
7.2 The Natural Logarithmic and Exponential Functions

Your understanding  of logarithms  and exponentials  as algebraic  operations  is important,  and it will be put to 

use in the coming  pages.  For example,  you may recall  the following  relationship  that will be used frequently:  If b 

denotes  a base with b > 0 and b ≠ 1, then 

y = bx if and only if x = logb y .

However,  to do calculus  with logarithms  and exponentials,  we must  view them not just as operations,  but as 

functions.  Once we define  logarithmic  and exponential functions, many  important  questions  quickly  follow.

 What are the domains  of bx  and logb x? 

 How do we assign  a meaning  to expressions  such as 2π  or log3 π? 

 Are these functions  continuous  on their  domains?  

 What are their  derivatives?  

 What new integrals  can be evaluated  using these functions?

It all begins  with the natural  logarithmic  function , which  is defined  in terms  of a definite  integral,  after which  

we use the theory  of inverse  functions  (Section  7.1) to develop  the natural  exponential  function . Our objective  

in this section  is to place  these important  functions  on a solid foundation  by presenting  a rigorous  development  

of their  properties.  

Before  embarking  on this program,  we offer a roadmap  to help guide  you through  the section.  We carry 

out the following  three steps.

1. We first define  the natural  logarithmic  function,  denoted  ln x, in terms  of an integral,  and then derive  the 

properties  of ln x  directly  from this new definition.

2. Next,  the natural  exponential  function ex  is introduced  as the inverse  of ln x, and the properties  of ex  are

developed  by appealing  to this inverse  relationship.  We also present  derivative  and integral  formulas  

associated  with these functions.

3. Finally,  we define  the general  exponential  function  bx  in terms  of ex  so that two crucial  properties  of the 

natural  logarithmic  and exponential  functions  can be extended  to all real numbers.  One of these properties  

is used to derive  a limit  definition  of e  that is used to approximate  e.

After establishing  the properties  of the natural  logarithmic  and exponential  functions,  we conclude  the 

section  with derivative  and integral  formulas  associated  with ex , and we present  the technique  of logarithmic

differentiation.

Note  »

Logarithms  were  invented  around  1600  for  calculating  purposes  by the  

Scotsman  John  Napier  and  the  Englishman  Henry  Briggs.  Unfortunately,  the  

word  logarithm, derived  from  the  Greek  for  reasoning  (logos) with  numbers  

(arithmos), doesn’t  help  with  the  meaning  of the  word.  When  you  see  

logarithm, you  should  think  exponent.

Step 1: The Natural Logarithm  »

Our aim is to develop  the properties  of the natural  logarithm  using definite  integrals.  We begin  with the follow -

ing definition.

DEFINITION The Natural  Logarithm

The natural  logarithm  of a number  x > 0 is ln x = 
1

x 1

t
d t .
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All the familiar  geometric  and algebraic  properties  of the natural  logarithmic  function  follow  directly  from this 

integral  definition.

Properties  of the Natural  Logarithm

Domain,  range,  and sign  Because  the natural  logarithm  is defined  as a definite  integral,  its value is the net area 

under  the curve  y =
1

t
 between  t = 1 and t = x. The integrand  is undefined  at t = 0, so the domain  of ln x  is 

(0, ∞). On the interval  (1, ∞), ln x  is positive  because  the net area of the region  under  the curve  is positive  

(Figure  7.14 ). On (0, 1), we have 
1

x 1

t
d t = -

x

1 1

t
d t , which  implies  ln x  is negative.  As expected,  when x = 1, 

we have ln 1 = 
1

1 1

t
d t = 0. The net area interpretation  of ln x  also implies  that the range  of ln x  is (-∞, ∞) (see 

Exercise  112 for an outline  of a proof).

x

If x > 1,

net area = ln x = 
1

x d t

t
> 0.

y =
1

t

1 x
t

y

Figure 7.14

Derivative  The derivative  of the natural  logarithm  follows  immediately  from its definition  and the Fundamen -

tal Theorem  of Calculus:

d

d x
(ln x) =

d

d x


1

x d t

t
=

1

x
, for x > 0.

Note  »

By the  Fundamental  Theorem  of Calculus  

d

d x


a

x

f (t ) d t = f (x).

