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ABSTRACT ARTICLE HISTORY
We study Poisson confidence procedures that potentially lead to short Received 9 July 2014
confidence intervals, investigating the class of all minimal cardinality Accepted 5 January 2015
procedures. We consider how length minimization should be properly
defined, and show that Casella and Robert’s (1989) criterion for compar- Confidence interval:

ing Poisson confidence procedures leads to a contradiction. We provide 4 erage probability; Poisson
an alternative criterion for comparing length performance, identify the mean.

unique length optimal minimal cardinality procedure by this criterion,

and propose a modification that eliminates an important drawback it MATHEMATICS SUBJECT
possesses. We focus on procedures whose coverage never falls below CLASSIFICATION 2010
the nominal level and discuss the case in which the nominal level repre- ~ Primary 62F25

sents mean coverage.
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1. Introduction

Interval estimation for the rate parameter A of a Poisson distribution based on the observed
value x of a Poisson count X is an important statistical problem, and numerous solutions have
been proposed. See Kabaila and Byrne (2005) for an extensive list. We focus in this paper
initially and primarily on methods that produce a strict level 1 — o confidence procedure C: an
infinite set of intervals {[Ix, ux), x = 0, 1, ...} for which inf, P(A € [lx, ux)) = 1 — a. (We
use half-open intervals to avoid certain technical difficulties that arise with fully open or fully
closed intervals.) The approach we take is based on careful analysis of the coverage probability
function (cpf) of a Poisson procedure, which we describe in depth in Section 2.

Since accuracy is of paramount concern in estimation, it makes sense to focus on confi-
dence procedures that produce intervals that are as short as possible. Specifying what this
means in the Poisson case is somewhat problematic however, since a Poisson confidence pro-
cedure produces an infinite number of intervals, one for each possible value of x. One defini-
tion of shortness is by Kabaila and Byrne (2005), who introduced the “Inability to be Short-
ened” property. A confidence procedure possesses this attribute if increasing any lower inter-
val endpoint or decreasing any upper interval endpoint causes the above coverage condition
to be violated, that is, results in inf; P, (A € [Ix, ux)) < 1 — «. Casella and Robert (1989) gave
an alternative definition of length optimality which we present in Section 3 after describing
several specific Poisson confidence procedures. In Section 4 we show that Casella and Robert’s
criterion leads to a paradox, and provide our own recommendation for comparing the length
performance of Poisson confidence procedures. We then identify the unique length optimal
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minimal cardinality procedure with respect to this criterion. As this procedure has a serious
drawback, in Section 5 we provide a simple modification that resolves this shortcoming while
achieving near optimality with respect to length. Finally, in Section 6 we provide a brief treat-
ment of how to adapt a strict confidence procedure for use as an approximate procedure that
allows coverage to fall below 1 — « for some A but has mean coverage equal to 1 — «. This
produces confidence intervals that are somewhat shorter than for a strict procedure.

2. Length optimality: a coverage probability function perspective

There is a one-to-one correspondence between a level 1 — & confidence procedure and its
cpf CP(X) = P, (A € [Ix, ux)) viewed as a function of A (except possibly on a set of measure
zero). Analyzing Poisson confidence procedures through the structure of their cpfs is central
to understanding their behavior and performance.

A Poisson confidence procedure can be described by its acceptance sets Ay = {x: [, < A <
Uy}, 0 < A < o0; the confidence set for a given x is {A: x € A;). Due to the unimodality of
the Poisson distribution, the only reasonable acceptance sets comprise a sequence of consec-
utive values of x. Define the acceptance curve associated with A; as AC(a-b) = P, (X € A;)
considered as a function of A, where a = min{x € A;}, b = max{x € A, }. The cpf of a Pois-
son confidence procedure comprises a collection of acceptance curve segments, where the
sequences of a and b values obtained as X increases must each be non decreasing in order that
the confidence sets generated for each x are intervals (contain no gaps).

