------+ The language is both textual and graphical; it appeals

both to the left and right brain. The two-dimensional
nature of the code is emphasized by indentation.
Indentation in general is not required, but it is required
that the If and EndIf be indented the same amount; they
must begin in the same "column" (and similarly for the
Repeat and EndRepeat, the Class and EndClass, etc).

 | Else |
 | |
 | <instructions> |
 +---------------------+
 EndIf

Documentation in the form of a single "Does" line is
required in every class and every method (function or
routine). A name of the author is also required at the
beginning of every class. Other documentation can be in
the short form of comments following a double-dash to
the end of the line.

Repeat is the only loop form; it allows just one exit from
the loop which can occur at the beginning, at the end, or
in the middle as long as it is not inside a Choice form.
Using this one Repeat form, it is easy to create While,
Until and For loops. The syntax blocks defining the
Repeat form follow.

Beyond Java: Unmodifiable Public Data,
Pure Functions, Assertions, Exceptions,
and Programming by Contract

A simple exception handling facility is also provided,
mostly to teach the concept of exceptions. There are two
instructions in Jr use to introduce exception handling,
TryCall and TrySet. There is a Jr file I/O library which
offers, for example, a readLine() method on a JJInFile
object. One is not allowed to call this method with the Jr
Call instruction. Instead, the TryCall instructions must
be used. If the readLine fails, the TryCall instruction is
used to either set a box or call a method. For example:

Java sometimes gives beginners too much freedom,
leading students to develop poor programming habits. Jr
imposes some limits on what can be accepted. For
example, a public "box" cannot be modified outside the
class in which it is declared. That is, the following is not
allowed:

 TryCall aReadFile.readLine()
 a.b = 3; // this is allowed in Java

 onFail badRead = true

The same code in Jr
The TrySet instruction is used when attempting to
convert a string to an integer. Upon failure, it also can
set a box or call a method. For example:

 Set a.b = 3 -- this is not allowed in Jr

reports an error.
 TrySet anInt = StrToInt(s)
 onFail reportBadIntString with (s)

All functions in Jr are defined to be "pure", which means
that they have no side-effects. Functions in Jr cannot
both return a value and also modify an object. For
example, in the proverbial stack example, the pop
method both returns the top value and modifies the stack
position. Instead, there are two separate methods, a "top"
function to return the top, and a "pull" routine
(procedure) to modify the stack.

Notice that calling a method uses the word "with" if there
are any "slots" passed to the method.

4 WHERE:
The environment for Jr, with teaching materials, is
available on the web at
 www.publicstaticvoidmain.com

Programming by contract [2] is possible in Jr, but not
required. It involves assertions in the form of
preconditions, postconditions and a class invariant.
Preconditions and postconditions are done using
PreCheck and PostCheck instructions. The class
invariant is done using Check instructions inside
Invariant and EndInvariant instructions. A Check
instruction is of the form:

Summary
Using a simple language initially allows beginners to
avoid distracting details, and results in more material
being covered, at a faster pace, and ultimately better
(because fo the second pass over some material). Less at
first is more later.

References Check <condition> bounce <string>
[1]Kolling, M and Rosenberg, J. Blue - A Language for
Teaching Object-Oriented Programming. SIGCSE
Bulletin, 28, March 1996, 190-194.

Similarly, PreCheck and PostCheck instructions are of
the form:
 PreCheck <condition> bounce <string>

[2] Myer, B. Object-Oriented Software Construction,
Prentice Hall (1997).

 PostCheck <condition> bounce <string>

Since Jr functions are free of side-effects, there is no
reason to call the class invariant when returning. A
public Jr routine, however, calls the class invariant (if
one is supplied), before returning. Since private Jr
routines are not allowed to call public Jr routines, there is
no messy handling of calls to the class invariant (for
example, a public routine can call a private routine
without needing to reinstate the class invariant).

[3] Roberts, E. Loop Exits and Structured Programming:
Reopening the Debate. SIGCSE Bulletin, 27, March
1995, 269-272.

