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ABSTRACT

Suppose n observations are to be taken within a compact region, where
the objective is to estimate the mean level of a multidimensional stationary
process using the ordinary sample mean as the estimator. Simulated annealing
is used to search for optimal (variance minimizing) designs for the case when
the observations are correlated. The results give insight into the sensitivity of
optimal designs to the strength and nature of the correlation present, extending
and reinforcing previous results for the one-dimensional case. An important
outcome is that designs which space out the sampling locations evenly are

optimal if the correlation is low.

1. INTRODUCTION

Consider the problem of estimating a quantity whose level is unknown

but assumed to be constant over a given region, by means of taking observa-
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tions at several sites within the region. Frequently, the observations at various
sites are dependent, with correlation being a function of distance ("isotropic"),
decreasing but probably not well known otherwise. Examples may include test
drilling to measure either the mean amount of recoverable oil per unit area in
an oil field or the ore content in a mineral deposit, or sampling trace amounts
of a chemical pollutant in a body of water. Similar situations arise in geogra-

phy, ecology (e.g., transect sampling), economics, and studies of turbulence.

Let the values of the quantity of interest be represented by

Zi =Z(X1i,X2i, vt ,xpi)=u+8i, i = 1,' L, n,

where the (xy;, - ,x,)’s are the sampling locations and the errors g; are
normally distributed with E(g;) = 0, Var(g;) = 62 and Corr(g; ,€j) = vp(dy;) for
0<y<1, where d;; = [(x;—x1;)% + "+ + (x;—%,;))]"2. Assume also that
p(0) =1 and that p(d;;) decreases to zero as d;; — o. This paper concen-
trates on the case when each coordinate is constrained to the interval [-1, 1],
so the sampling region will be either a square, cube or hypercube. Multiple
observations are allowed at the same position ("repeated measures” designs);

when y < 1 these measurements can give different results.

When the correlation is zero, the location of the sampling points is
irrelevant, and the best linear unbiased estimator of p is the ordinary sample
mean Z. If correlation is present but p is not known precisely, the b.lu.e.
cannot be found. However, Z still may be a quite efficient estimator, espe-
cially if the correlation is weak. It is reasonable, therefore, to study the nature
of sampling designs that are optimal for estimating the process mean value p
with the sample mean, giving particular attention to the nature of these designs

as the correlation is lessened.

A major motivation for analyzing the behavior of such designs as the
intrapoint correlation is lowered is that, in practice, the taking of samples often
begins in a relatively small region but then progressively expands to adjacent

areas. Such a sampling scheme, with fixed correlation determined by physical
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properties, can be translatedl into an alternate framework in which the region is
fixed and the correlation at a given distance decreases with n simply by rescal-
ing the region down to a standardized region as new observations are taken.

The results obtained below extend to multiple dimensions the work of
Bickel and Herzberg (BH, 1979) and Bickel, Herzberg and Schilling (BHS,
1981), who found asymptotic and exact finite one-dimensional designs for
estimating the mean of a stationary first order autoregressive process plus an
independent error. Evidence is presented that indicates that designs in which
the observation points are spaced out evenly over the design region are again
favored when the correlation is low, as was found for one dimension in BH
and BHS.

To determine an optimal design for a given model structure and choice of

parameter values, it is necessary to minimize the design variance

Var(Z) = [l + l;ii lil, p(d,-)-)}(s2 .
n ntizj=1

The value of y clearly affects the variance but does not influence the optimal
design itself. Finding variance minimizing solutions to the general design
problem analytically in more than one dimension appears to be an intractable
problem. The recently developed numerical method known as simulated
annealing, however, provides an effective means of finding optimal or very
nearly optimal solutions.