Given any confidencelevel 1 —« € (0,1),let M(A) =minfk: P,(a <X <a+k—1)=1—«
for some a € Z*}, where Z* ={0,1,2, ...}. We call M(A) the minimal cardinality at ». Choosing
for each A an acceptance curve whose acceptance set is of minimal cardinality naturally tends
to lead to short confidence intervals. We say that a confidence procedure whose acceptance
sets have minimal cardinality for all A has the Minimal Cardinality Property.

Theorem 1. If confidence procedure C has the Minimal Cardinality Property, then it has the
Inability to be Shortened property.

Proof. Suppose a strict confidence procedure C has the Minimal Cardinality Property. Now
define a new confidence procedure C' that is identical to C except that for the confidence inter-
val for a fixed xy we increase the lower endpoint by ¢; that is, I, = I, for all x # xq and /, = u,
forall x,butl'y, = I, + &. Thenforall A € (I, I'y,), CP (L) = CPc(A) — P(X = x), hence
the segment of the cpf of C' corresponding to & € [Ly, I, ). is of cardinality one less than that
of C. However, this implies all such A will be included in one less confidence interval; there-
fore the coverage of C' must drop below the confidence level since by the Minimal Cardinality
Property each A was already contained in the fewest possible intervals. Similarly, decreasing
any upper endpoint also causes the coverage probability to fall below the confidence level. In
either case a contradiction to the assumption that C is a strict confidence procedure occurs.
Hence, C has the Inability to be Shortened property. O

In view of Theorem 1, it makes sense to limit attention to procedures that possess the Mini-
mal Cardinality Property. It can be shown that methods based on closed-form formulas (typ-
ically based on normal or other approximations) do not satisty this property; consequently
such procedures are length inadmissible as they produce intervals that can be shortened with-
out their cpfs falling below the confidence level.

As an illustration of the key elements involved, consider the cpf of a confidence procedure
with level 95% that satisfies the Minimal Cardinality Property. For A < 20 this cpf must be
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constructed from portions of the acceptance curves shown in Figure 1, which correspond to
all acceptance sets of minimal cardinality for each A € [0, 20) except those whose use would
force either the sequence of a values or the sequence of b values obtained as A increases to be
decreasing. In the leftmost portion of the figure, where 0 < A < 3.28, the acceptance curve
of minimal cardinality for each X is unique. Thus in this region the lower confidence limits
of a Minimal Cardinality confidence procedure are uniquely determined forx =0, 1, ..., 7.
For A > 3.28, there are many regions in which only one curve of minimal cardinality appears.
When 2 is not within one of those regions, and thus two or more acceptance curves of mini-
mal cardinality are present, there arises the phenomenon Casella (1986) termed coincidental
endpoints.

Coincidental endpoints occur when u, = I, for some pair (x, y) with x < y. Note that
increasing (decreasing) their common value lengthens (shortens) the confidence interval for x
while shortening (lengthening) the confidence interval for y by an equal amount. Coincidental
endpoints are generated by the transition of the cpf from one acceptance curve AC(a-b) to
another, AC(a’-b'), with a < @’ and b < b'. Such a transition point represents the upper limit
of the confidence interval for x = a and the lower limit of the confidence interval for x =
b'. Consider for example the first such instance for confidence level 95% in which multiple
minimal cardinality acceptance curves occur, where AC(0-7) and AC(1-8) overlap for 3.29 <
A < 3.98. Any point within this interval can serve as both the upper confidence limit for x =
0 and the lower confidence limit for x = 8.

For given A and k let S¢(1) = max,P; (a < X < a+ k — 1). Crow and Gardner (1959, p. 442;
see also their Figure 1) proved that for fixed k the function Sx(1) is a non increasing function
of A. It follows that the minimal cardinality M(1) is non increasing, as shown in Figure 2.

We exploit this fact to prove the following.

Theorem 2. Let C be any procedure having the Minimal Cardinality Property. Then all upper
endpoints generated by C are coincidental.