We have two important  consequences:

 Because  its derivative  is defined  for x > 0, ln x  is differentiable  for x > 0, which  means  it is continuous  on its 

domain  (Theorem  3.1).
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 Because  
1

x
> 0 for x > 0, ln x  is strictly  increasing  and one-to-one  on its domain;  therefore,  it has a well-

defined  inverse.

The Chain  Rule allows  us to extend  the derivative  property  to all nonzero  real numbers  (Exercise  110).  By 

differentiating  ln(-x) for x < 0, we find that

d

d x
(ln x) = 1

x
, for x ≠ 0.

More generally,  by the Chain  Rule,

d

d x
( ln u(x) ) = d

d u
( ln u(x) ) u ' (x) =

u ' (x)

u(x)
.

Quick Check 1   What  is the domain  of ln x?  ◆
Answer  »

{x : x ≠ 0}

Graph  of ln x   As noted  before,  ln x  is continuous  and strictly  increasing  for x > 0. The second  derivative,  

d2

d x2
(ln x) = -

1

x2
, is negative  for x > 0, which  implies  the graph  of ln x  is concave  down  for x > 0. As demon -

strated  in Exercise  112,

limx→∞ ln x =∞, and limx→0+ ln x = -∞.

This information,  coupled  with the fact that ln 1 = 0, gives the graph  of y = ln x  (Figure  7.15) .

ln x

d

d x
ln x 

d 2

d x 2
ln x 

x

y

(1,0)

y = ln x

lim
x→0+

ln x = -∞

lim
x→∞ ln x =∞

d

d x
(ln x) > 0 ⇒ ln x is increasing for x > 0

d2

d x2
(ln x) < 0 ⇒ concave down

Figure 7.15

The graphs  of y = ln x, y = ln x, and their  derivatives  are shown  in Figure  7.16 .
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y = ln x

y = ln x 

plot derivative
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Figure 7.16

Logarithm  of a product   The familiar  logarithm  property

ln x y = ln x + ln y , for x > 0, y > 0

may be proved  using the integral  definition:

ln x y = 
1

x y d t

t
Definition of ln x y

= 
1

x d t

t
+ 

x

x y d t

t
Additive property of integrals

= 
1

x d t

t
+ 

1

y d u

u
Substitute u =

t

x
in second integral .

= ln x + ln y . Definition of the natural logarithm

Logarithm  of a quotient   Assuming  x > 0 and y > 0, the product  property  and a bit of algebra  give

ln x = ln y ·
x

y
= ln y + ln

x

y
.

Solving  for ln
x

y
, we have 

ln
x

y
= ln x - ln y ,
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which  is the quotient  property  for logarithms.  (Also see Exercise  72.)

Logarithm  of a power   Assuming  x > 0 and p is an integer,  we have 

ln xp = 
1

xp d t

t
Definition of ln xp

= p 
1

x d u

u
Let t = up ; d t = p up-1 d u.

= p ln x. By definition , ln x = 
1

x d u

u
.

This argument  relies  on the Power  Rule (d t = p up-1 d u), which  we proved  only for integer  exponents  in 

Sections  3.3 and 3.4. Later  in this section,  we prove  that ln xp = p ln x  for all real values  of p.

Integrals  Because  
d

d x
(ln x) = 1

x
, we have

 1

x
d x = ln x + C .

We have shown  that the familiar  properties  of ln x  follow  from its integral  definition.

THEOREM  7.4 Properties  of the Natural  Logarithm

1. The domain  and range  of ln x  are (0, ∞) and (-∞, ∞), respectively.

2. ln (x y) = ln x + ln y , for x > 0, y > 0

3. ln
x

y
= ln x - ln y , for x > 0, y > 0

4. ln xp = p ln x, for x > 0 and p an integer

5.
d

d x
(ln x) = 1

x
, for x ≠ 0

6.
d

d x
(ln u(x)) = u ' (x)

u(x)
, for u(x) ≠ 0

7.  1

x
d x = ln x + C

EXAMPLE  1 Derivatives  involving  ln x

Find 
d y

d x
 for the following  functions.

a. y = ln 4 x

b. y = x ln x

c. y = ln sec x
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d. y =
ln x2

x2

SOLUTION   »

a. Using the Chain  Rule,  

d y

d x
=

d

d x
(ln 4 x) =

1

4 x
·4 =

1

x
.