While the scope of the numerical studies reported here obviously cannot
address all of the possible variations allowable by the model given above, an
attemnpt is made to assess the sensitivity of the optimal design to the particular
correlation structure as well as to the shape of the design region. Two specific
correlation functions are studied: p(d) = e~M | which is the correlation func-
tion used in BH and BHS, and p(d) = e’ The first of these is convex on
0<d <o but not analytic, while the second is analytic but not convex.
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2. THE ANNEALING ALGORITHM

The simulated annealing algorithm is a simple procedure useful for
searching for the minimal value of an objective function V that is not convex,
or at least is not known to be convex. Given an initial configuration, succes-
sive configurations are generated as a random walk over the configuration
space. A configuration is accepted with probability p =1 if it lowers or main-
tains the value of the objective function and with probability p <1 if it raises

-AVit . AV is the increase in

the value of the objective function, where p = ¢
the value of the objective function from the old configuration to the candidate
for the new configuration, and ¢ is a parameter known as temperature because
of its analogous role to ordinary kinetic temperature in actual chemical anneal-
ing. The value of r is reduced slowly, making the rule for acceptance of
configurations that increase V progressively more stringent as the process
evolves. Detailed information on simulated annealing can be found in Kirpa-
trick, Gelatt, and Vecchi (1983), Bohachevsky, Johnson and Stein (1986), and

van Laarhoven and Arts (1987).

Simulated annealing has recently begun to be used in problems of statisti-
cal design (Haines (1987), Meyer and Nachtsheim (1988), Sacks and Schiller
(1988)). For the present application, the objective function is V = Var(Z) and
the configuration space is pn -dimensional, with each coordinate x;; constrained
to the interval [-1,1]. Since this is not a problem of combinatorial optimiza-
tion but rather one involving continuous variables, the specification of new
configurations according to some random walk is more open than in most
combinatorial problems. One possibility is to use a local measure of the topol-
ogy of the objective function at each stage, to cause the random walk to favor
more promising directions over less promising ones; Vanderbilt and Louie
(1984) developed such a procedure which, after the beginning stages, is based
on a covariance matrix of the accepted steps comprising the recent history of
the random walk. That approach is not employed here due to (1) the consider-

able amount of computation required for each step, and (2) concem that bias-
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ing the random walk by shape information would increase the risk of trapping
design configurations in local minima. Instead, only one point is moved on
each iteration and the step distribution is taken ‘to be uniform in direction,
except for influences due to the design region’s boundary. Keeping the point
in bounds requires special handling. Using a technique due to Box (1966), the
new coordinates (xj}, j=1,--,p) of the point moved are kept within

[-1, 1] by the transformation
xj; = sin(arcsin(x;;) + cdu;), j=1,--",p,

where u = (ul,...,up) is a random unit vector whose direction is uniformly
distributed, the random scalar ¢ is chosen according to a standard Cauchy dis-
tribution, and & is a parameter which decreases proportionally with tempera-
ture. When & becomes small, the distance that the i-th point moves is thus
approximately ¢ § when the point is not near the boundary; near the boundary
the steps tend to be shorter. The use of a Cauchy step size distribution was
suggested by Szu and Hartley (1987), and outperforms finite variance step dis-
tributions in this application -- perhaps due to the fact that the occasional very
large steps generated allow a more thorough search of the configuration space,

with less trapping near suboptimal configurations.

A homogeneous version of the annealing algorithm is used, that is, many
iterations are computed at each temperature value (see van Laarhoven and
Aarts (1987)). When no improvement occurs in 250 consecutive iterations,
both temperature and the step size parameter are decreased at a rate inversely
proportional to the number of stages used in the process so far. The effect is
that the probability of the acceptance of detrimental steps is adaptively deter-
mined. This approach was used successfully by Bohachevsky, Johnson and
Stein (1986) to speed up the annealing algorithm in its later stages. The algo-
rithm eventually terminates when a sufficient number of stages passes with no

further lowering of the variance at four decimal places.