Proof. Let {a} and {b} be the sequences of values for the acceptance curves {AC(a-b)} that the
cpfof Cuses as A increases. As already mentioned, to avoid gaps these sequences must be non
decreasing. Thus an upper endpoint occurs whenever there is an increase in g, while a lower
endpoint occurs whenever there is an increase in b. But since C has the Minimal Cardinality
Property and M(1) is non decreasing, an increase in a must be accompanied by an increase
in b. Thus every upper endpoint is coincidental with at least one lower endpoint. O
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Not all lower endpoints are necessarily coincidental, however. Non coincidental lower end-
points arise when an increase in b is not accompanied by an increase in a, which occurs pre-
cisely at those values of » where M()) increases. Let * be such a value. Just before A* there is a
unique acceptance curve AC(a-b) of minimal cardinality (see Figure 1). Since M(A) increases
at A*, this point establishes the lower endpoint for x = b + 1. Thus all confidence procedures
satisfying the Minimal Cardinality Property produce identical lower endpoints at these val-
ues. Note that lim; 4, CP(1) = 1 — « for such procedures. The various procedures we describe
below are distinguished from each other entirely by the values of their coincidental endpoints.

3. Some specific minimal cardinality Poisson confidence procedures

We begin by briefly considering the procedure described by Garwood (1936), although it does
not satisfy the Minimal Cardinality Property, because of its prevalence as one of the most com-
mon methods for generating Poisson confidence intervals—for example, it is the sole exact
method provided by the StatXact® software. The Garwood intervals are the Poisson analog to
the Clopper-Pearson intervals for the binomial case, obtained by inverting a two-sided test
whose rejection region includes no more than /2 probability in each tail of the null distribu-
tion. The effect of restricting each tail probability rather than limiting the total of both tails
to < o makes the resulting confidence procedure highly conservative, as can be seen from its
cpf, shown in Figure 3.

Note that the cpf for the 95% Garwood procedure jumps rapidly between different accep-
tance curves, and typically has values far above the confidence level. The result is that the
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Garwood intervals are much wider than those obtainable from a Minimal Cardinality confi-
dence procedure, as will be seen later.

The first idea for a confidence procedure that possesses the Minimal Cardinality Property
is due to Sterne (1954) (although his proposal was for the one-sample binomial problem):
Enter x values into A, in decreasing order of their probabilities until P(X € 4;) > 1 — a.
Unfortunately, this sometimes results in the {a} sequence of the procedure not being mono-
tone non decreasing; this yields confidence sets for certain x that do not comprise a single
interval. We discuss this phenomenon further below.

Crow and Gardner (1959) developed the first Minimal Cardinality Poisson confidence pro-
cedure that does not produce gaps in its confidence sets. Their approach, expressed in terms
of the cpf perspective, is to always use the curve AC(a-b) with the largest values of a and
b when multiple curves of minimal cardinality are available. Figure 4 shows the cpf of the
Crow-Gardner procedure (CG) for confidence level 95%.

Figure 5 shows the interplay between the cpf and the confidence intervals for the 95%
Crow-Gardner procedure. While solving one problem (gaps in the confidence sets), Crow
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and Gardner’s method creates another: often, the lower or upper confidence limits for con-
secutive values of x are the same. For example (see Figure 4), the cpf of CG transitions from
AC(0-6) directly to AC(1-8); AC(0-7) is never used. The consequence is that the transition
point between AC(0-6) and AC(1-8) becomes the lower confidence limit for both x = 7 and
x = 8. In general, equal endpoints for consecutive x’s occur only at values of A where the mini-
mal cardinality increases, when CG transitions from the unique minimal cardinality curve AC
(a-b) to a curve AC((a + k)-(b + k + 1)) for k > 1. This circumstance results in k + 1 con-
secutive values of x having the same lower endpoint and, if k > 2, k consecutive values having
the same upper endpoint. Figure 5 shows several such instances (I, =I5, [,o = l;1, [, = ;3 and
ll4 = 115)-

Kabaila and Byrne (2001) proposed an approach that is the opposite of CG. When choosing
among curves of minimal cardinality, use the curve AC(a-b) having the smallest values of a
and b that keep the sequence of {a} and {b} values monotone non decreasing. Thus Kabaila
and Byrne’s procedure (KB) transitions between curves of equal cardinality as late as possible
and Crow and Gardner’s transitions as early as possible. KB resolves the problems of both
Sterne’s approach (gaps) and Crow and Gardner’s approach (interval endpoints that are not
strictly monotone increasing in x). Figure 6 shows the cpf of KB for confidence level 95%.