An alternative  method  uses a property  of logarithms  before  differentiating:

d

d x
(ln 4 x) =

d

d x
(ln 4 + ln x) ln x y = ln x + ln y

= 0 +
1

x
=

1

x
. ln 4 is a constant .

Note  »

Because  ln x  and  ln 4 x  differ  by a constant  (ln 4 x = ln x + ln 4), the  derivatives  

of ln x  and  ln 4 x  are  equal.

b. By the Product  Rule,  

d y

d x
=

d

d x
(x ln x) = 1 · ln x + x ·

1

x
= ln x + 1.

c. Using property  6 of Theorem  7.4, 

d y

d x
=

1

sec x

d

d x
(sec x) =

1

sec x
(sec x tan x) = tan x.

d. The Quotient  Rule and Chain  Rule give 

d y

d x
=

x2 1

x2
·2 x - ln x2 2 x

x22 =
2 x - 2 x ln x2

x4
=

2 1 - ln x2
x3

.

Related  Exercises  17–18,  21–22   ◆
Quick Check 2   Find 

d

d x
(ln xp), where  x > 0 and p is an integer,  in two ways:  (1) using  the Chain  Rule 

and (2) by first using  a property  of logarithms.   ◆
Answer  »

p

x

EXAMPLE  2 Integrals  with ln x

Evaluate  
0

4 x

x2 + 9
d x.

SOLUTION   »
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0

4 x

x2 + 9
d x =

1

2


9

25 d u

u
Let u = x2 + 9; d u = 2 x d x.

=
1

2
ln u

9

25

Fundamental Theorem

=
1

2
(ln 25 - ln 9) Evaluate .

= ln
5

3
Properties of logarithms

Related  Exercise  44  ◆
Step 2: The Exponential Function  »

We have established  that f (x) = ln x  is a continuous,  increasing  function  on the interval  (0, ∞). Therefore,  it is 

one-to-one  and its inverse  function  exists  on (0, ∞). We denote  the inverse  function  f -1(x) = exp (x). Its graph  is 

obtained  by reflecting  the graph  of f (x) = ln x  about  the line y = x  (Figure  7.17 ). The domain  of exp (x) is 

(-∞, ∞) because  the range  of ln x  is (-∞, ∞), and the range  of exp (x) is (0, ∞) because  the domain  of ln x  is 

(0, ∞).

y = ln x

y = x

y = exp x 

-2 -1 1 2 3 4
x

-2

-1

1

2

3

4

y

y = ln x

domain (0, ∞)

range (-∞, ∞)

y = exp(x)

domain (-∞, ∞)

range (0, ∞)

Figure 7.17

The usual  relationships  between  a function  and its inverse  also hold:

 y = exp (x) if and only if x = ln y

 exp (ln x) = x, for x > 0, and ln (exp (x)) = x, for all x

We now appeal  to the properties  of ln x  and use the inverse  relations  between  ln x  and exp (x) to show that 
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exp (x) satisfies  the  properties  of any exponential  function.  For example,  if x1 = ln y1 and x2 = ln y2, then it 

follows  that y1 = exp (x1), y2 = exp (x2), and 

exp (x1 + x2) = exp (ln y1 + ln y2

ln y1 y2

) Substitute x1 = ln y1, x2 = ln y2.

= exp (ln y1 y2 Properties of logarithms

= y1 y2 Inverse property of exp (x) and ln x

= exp (x1) exp (x2). y1 = exp (x1), y2 = exp (x2)

Therefore,  exp (x) satisfies  the property  of exponential  functions  bx1+x2 = bx1 bx2 . Similar  arguments  show that 

exp (x) satisfies  other  characteristic  properties  of all exponential  functions  (Exercise  111):  

exp (0) = 1,

exp (x1 - x2) =
exp (x1)

exp (x2)
, and

(exp (x))p = exp (p x), for integers p.

Suspecting  that exp (x) is an exponential  function,  we proceed  to identify  its base.  Let’s  consider  the real 

number  exp (1), and with a bit of forethought,  call it e. The inverse  relationship  between  ln x  and exp (x) implies  

that 

if e = exp (1), then ln e = ln (exp (1)) = 1.