Initial configurations were chosen randomly according to a uniform meas-

ure. In several cases, different random configurations or even nonrandom, pat-
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FIG. Ia. Optimal Designs forp=e™ n=5,6,7.

temned configurations were tried as the initial design. In most cases the initial
arrangement had no effect on the design found by the algorithm except for
rotation and reflection; in no case was a design obtained which was
significantly inferior to another design found on a different run with the same

parameter values.
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FIG. Ib. Optimal Designs for p =™, n =8, 9, 10.

3. RESULTS FOR TWO DIMENSIONS

The primary focus of the investigation is to determine the nature of two-
dimensional sampling plans for a square sampling region. The sample sizes
chosen for study were n = 5, 6, 7, 8, 9, 10, 16, 20, 25 and 36. The reasons
for using these values was (1) to choose a consecutive sequence of small
values to learn the effects of adding a single new point to a design, (2) to use
perfect squares in order to allow comparison to square lattice designs, and (3)
to select several multiples of four to take advantage of the four-way symmetry
of the design region. The values selected for the correlation parameter A range

from 0.1 to 10, which covers a wide range of correlations varying from quite
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FIG. Ic. Optimal Designs for p = ™ n =16, 20, 25.

high to almost no correlation at typical interpoint distances. The parameter y
was not varied because its value affects only the variance of the design but not
the design itself.

Figures 1 and 2 display most of the designs found by the annealing algo-
rithm. Although there is no guarantee that each design shown is the best pos-
sible, it is highly likely that the great majority of the designs given are indeed
optimal and that those that are not are very close to optimal. All designs for

i
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FIG. Id. Optimal Designs for p = ¢™  n =36 (square), 25 (circle).

which A is smaller than for the configurations displayed in the figures distri-
buted the n sampling points as evenly as possible on the comers of the square.
One such corner design is shown (n =8, A =0.5). Each other design not
shown is precisely the same as the design directly above it. For example, in
Figure 1b, the designs for (n,A) = (9,5) and (9, 10) are not shown because
they are the same as the design displayed for (n,A) = (9,2). Unparenthesized

numbers next to design points represent multiple observations which coincide
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FIG. Ila. Optimal Designs for p = eM n=567.

to within .01. Parenthesized numbers indicate clusters which may appear to be
a multiple design point but which actually include at least some points whose
values vary by at least .01.

Denote the variance of the optimal design found for particular n and A by
V,(A). Tables 1 and 2 below give these minimum design variances for the

-Ad Ad?

case Y=1 for p=e and p =e™, respectively. The value for A = o

(independence) is included for comparison.
Each simulation was run until the design variance stabilized at four

decimal places and no new lower variance values were occurring. Simulations

were performed using Fortran on a VAX 8550. Typical running times were
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FIG. IIb. Optimal Designs for p = e M = 8,9, 10.

about 3.5n seconds, involving perhaps 1200n iterations although variances
within .001 of the minimum were normally found within only about 1.5n
seconds and 500n iterations. Only one point is changed in each iteration, thus
it is not surprising that the running time of the algorithm is roughly propor-
tional to n, since the point moved must be recompared to the n—1 remaining
design points.

Several researchers have noted that simulated annealing converges quite
slowly in the late stages of the run. Running times to achieve a variance
within .001 of the stable minimum usually varied only slightly according to
the initial configuration used; times to actvally reach the bottom were some-
what more variable.

There were some cases in which different initial designs led to distinct
limiting designs with possibly unequal variances. Typically the difference

between the designs found involved a slight variation in the number of points
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FIG. Ilc. Optimal Designs for p = e’ n = 16, 20, 25.

to be spread around the interior of the square. In every case, however, the
variances of the competing designs differed by at most .0007, and typically by
much less. For example, for the case p = e n =20, A=10, three different
designs were found having either six, seven or eight points arranged in the

interior; however, the variances of these designs were identical to four places.

The results of the design study for two dimensions can be capsulized as

follows. The statements below apply to both correlation functions:

(1) For A sufficiently small, the optimal design takes observations only
at the corners of the design region, distributed numerically as evenly as

possible.
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FIG. IId. Optimal Designs for p = M n=136 (square), 25 (circle).