Of the methods discussed so far that possess the Minimal Cardinality Property, Sterne’s
procedure has a particularly attractive feature in that it amounts to using the highest accep-
tance curve of minimal cardinality at each A, thereby producing greater coverage than other
procedures. As indicated above, though, Sterne’s method occasionally produces a gap in a
confidence set. Figure 7 shows a portion of the cpf of Sterne’s procedure at 95% confidence
that illustrates a specific instance of this phenomenon.

Notice that the cpf transitions from AC(23-45) to AC(24-46) but then jumps to AC(23-46).
The result is that the confidence set for x = 23 has a gap corresponding to the interval where
the cpf follows AC(24-46).

Schilling and Doi (2014) developed a new confidence procedure for the one-sample bino-
mial problem that resolves the gap problem while maximizing coverage among all confidence
procedures having minimal average length. We now describe an analogous approach for the
Poisson case.

(1) For each A, choose the highest acceptance curve among those having minimal cardi-

nality, except:

(2) Whenever step (1) gives a curve AC(a-b) that results in a decrease in the {a} sequence

of the procedure, substitute for AC(a-b) the curve AC((a + 1)—(b + 1)).
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To be more explicit about Step (2), Figure 7 shows how a sequence of highest minimal car-
dinality acceptance curves can occasionally transition from AC(a-b) to AC((a—1)-b) when
M(2) increases. This causes a gap in the confidence set for x = a —1, since the previously
generated confidence interval for a —1 then has the subinterval {A: CP(1) = AC((a—1)-
b)} appended to it. In such cases (which are rare), transitioning from AC(a-b) to AC(a-
(b+1)) rather than to AC((a—1)-b) preserves monotonicity of the {a} sequence and elimi-
nates the above subinterval from the confidence set for a —1. For the specific case shown in
Figure 7, the resolution given in Step (2) is to transition from AC(24-46) when it hits the con-
fidence level directly to AC(24-47), onto the portion shown as a dashed line in the inset of
Figure 7.

Except for those regions of the parameter space where Step (2) applies, the resulting pro-
cedure is equivalent to that of Sterne’s. Figure 8 shows the level 95% cpf obtained from this
approach. Note that the transitions in Figure 8 between the acceptance curves of equal car-
dinality occur at the cusps where the curves meet. Because this method maximizes the cpf
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over the class of all minimal cardinality procedures that produce intervals for all x, we call
this method the OC (Optimal Coverage) procedure.

The differences among CG, KB, and OC can be summarized as follows. When multiple
acceptance curves of minimal cardinality are available, CG always uses the curve AC(a-b) for
which a and b are maximal, KB always uses the curve AC(a-b) for which a and b are minimal,
provided that the {a} sequence remains non decreasing, and OC transitions between curves
of equal cardinality at their points of intersection, typically near the middle of the possible
range of such transitions. Because CG transitions as early as possible, its upper endpoints are
as small as possible for a minimal cardinality procedure, whereas since KB transitions as late
as possible, its upper endpoints are as large as possible.

Casella and Robert (1989) were the first to identify the class of all gapless Poisson con-
fidence procedures having the Minimal Cardinality Property and presented a “refinement
algorithm” that, when applied to any procedure not in that class, successively shortened its
intervals until a procedure within that class is obtained. They also introduced the following
asymptotic criterion for assessing the length performance of a Poisson confidence procedure:

A1 — « confidence procedure C ={[L, u,),x=0,1, ...} dominates a competing procedure
C={[L, uy), x =0, 1, ...} if there exists an N such that for all N > Nj, either

(u/x - l/x) < (ux - lx)
x=0 x=0
or
(u/x - l/x) = (uy — lx)
x=0 x=0

and P(A € [, uy)) = P(A € [Ix, ux)) V X, with strict inequality for at least one A.