Using the fact that ln e = 1 and the integral  definition  of ln x, we now formally  define  e.

DEFINITION The Number  e

The number  e  is the real number  that satisfies  ln e = 
1

e d t

t
= 1.

Note  »

The  constant  e  was  identified  and  named  by the  Swiss  mathematician  

Leonhard  Euler  (1707-1783)  (pronounced  “oiler”).

The number  e  has the property  that the area of the region  bounded  by the graph  of y =
1

t
 and the t -axis on the 

interval [1, e] is 1 (Figure  7.18 ). Note that ln 2 < 1 and ln 3 > 1 (Exercise  113).  Because ln x  is continuous  on its

domain,  the Intermediate  Value  Theorem  ensures  that there is a number  e  with 2 < e < 3 such that ln e = 1.
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b

b = e

b = 2.37

ln b = 
1

b d t

t
≈ 0.86

y =
1

t

1 2 3
t

y

Figure 7.18

We can now show that indeed  exp (x) is the exponential  function  ex . Assume  that p is an integer  and note 

that ep > 0. By property  4 of Theorem  7.4, we have 

ln ep = p ln e
1

= p.

Using the inverse  relationship  between  ln x  and exp (x), we also know that 

ln exp (p) = p.

Equating  these two expressions  for p, we conclude  that ln ep = ln exp (p). Because  ln x  is a one-to-one  function,  

it follows  that 

ep = exp (p), for integers p,

and we conclude  that exp (x) is the exponential  function  with base e. We already  know how to evaluate  ex  when 

x  is rational.  For example,  e3 = e ·e ·e, e-2 =
1

e ·e
, and e1/2 = e . But how do we evaluate  ex  when x  is irrational?

We proceed  as follows.  The function  x = ln y  is defined  for y > 0, and its range  is all real numbers.  Therefore,  the 

domain  of its inverse  y = exp (x) is all real numbers;  that is exp (x) is defined  for all real numbers.  We now define  

ex  to be exp (x) when x  is irrational.  

DEFINITION The Exponential  Function

For real numbers  x, y = ex = exp (x), where  x = ln y .

We may now dispense  with the notation  exp (x) and use ex  as the inverse  of ln x. The usual  inverse  

relationships  between  ex  and ln x  hold,  and the properties  of exp (x) can now be written  for ex .
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THEOREM  7.5 Properties  of ex

The exponential  function  ex  satisfies  the following  properties,  all of which  result  from the integral  

definition  of ln x. Let x  and y  be any real numbers.

1. ex+y = ex ey

2. ex-y =
ex

ey

3. (ex)p = ex p , where  p is an integer

4. ln (ex) = x, for all x

5. e ln x = x, for x > 0

Step 3: General Exponential Functions  »

It is now a short  step to define  the exponential  function  bx  for positive  bases  with b ≠ 1 and for all real numbers  

x. By properties  3 and 5 of Theorem  7.5, if x  is an integer,  then 

bx = e ln b
b

x
= ex ln b ;

this important  relationship  expresses  bx  in terms  of ex . Because  ex  is defined  for all real x, we use this relation -

ship to define  bx  for all real x.

DEFINITION Exponential  Functions  with General  Bases

Let b be a positive  real number  with b ≠ 1. Then for all real x, 

bx = ex ln b .

This definition  comes  with an immediate  and important  consequence.  We use the definition  of bx  to 

write 

xp = ep ln x , for x > 0 and p real.

Taking  the natural  logarithm  of both sides and using the inverse  relationship  between  ex  and ln x, we find that 

ln xp = ln ep ln x = p ln x, for x > 0 and p real.

In this way,  we extend  property  4 of Theorem  7.4 to real powers.

Note  »

Knowing  that  ln xp = p ln x , for  real  p , we  can  also  extend  property  3 of 

Theorem  7.5  to real  numbers.  For  real  x  and  y , we  take  the  natural  logarithm  of 

both  sides  of z = (ex )y , which  gives  ln z = y ln ex = x y , or  z = ex y . Therefore,  

(ex )y = ex y .