(2) For A sufficiently large, the optimal design spaces the observations
evenly over the design region, with several on the edges and at the
comers; in particular, if n is a perfect square then the optimal design

is a uniform square lattice.

(3) For intermediate values of A, the optimal design has a higher den-
sity of points at the edges and/or corners of the design region, with few

or no points in the interior.

The intuitive rationale for these results is that when A is small, the corre-

lation function has influence over an intermediate to long range; for the
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TABLE I
Design Variances, Y= 1,p = e™
n ; A=01 02 0.5 1.0 20 5.0 10.0 o0
5 .8539 7381  .5060 .3287 2253 2003 .2000 .2000
6 .8510 7335 5033 3163 .2048 .1676  .1667  .1667
7 .8509 7327 5013 3098 1874 1443 1429 1429
8 .8478 7272 4947 3032 .1728 1268  .1250 .1250
9 .8497 7305 4954 3029 .1680 .1133 1111 1111
10 .8489 7294 4934 3015 1643 1035 .1000 .1000
16 .8478 7272 4901 2935 1491 0707 .0628  .0625
20 .8478 7272 4895 2921 1463 0613 .0506 .0500
25 .8480 7276 4894 2911 1436 .0547 .0410 .0400
36 .8478 7272 4888 2899 1409 .0473 0298 .0278
TABLE II
Design Variances, y=1, p = eM
n | A=0.1 02 0.5 1.0 20 5.0 10.0 oo
5 .7096 5442 3494 2492 2060 .2000 2000 .2000
6 7005 5336 3430 2544 1876 1669 .1667 .1667
7 7037 5349 3361 2477 1740 .1438 1429 1429
8 6975 5251 3222 2390  .1612  .1264  .1250 .1250
9 7012 5310 3306 .2408 .1549  .1131 1111 1111
10 | .6986 5282 3297 2389 (1587 .1055 .1002 .1000
16 6975 5251 3222 2359 1564 .0845 .0647 .0625
20 6975 5251 3222 2348 1557 .0839 0569  .0500
25 6980 5259 3233 2339 1545 .0840 .0513  .0400
36 6975 5251 3222 2341 (1539 .0830 .0496 .0278

comer design the great majority of the ['5] terms contributing to the covari-

ance component of Var(Z) come from point pairs in which the pairs are

widely separated. The penalty paid by taking multiple samples at the same

location is more than offset by the high proportion of pairs that are far apart.

On the other hand, when A is large the correlation effects are felt only over the

short range; it is thus important in this case to keep the minimum distance

between points as large as possible. This leads to uniform spacing.
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In particular, the optirhal design samples only at the corners for p = e™™M
if A <0.2 and for p = e™M" if A < 0.5, regardiéss of n. Note that the variance
values in Tables 1 and 2 for these cases are identical for n = 8, 16, 20 and 36.
This is because each of these designs places 1/4th of the observations at each
corner; since y=1 in the tables, repeated measurements at the same location
give identical results, thus these designs merely represent multiple copies of a

simple four point corner design.

Uniform square lattice configurations occur for both correlation functions
when A 22 for n =9, A25 for n =16, and A =10 for n =25. For
n =36, the uniform square lattice is found for A = 10 for p =™, but a
higher value of A is required for p = e~ * When n is not a perfect square,
the designs for large A are not lattices but still convey a strong measure of
uniformity.

It is easy to visualize the progression of designs dynamically by viewing
sets of figures in sequence, especially for the larger values of n. For
p=e™

corners, then begins to peel points off to the edges, where they space them-

, as A increases, the design for a given n begins with all points in the

selves regularly. Then points begin to jump to the interior, spreading out
according to their number until eventually the process stabilizes with a lattice
or lattice-like limiting design. Interestingly, there are no designs with muitiple

points at the corners that take any observations in the interior.