Thus C' dominates C if the sum of its interval lengths eventually remains smaller than the
corresponding sum for C, with coverage used as a tiebreaker. Note that Casella and Robert’s
criterion does not address how two procedures compare over their initial N intervals.

We also discuss here a procedure described by Blaker (2000). Define the tail probability
of an observed value x to be the minimum of P(X < x) and P(X > x). Then for any given A,
define x as rare if the probability of observing a value with a tail probability as small as that of
x does not exceed «. The acceptance set for each A for Blaker’s method is those x that are not
rare for that A.

Blaker’s method performs quite well with regard to length; its coverage is also high. How-
ever, Blaker’s method does not have the Minimal Cardinality Property, as at its non coinciden-
tal lower endpoints its cpf typically exceeds 1 — «; thus Blaker’s procedure can be refined to
create a strict minimal cardinality procedure that produces smaller intervals. The refinement
consists of simply increasing each non coincidental lower endpoint as much as possible, to
the point of making the value of the cpf equal to 1 — « at that endpoint.

4. A refinement paradox

With the above criterion, Casella and Robert show that any confidence procedure that has
the same lower or upper endpoint for consecutive values of x can be dominated (see their
Proposition 2.2). In particular, CG can be dominated. Now suppose we try to refine the
95% CG confidence procedure as suggested by Casella and Robert by increasing cover-
age without increasing asymptotic interval length, that is, without changing the value of
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o (ux — 1) for sufficiently large N. To accomplish this we can increase each CG coinci-
dental endpoint one by one to the place that yields the most gain in coverage. First we increase
uy = Iy from CG’s value, 3.285, to 3.764, the value used for OC. This creates an increase in
coverage for all A € (3.285, 3.764). Moreover, this move increases the interval length for
x = 0 by 3.764 — 3.285 = 0.479 and decreases the interval for x = 8 by the same amount.

er refining the first coincidental endpoint we have increased the sum of interval lengths

o (ux — 1) for N < 8, but not changed the sum for all N > 8. Thus this refined confidence
procedure dominates CG since we improved overall coverage without increasing asymptotic
length.

Now suppose we make an analogous refinement for the next coincidental endpoint,
increasing u; = I;; from its value for CG to the OC value. Thﬁﬁrst two moves have increased
coverage without increasing the asymptotic length since | _ (4, — L) is unchanged for
N = 11, although it is larger than before for N < 11.

Since for all x, u, is coincidental to [, for some y > x, we can continue this refinement
PRpcess indefinitely. In the limit, this sequence of refinements yields the OC procedure. Yet

o (ux — L) is larger for OC than the CG method for all N. Thus, comparing two strict
confidence procedures” interval lengths using Casella and Robert’s criterion can create a
contradiction—an infinite sequence of improvements leading to a procedure that is inferior
to the original one with respect to length.

We propose an alternative criterion by which to compare the length performance of Poisson
confidence procedures. We say that C' is superior to C on length if there exists Ny such that

We—1)<  (u—I) for all N, with W=l <  (uc—1,) for all N> N,.
x=0 x=0 x=0 x=0
(1)

Using this measure, CG dominates OC, which in turn dominates KB. In fact, since CG
always transitions to the curve AC(a-b) with the highest possible values of a and b, CG is the
unique length minimizing minimal cardinality procedure with respect to the above criterion.
To see this, let C be any minimal cardinality confidence procedure, let C' be CG, and note that
(i) the above sums have the same terms for all forced lower endpoints (places where M(2)
increases) and (ii) all coincidental endpoints for which both lower and upper endpoints are
included in the sums contribute 0 to those sums. Thus the distinction between the sums for C
and C' reduces to a comparison of those upper endpoints that do not have a lower endpoint
match in the sums, because x > N for those I,. Since CG transitions as early as possible, its
lower endpoints fall at the smallest possible values. [,

Figure 9 compares the values of average interval length & " (4, — ) for 0 < N < 100
for CG, OC, and KB to the corresponding values for Garwood’s method. As expected, each
of the minimal cardinality procedures described above yields intervals that are shorter on
average than those of Garwood’s method, except in some cases for the smallest values of x.
Among those procedures, the length ranking KB > OC > CG is consistent, with CG yielding
a significant advantage in average interval length.