Quick Check 3   Simplify  e ln 2 x , ln e2 x , e2 ln x , ln (2 ex).  ◆
Answer  »

2 x, 2 x, x2, x + ln 2
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Approximating e »

We have shown  that the number  e  serves  as a base for both ln x  and ex , but how do we approximate  its value?  

Recall  that the derivative  of ln x  at x = 1 is 1. By the definition  of the derivative,  it follows  that 

1 =
d

d x
(ln x)

x-1

= lim
h→0

ln (1 + h) - ln 1

h
Derivative of ln x at x = 1

= lim
h→0

ln (1 + h)

h
ln 1 = 0

= lim
h→0

ln (1 + h)1/h . p ln x = ln xp

Note  »

Because  
d

d x
(ln x) =

1

x
, 

d

d x
(ln x)

x=1

=
1

1
= 1.

The natural  logarithm  is continuous  for x > 0, so it is permissible  to interchange  the order  of lim
h→0

 and the 

evaluation  of ln (1 + h)1/h . The result  is that 

ln lim
h→0

(1 + h)1/h
e

= 1.

Note  »

Here  we  rely  on  a strong  version  of Theorem  2.10  of Section  2.6.  If f  is 

continuous  at g (a) and  lim
x→a

g (x) exists,  then  lim
x→a

f (g (x)) = f lim
x→a

g (x).

Observe  that the limit  within  the bracket  is e  because  ln e = 1 and only one number  satisfies  this equation.  

Therefore,  we have isolated  e  as a limit:  

e = lim
h→0

(1 + h)1/h .

It is evident  from the values  in Table  7.2 that (1 + h)1/h → 2.718282 … as h → 0. The value of this limit  is e, and it 

has been computed  to millions  of digits.  A better  approximation,  

e ≈ 2.718281828459045 ,

is obtained  by methods  introduced  in Chapter  11.
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Table 7.2

h (1+h)1/h h (1+h)1/h

10-1 2.593742 -10-1 2.867972

10-2 2.704814 -10-2 2.731999

10-3 2.716924 -10-3 2.719642

10-4 2.718146 -10-4 2.718418

10-5 2.718268 -10-5 2.718295

10-6 2.718280 -10-6 2.718283

10-7 2.718282 -10-7 2.718282

Derivatives and Integrals  »

The derivative  of the exponential  function  follows  directly  from Theorem  7.3 (derivatives  of inverse  functions)  

or by using the Chain  Rule.  Taking  the latter  course,  we observe  that ln (ex) = x  and then differentiate  both sides 

with respect  to x:

d

d x
(ln ex) =

d

d x
(x)

1

1

ex

d

d x
(ex) = 1

d

d x
(ln u(x)) =

u ' (x)

u(x)
(Chain Rule)

d

d x
(ex) = ex . Solve for

d

d x
(ex).

We obtain  the remarkable  result  that the exponential  function  is its own derivative,  which  implies  that the line 

tangent  to the graph  of y = ex  at (0, 1) has slope 1 (Figure  7.19 ). 

Figure 7.19

It immediately  follows  that ex  is its own antiderivative  up to a constant;  that is, 

 ex d x = ex + C .
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Extending  these results  using the Chain  Rule,  we have the following  theorem.

THEOREM  7.6 Derivative  and Integral  of the Exponential  Function

For real numbers  x, 

d

d x
eu(x) = eu(x) u ' (x) and  ex d x = ex + C .

Note  »

As shown  in Example  5a,  the  integral  formula  in Theorem  7.6  can  be 

generalized:   ea x d x =
1

a
ea x + C .

Quick Check 4   What  is the slope of the curve  y = ex  at x = ln 2? What  is the area of the region  bounded  

by the graph  of y = ex  and the x-axis between  x = 0 and x = ln 2?  ◆
Answer  »

EXAMPLE  3 Derivatives  involving  exponential  functions

Evaluate  the following  derivatives.

a.
d

d x
3 e2 x - 4 ex + e-3 x 

b.
d

d t

et

e2 t - 1

c.
d

d x
(ecos πx )

x=1/2

SOLUTION   »

a.

d

d x
3 e2 x - 4 ex + e-3 x  = 3

d

d x
e2 x  - 4

d

d x
(ex) +

d

d x
e-3 x  Sum and Constant

Multiple Rules

= 3 ·2 ·e2 x - 4 ex + (-3) e-3 x Chain Rule

= 6 e2 x - 4 ex - 3 e-3 x Simplify .

b. 

d

d t

et

e2 t - 1
=
e2 t - 1 et - et ·2 e2 t

e2 t - 12 = -
e3 t + et

e2 t - 12 Quotient Rule

c. First note that by the Chain  Rule,  we have 

d

d x
(ecos πx ) = -π sin πx ·ecos πx .