Forp = e’ the situation is similar except that small sets of observation
points are sometimes placed at the same or nearly the same location; the ten-

dency to spread out evenly at the individual point scale is less dominant. This
2 in the

M'

is undoubtedly due to the flat shape of the correlation function p = e~
neighborhood of d =0, as opposed to the peak which is present in p=e~
Thus the primary effect of analyticity is the allowance of optimal designs that

retain point clusters at locations other than the corners.

Frequently an approximately triangular lattice appears in the interior of
the region; see for example (n,A) = (20,10), (25,5), and (36,5) for both




Downloaded by [mark schilling] at 10:47 05 April 2013

258 SCHILLING

Frequently an approximately triangular lattice appears in the interior of
the region; see for example (n,A) = (20,10), (25,5), and (36,5) for both
correlation functions. It is reasonable to conjecture that this phenomenon

would be even more prevalent were it not for the influence of the boundary.

A brief investigation of the nature of designs for a circular region was
also conducted. Designs found for n = 25 are shown in Figures 1d and 2d.
Solutions for the case of low correlation (high A) appear very similar in nature
to designs obtained for square sampling regions. For the case p = e™M A =1
(and to some extent A = 2 also), the annealing program failed to find an ord-
erly arrangement of points. Calculations show that for this value of A, the
range of significant influence of p covers many intrapoint distances for which
p is concave upwards and many for which it is concave downwards. The
correlation function is roughly linear in this range, hence the tradeoff between
a design having many small interpoint distances and a design with some zero
intrapoint distances and some moderately small intrapoint distances is about
even. As a result the optimization procedure has difficulty choosing between

an equally spaced design and a design which clusters points in pairs.

Wille and Vennik (1985) have employed simulated annealing to deter-
mine configurations of equal point charges which minimize the total potential
energy of the system, when the point charges are constrained to lie within a
circle. Although the Coulomb potential function they utilize is quite different
from the exponential based correlation functions used here, the configurations
they obtain are much like those exhibited in Figures 1d and 2d. Optimal
arrangements thus appear to be fairly robust with respect to variations in the
dependency structure. Energy minimizing configurations on a sphere are
found in Wille (1986).

Sacks and Schiller have also studied the problem of design for a closely
related model to the one employed here, using the same two correlation func-
tions. Although some of their designs share the characteristics of spreading

points out fairly evenly and placing many points on the boundary, these
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arrangements do not reveal the same regulafity as the designs found here.
Apparently this is due to the fact that their design space is limited to a lattice
rather than being a continuous region. Their examples also do not detect the
tendency for design points to occur in pairs for the analytic correlation func-
tion p = ™M, probably because a range of values for the parameter A was not

explored.

In the one-dimensional location problem studied in Bickel, Herzberg and
Schilling (1981), the equally spaced design was shown to compete extremely
favorably with the optimal design when the correlation is low. In two or more
dimensions, there is more than one candidate for a design having uniform
spacing. The three regular lattices are each valid choices for the spacing of
the interior points. Since the design region treated here is a square, the
optimal designs found for the cases when n is a square are compared to the
corresponding square lattices. In addition, the case n = 20 is compared to a
five-by-four rectangular lattice. Let the variances of these rectangular lattice
designs be denoted by L, (A), and define the efficiency of a lattice design rela-
tive to the corresponding optimal design by V,(A)L,(A). Tables 3 and 4

Ad

present these efficiencies for the two correlation functions p =e¢™ and

p =’

efficiency values are seen to be quite high in general, increasing towards 1 as

and for three values of the repeated measures parameter y. The

p — 0, ie., as A increases. Also, efficiencies of uniform designs become
higher as y becomes smaller, i.e., as the dependency between two observations

at the same location decreases.