5. Arecommendation for a near-length optimal Poisson confidence procedure

We have seen that CG is optimal with respect to length when judged for all x < N for any
positive integer N, yet it possesses the counterintuitive property of failing to have endpoints
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that are strictly increasing in x. Any modification of CG that satisfies the Minimal Cardinality
Property must have endpoints that are larger than those of CG, at least for some x; however,
the effect of increasing the endpoints is to increase the length as measured by Equation (1);
therefore it is prudent to keep such increases to a minimum. We therefore propose the follow-
ing Modified Crow-Gardner (MCG) procedure that achieves strictly increasing endpoints:

Initially let I,(MCG) = I,(CG) V x. Then, beginning at x = 0, whenever [, ;;(MCG) < mi(x)
= I,(MCG) 4 min(.01,(MCG), 0.1), increase I, (MCG) to ml(x). Each modified endpoint rep-
resents an endpoint that is coincidental with some upper endpoint; thus, those upper endpoints

change as well. All other endpoints remain unchanged.

The resulting procedure thus has all endpoints separated by at least 1% (if those endpoints
are less than 10) or by at least 0.1 (if 10 or greater). The rationale for this specific adjustment
to CG is as follows:

(@)
(ii)
(iii)

(iv)

Increases in endpoints need to be kept small in order to keep confidence interval lengths
nearly as small as for CG, the length optimal confidence procedure;

Small endpoints (i.e., < 10) should be changed less than other endpoints so that the
relative change in those endpoints is not large;

It is a fairly common practice to round confidence interval endpoints to three signif-
icant figures, except that for endpoints above 100 a single decimal digit is retained.
With such a rounding protocol, all MCG endpoints will remain different after
rounding;

A potential increase of much more than 0.1 leads to difficulties for large x. To see why,
see Figure 10. All points shown in Figure 10 are CG lower endpoints, while the points in
the top row of each panel are the CG upper endpoints (hence they are the coincidental
endpoints). As x increases, progressively greater numbers of points are tied or nearly

C: : : : : : 7 : : . : ]

T
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Fgure [(Elkonfidence interval endpoints for Crow—Gardner 95% confidence procedure.
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tied. For example, Loy = Lo = Loy = 258.34, and L; is only slightly higher. For still
larger values of x, it is regularly the case that even more endpoints are equal or nearly
so. Modifying CG by spreading out the points in such a cluster by too large an amount
would cause the modified points to run into the following points that are currently
nearly evenly spaced out and not otherwise needing adjustment.

Note that MCG is still a minimal cardinality procedure. If [,(CG) = L, ;(CG) = A*, then
increasing the coincidental endpoint for x+1 amounts to transitioning from the acceptance
curve AC(a-b) used just before 1* to the curve AC(a-(b+1)) (as does OC) rather than to
AC((a+k)-(b+k+1)) (as does CG); the cardinality of these latter two acceptance curves is
the same.

In addition to not having identical lower or upper endpoints for different values of x,
MCG has another advantage over CG in that its average coverage is higher. The intervals over
which the tied endpoints of CG are increased for MCG are precisely the places where cov-
erage is increased the most by exchanging AC((a+k)-(b+k+1)) for AC(a-(b+1)). For exam-
ple, the alteration by MCG of the first tied endpoint for CG at level 95% results in the ini-
tial portion of the acceptance curve AC(1-8) being replaced by AC(0-7); refer to Figure 4 to
see that coverage is increased over that interval from approximately 95.6% to approximately
98%.