Therefore,  

Section 7.2  The Natural Logarithmic and Exponential Functions 13

Copyright © 2019 Pearson Education, Inc.



d

d x
(ecos πx )

x=1/2

= -π sin
π
2

1

·ecos (π /2)
e0 = 1

= -π.

Related  Exercises  33, 35, 37  ◆
EXAMPLE  4 Finding  tangent  lines

a. Write an equation  of the line tangent  to the graph  of f (x) = 2 x -
ex

2
 at the point  0, -

1

2
.

b. Find the point(s)  on the graph  of f  where  the tangent  line is horizontal.

SOLUTION   »

a. To find the slope of the tangent  line at 0, -
1

2
, we first calculate  f ' (x):

f ' (x) =
d

d x
2 x -

ex

2

=
d

d x
(2 x) -

d

d x

1

2
ex Difference Rule

= 2 -
1

2
ex . Evaluate derivatives .

It follows  that the slope of the tangent  line at 0, -
1

2
 is 

f ' (0) = 2 -
1

2
e0 =

3

2
.

Figure  7.20  shows  the tangent  line passing  through  0, -
1

2
; it has the equation  

y - -
1

2
=

3

2
(x - 0) or y =

3

2
x -

1

2
.
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Figure 7.20

b. Because  the slope of a horizontal  tangent  line is 0, our goal is to solve f ' (x) = 2 -
1

2
ex = 0. We multiply  

both sides of this equation  by 2 and rearrange  to arrive  at the equation  ex = 4. Taking  the natural  logarithm  of 

both sides,  we find that x = ln 4. Thus,  f ' (x) = 0 at x = ln 4 ≈ 1.39, and f  has a horizontal  tangent  at 

(ln 4, f (ln 4)) ≈ (1.39, 0.77) (Figure  7.20).

Related  Exercises  39–40  ◆
EXAMPLE  5 Integrals  with e

x

Evaluate  the following  integrals.

a.  e10 x d x

b.  ex

1 + ex
d x

SOLUTION   »

a. We let u = 10 x, which  implies  d u = 10 d x, or d x =
1

10
d u: 

 e10 x

eu

d x
1

10
d u

=  eu
1

10
d u u = 10 x, d u = 10 d x

=
1

10
 eu d u  c f (x) d x = c  f (x) d x

=
1

10
eu + C Antiderivative

=
1

10
e10 x + C . Replace u with 10 x.

The procedure  used here can be generalized  by replacing  10 with a nonzero  constant  a to obtain

Section 7.2  The Natural Logarithmic and Exponential Functions 15

Copyright © 2019 Pearson Education, Inc.



 ea x d x =
1

a
ea x + C .

b. The change  of variables  u = 1 + ex  implies  d u = ex d x:

 1

1 + ex

u

ex d x

d u
=  1

u
d u u = 1 + ex , d u = ex d x

= ln u + C Antiderivative of u-1

= ln (1 + ex) + C . Replace u by 1 + ex .

Note that the absolute  value may be removed  from ln u because  1 + ex > 0, for all x.

Related  Exercises  52, 60  ◆
EXAMPLE  6 Arc length  of an exponential  curve

Find the length  of the curve  f (x) = 2 ex +
1

8
e-x  on the interval  [0, ln 2].

SOLUTION   »

We first calculate  f ' (x) = 2 ex -
1

8
e-x  and f ' (x)2 = 4 e2 x -

1

2
+

1

64
e-2 x . The length  of the curve  on the interval  

[0, ln 2] is 

L = 
0

ln 2

1 + f ' (x)2 d x = 
0

ln 2

1 + 4 e2 x -
1

2
+

1

64
e-2 x d x

= 
0

ln 2

4 e2 x +
1

2
+

1

64
e-2 x d x Simplify .