4. RESULTS FOR HIGHER DIMENSIONS

A more limited study was conducted in three and four dimensions in
order to verify the extension of the behavior found for one and two-
dimensional designs to higher dimensions, and to check the performance of the

algorithm for such problems. The results indicate that (1) the nature of
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TABLE III
Efficiencies of Uniform Rectangular Lattice Designs, p = ¢

A |y=10 05 02 | =n
0.1 | 0980 0982 0987 | 9
0.1 | 0967 0969 0974 | 16
01 | 0964 0966 0971 | 20
0.1 | 0961 0963 0967 | 25
0.1 | 0957 0959 0962 | 36
02 | 0966 0970 0979 | 9
02 | 0942 0947 0956 | 16
02 | 0937 0941 0950 | 20
02 | 0932 0935 0943 | 25
02 | 0924 0927 0933 | 36
05| 0954 0962 0975 | 9
05| 0907 0916 0936 | 16
05 | 0895 0904 0923 | 20
05| 0883 0891 0909 | 25
05| 087 0873 0889 | 36
1.0 | 0970 0978 0988 | 9
10 | 0904 0920 0946 | 16
10 | 0885 0900 0928 | 20
10 | 0866 0880 0.909 | 25
1.0 | 0840 0852 0879 | 36
20 | 1000 1.000 1.000 | 9
20 | 0956 0968 0983 | 16
20 | 0938 0953 0973 | 20
20 | 0916 0933 0959 | 25
20 | 0881 0899 0930 | 36
50 | 1.000 1000 1.000 | 9
50 | 1.000 1000 1.000 | 16
50| 0990 0995 0998 | 20
50 | 1000 1.000 1.000 | 25
50 | 0981 0988 0994 | 36
100 | 1.000 1.000 1.000 | 9
100 | 1.000 1.000 1.000 | 16
100 | 0998 0999 1.000 | 20
100 | 1.000 1.000 1.000 | 25
100 | 1.000 1.000 1.000 | 36

SCHILLING ‘
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TABLE IV
Efficiencies of Uniform Rectangular Lattice Designs, p = ¢

A |y=10 05 02 |n
0.1 | 0896 0909 0934 | 9
0.1 | 0857 0868 0891 | 16
0.1 | 0849 0858 0879 | 20
0.1 | 0841 0849 0867 | 25
01| 0832 03838 0852 |36
02 | 0835 080 0903 | 9
02 | 0772 0792 0834 | 16
02| 0759 0776 0813 | 20
02 | 0747 0761 079 | 25
02 | 0730 0741 0767 | 36
05| 0825 0863 0917 | 9
05| 0717 0752 0819 | 16
05 | 0696 0726 0.788 | 20
05| 0677 0703 0759 | 25
05| 0650 0669 0714 | 36
10 | 0959 0972 0985 | 9
10 | 0824 085 0906 | 16
10| 0789 0820 0.874 | 20
10 | 0756 0785 0840 | 25
1.0 | 0721 0743 0792 | 36
20| 1.000 1000 1000 | 9
20 | 0924 0945 0969 | 16
20 | 0883 0909 0946 | 20
20 | 0842 0871 0916 | 25
20 | 0794 0820 0869 | 36
50 | 1.000 1000 1.000 | 9
50 | 1.000 1.000 1.000 | 16
50 | 098 0990 0995 | 20
50 | 0977 0984 0992 | 25
50 | 0918 0937 0963 | 36
100 | 1.000 1.000 1.000 | 9
100 | 1.000 1.000 1.000 | 16
100 | 0988 0994 0998 [ 20
100 | 1.000 1.000 1.000 | 25
100 | 0995 0997 0999 | 36

-Ad?

261




Downloaded by [mark schilling] at 10:47 05 April 2013

262 SCHILLING

A n=16 n=27
2 2 3 3
2 3, 3
0.5
2 2 3 3
2 2 3
2 2
2 2
1.0
2 2
2.0
50 I !

10.0 ! I T

FIG. Illa. Optimal Designs for p = e, n = 16, 27.

efficient designs that was found for one and two dimensions carries over to
higher dimensions, and (2) the algorithm runs substantially more slowly as the
dimension increases. The latter fact appears to be due to the fact that in con-
tinuous design space optimization problems there is much more space to
search and more directions in which to search when the dimension grows, thus

considerably more iterations are needed before the design settles down.
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FIG. IlIb. Optimal Designs for p = ¢’ n = 16, 27.