[4] Soloway E., Bonar, J. and Ehrlich, D. Congnitive
Strategies and Looping Constructs: an Empirical Study.
in Soloway, E. editor, Studying the Novice Programmer.
Lawrence Erlbaum Associates, publishers, 191-207.

For example, in an Account class the routine debit which
withdraws a given amount could have the two pre-
conditions:

The following class, describing a bank account, shows
many aspects of the language Jr. Some of the names have
been shortened so that they fit into the narrow column. PreCheck (amount >= 0.00)

 bounce "Negative debit!"
 PreCheck (amount < balance)
 bounce "Insufficient amount!"

Import JJIO
Class Account

-- Name Ann Onymous
-- Does provide a simple savings bank account
-- Shows much of the programming language Jr
-- Shows PbC, Programming by Contract

-- Data attributes, fields

 Box balance ofType real is private
 Box identity ofClass Str is public

 Invariant
 Check (balance >= 0.00)
 bounce "Negative balance!"
 Check (identity != null) bounce "Null id!"
 EndInvariant

 Constructor Account (b, i) is public
 Slot b ofType real -- account balance
 Slot i ofClass Str -- identification
 -- Does initialize or open the account
 PreCheck (b >= 0.00)
 bounce "Negative initial balance!"
 PreCheck (i != null)
 bounce "Null initial identity!"
 Set balance = b
 Set identity = i
 EndConstructor Account

 Routine setBal (amount) is public
 Slot amount ofType real
 -- Does set or reset the amount of balance
 PreCheck (amount >= 0.00)
 bounce "Setting negative balance!"
 Set balance = amount
 EndRoutine setBal

 Function getBal (none) ofType real is public
 Box result ofType real
 -- Does return balance in account
 Set result = balance
 EndFunction getBal

 Routine credit (amount) is public
 Slot amount ofType real
 -- Does deposit an amount into account
 PreCheck (amount >= 0.00)
 bounce "Negative deposit!"
 Set balance = balance + amount
 EndRoutine credit

 Routine debit (amount) is public
 Slot amount ofType real
 -- Does withdraw an amount from account
 PreCheck (amount >= 0.00)
 bounce "Negative debit!"
 PreCheck (amount <= balance)
 bounce "Insufficient balance!"
 Set balance = balance - amount
 EndRoutine debit

 Function canCover (amount) ofType bool is public
 Slot amount ofType real
 Box result ofType bool
 -- Does check if balance covers amount
 Set result = (balance >= amount)
 EndFunction canCover

 Routine compound (percent, duration) is public
 Slot percent ofType real -- percent rate
 Slot duration ofType int -- time duration
 Box rate ofType real -- interest rate
 -- Does compound balance at a rate for a time
 PreCheck (duration >= 1)
 bounce "Negative duration!"
 Set rate = percent / 100.0
 Repeat
 ExitOn (duration == 0)
 Set balance = balance + balance * rate
 Dec duration by 1
 EndRepeat
 EndRoutine compound

 Routine getFrom (account, amount) is public
 Slot account ofClass Account
 Slot amount ofType real
 -- Does transfer from one account to this
 PreCheck (account.balance >= amount)
 bounce "Insufficient balance!"
 Call account.debit with (amount)
 Call credit with (amount)
 EndRoutine getFrom

 Routine show (none) is public
 -- Does display the account
 Output "Account " + identity + " has balance "
 Outputln balance
 EndRoutine show

 Routine test (none) is private
 Box his ofClass Account
 Box her ofClass Account
 Box amount ofType real
 -- Does test Account class
 Start
 New his ofClass Account with (100.0, "Dad")
 New her ofClass Account with (0.0, "Mom")
 Call his.credit with (200.00)
 Call his.compound with (10.0, 8)
 Call his.show
 Output "Enter her deposit "
 Input amount
 Outputln amount -- echo
 Call her.setBal with (amount)
 If his.canCover (600.00) then
 Call her.getFrom with (his, 600.00)
 Else
 Outputln "No transfer possible"
 EndIf
 Call her.debit with (300.00)
 Output "Her balance is "
 Outputln her.getBal()
 EndRoutine test

EndClass Account