Figure 11 shows how individual 95% MCG confidence intervals compare in length to those
of CG. Observe that no MCG intervals are more than 1.2% longer than the corresponding CG
intervals, and many are in fact shorter. Results for confidence levels 90% and 99% are similar.
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Fgure [EElRatios of cumulative average interval length for MCG versus CG.
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Fgure [ElExpected lengths of KB, OC, and MCG relative to CG, 1 — oz = 95%.

Figure 12 shows for confidence levels 90%, 95%, and 99% the ratio of cumulative average
interval length for MCG as compared to CG,

(ue(MCG) — [,(MCG)) ('« (CG) —I'(CG)),

x=0 x=0

for N =0,1,...,25. Cumulative average MCG interval length ranges from about 0.5% to 1.0%
greater than for CG for very small N, with a rapid decrease in excess length as N increases.

When N is large, the disparity between MCG and CG with respect to cumulative average
interval length becomes negligible, as shown in Table I:

Table [ Ratios of MCG to CG cumulative average confidence interval length for x=0,1, ..., N

Confidence level N= 10 100 200

90% 1.00416 1.00053 1.00034
95% 1.00722 1.00065 1.00032
99% 1.00488 1.00054 1.00027

An alternative way to compare the length performance of different confidence procedures
produced is through expected length. Figure 13 shows the ratio of expected lengths for the
95% KB, OC, and MCG confidence procedures relative to that of CG for 0 < A < 25. Both KB
and OC give significantly larger expected length than CG; however, the expected confidence
interval length for MCG is only about 1% greater than that of CG for the smallest values of A
and is nearly identical to that of CG for larger A.

Confidence limits of the MCG procedure for 1 — a = 90%, 95%, and 99% and 0 < x < 200
can be found at www.csun.edu/~hcmth031/MCG.pdf.

6. Approximate Poisson confidence procedures

We call a confidence procedure an approximate procedure when the coverage of the procedure
falls below the stated confidence level, but not by a large amount (at least for most A). Approx-
imate confidence procedures are widely used for discrete data. Allowing the cpf to fall below
the nominal confidence level results in smaller confidence intervals than strict procedures
produce.

A natural way to create a good approximate discrete confidence procedure is to adjust
the confidence level of a high-performing strict procedure to the value that makes the mean
actual coverage equal to the nominal level. Minimal cardinality confidence procedures are



COMMUNICATIONS IN STATISTICS—THEORY AND METHODS . 873

Table omparison of strict and approximate 95% Poisson confidence procedures. The rightmost column
gives the average ratio of interval lengths for 0 < x < 100 relative to the strict 95% CG procedure.

Average interval length

Minimum coverage Mean coverage on 0 < A <100 relative to strict CG
Strict CG 95.00% 95.34% —
Strict MCG 95.00% 95.36% +0.12%
Approximate CG 94.62% 95.00% —1.48%
Approximate MCG 94.60% 95.00% —1.42%

particularly attractive for this purpose because the coverage of such a procedure achieves its
minimum at numerous locations, which keeps that minimum much higher than for other
approximate procedures. In other words, when a minimal cardinality approximate confidence
procedure falls below the nominal level, it does not do so by much.

This approach was used for the one-sample binomial case by Reiczigel (2003) and Schilling
and Doi (2014). Since the parameter space is unbounded in the Poisson case, specification of
the interval for A over which mean coverage is set equal to the nominal confidence level is
required. Table 2 shows a comparison between CG and MCG approximate confidence proce-
dures each adjusted to have mean coverage equal to 95% over the interval 0 < A < 100 and
the strict CG and MCG 95% confidence procedures.

The minimum coverage of both approximate procedures is only slightly below the nominal
level, which arguably could be considered a good tradeoff in order to gain a reduction in
average interval length of approximately 1.5%. We recommend that when an approximate
procedure is used in practice, a statement to that effect is provided along with the confidence
interval.
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