Figures 3a, b and c display some of the designs found for three dimen-
sions for n =16, 27, and 40 when the sampling region is the cube [-1,1]3.
As before, designs for values of A less than those shown distributed all sample
points on the corners of the cube, while each other design not displayed is the
same as the one directly above it. As the dependency between observations is
decreased, the points begin to spread out, first onto the edges of the cube, then

onto the faces, and perhaps finally entering the interior. Points occur fre-
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FIG. Illc. Sectioned Display for p = e, n =40, A = 10.

quently at or near the centers of edges or faces. In the case of n =27, the
optimal design for both correlation functions is a 3xX3x 3 cubical lattice when

the correlation is low enough.

A small number of annealings, not shown, were tried for n = 64. Once
again, corner designs were obtained for high correlation and designs
approached the 4x4x4 cubical lattice as the correlation became low. For
moderate correlation, the tendency persisted as in two dimensions for the ana-
lytic correlation function p = e M 1o yield designs which take multiple obser-
vations at points other than at the vertices. A typical case is A =1, which
gave a design placing four to five points on each comer, two on the center of
each edge, and one in the center of each face. Again this clustering behavior

was not found to occur for p = e ™.
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If n is not a perfett cube then the design cannot be a cubical lattice;
however, the designs found still spread the points evenly over the design
region in a lattice-like manner when the correlation is low. The sectioned
display in Figure 3c shows this effect for the case p = e‘Mz, n =40,1=10.

The basic structures of efficient designs found for one, two and three
dimensions continued to appear in annealings performed in four dimensions.
For n = 16 the limiting designs placed all observations at the comer of the
hypercube for all values of A as would be expected since there are 16 corner
sites available. Experiments for n = 81 again showed a progression from
comer designs for strong correlation to lattice designs for weak correlation.
Results are not presented graphically because of the added difficulty in
displaying an extra dimension and because no significant new insights are
gained from these cases.

The propensity for the algorithm to converge to different designs for the
same values of n, A, and p is much greater in three and four dimensions than
in two dimensions. This reflects not on the accuracy of the aigorithm but
rather on the shape of the variance function surface, which appears to have in
many cases a large number of local minima taking on virtually the same vari-
ance value. For example, in three dimensions using p = e with A =5 for

n=16, the following designs were found on separate runs:

#on corners #onedges #onfaces # in interior

6 5 5 0
4 8 4 0
4 7 4 1
3 11 1 1

All four designs had the same variance to four places.

5. CONCLUSIONS

The results presented suggest a reasonably simple strategy for selecting
the locations at which observations should be taken to make efficient estimates
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of the mean of a multidimensional process using the sample mean estimator, at
least in the case when the design region is convex. If the correlation is
believed to decrease rapidly with distance, a design should be chosen which is
evenly spaced over the design region and its boundary, perhaps using a lattice
structure if possible. If the correlation is moderate, then a somewhat higher
density of points should be placed on the boundary and at any extreme points.
If the correlation is high, no observations should be made in the interior of the
design region.

If theoretical considerations suggest that correlation increases rapidly as
the interpoint distance approaches zero, then multiple samples at the same
location should not be taken except possibly at the extreme points of the
design region, whereas if the correlation is believed to vary slowly near zero,
then a limited number of multiple observations may be appropriate at certain
locations. More study needs to be done for other region shapes and for larger

sample sizes in order to determine additional guidelines on this aspect.

The evidence obtained in this paper strongly supports the theoretical and
numerical results of BH and BHS that evenly spaced designs are optimal as
the correlation decreases to zero. Such designs have the additional advantage
of allowing validation of model assumptions--in particular, the constantness of

both the mean and variance over the sampling region.
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