= 
0

ln 2

2 ex +
1

8
e-x

2

d x Factor .

= 
0

ln 2

2 ex +
1

8
e-x d x Simplify .

= 2 ex -
1

8
e-x

0

ln 2

=
33

16
. Evaluate the integral .

Related  Exercises  61–62  ◆
Logarithmic Differentiation  »

Products,  quotients,  and powers  of functions  are usually  differentiated  using the derivative  rules of the same 

name (perhaps  combined  with the Chain  Rule).  There  are times,  however,  when the direct  computation  of a 

derivative  is tedious.  Consider  the function

f (x) =
x3 - 14 3 x - 1

x2 + 4
.

We would  need the Quotient,  Product,  and Chain  Rules  just to compute  f ' (x), and simplifying  the result  would  
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require  additional  work.  The properties  of logarithms  reviewed  in this section  are useful  for differentiating  such 

functions.

Note  »

The  properties  of logarithms  needed  for  logarithmic  differentiation  (where  

x > 0, y > 0, and  z  is any  real  number):

1.  ln x y = ln x + ln y

2.  ln
x

y
= ln x - ln y

3.  ln (xz ) = z ln x

All  three  properties  are  used  in Example  7.

EXAMPLE  7 Logarithmic  differentiation

Let f (x) =
x2 + 14 ex

x2 + 4
 and compute  f ' (x).

SOLUTION   »

We begin  by taking  the natural  logarithm  of both sides and simplifying  the result:

Note  »

ln f (x) = ln
x2 + 14 ex

x2 + 4

= ln x2 + 14 + ln ex - ln x2 + 4 ln x y = ln x + ln y

= 4 ln x2 + 1 + x - ln x2 + 4. ln xy = y ln x; ln ex = x

We now differentiate  both sides using  the Chain  Rule;  specifically,  the derivative  of the left side is 

d

d x
(ln f (x)) =

f ' (x)

f (x)
. Therefore,

f ' (x)

f (x)
= 4 ·

1

x2 + 1
·2 x + 1 -

1

x2 + 4
·2 x.

Solving  for f ' (x), we have

f ' (x) = f (x)
8 x

x2 + 1
+ 1 -

2 x

x2 + 4
.

Finally,  we replace  f (x) with the original  function:

f ' (x) =
x2 + 14 ex

x2 + 4

8 x

x2 + 1
-

2 x

x2 + 4
+ 1

Related  Exercises  63, 67  ◆
Logarithmic  differentiation  also provides  a method  for finding  derivatives  of tower  functions,  which  are 

functions  of the form g (x)h(x). The derivative  of f (x) = xx  is computed  as follows,  assuming  x > 0:
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f (x) = xx

ln f (x) = ln xx = x ln x Take logarithms of both sides; use properties .

1

f (x)
f ' (x) = 1 · ln x + x ·

1

x
Differentiate both sides.

f ' (x) = f (x) (ln x + 1) Solve for f ' (x) and simplify .

f ' (x) = xx(ln x + 1). Replace f (x) with xx .

Exercises  »

Getting  Started   »

Practice  Exercises   »

17–38. Derivatives  involving  ln x   Find the following  derivatives.  Give the intervals  on which  the results  

are valid.

17.
d

d x
(ln 7 x)

18.
d

d x
x2 ln x

19.
d

d x
ln x2

20.
d

d x
ln 2 x8

21.
d

d x
(ln sin x)

22.
d

d x

ln x2

x

23.
d

d x
ln

x + 1

x - 1

24.
d

d x
(ex ln x)

25.
d

d x
x2 + 1 ln x

26.
d

d x
ln x2 - 1

27.
d

d x
(ln (ln x))
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28.
d

d x
ln cos2 x

29.
d

d x

ln x

ln x + 1

30.
d

d x

ln x

x

31.
d

d x

ex

ex + 1

32.
d

d x

2 ex - 1

2 ex + 1

33.
d

d x
9 e-x - 5 e2 x - 6 ex 

34.
d

d x
x e-x - e2 x 

35.
d

d x

e2 x

e-x + 2

36.
d

d x
(cot ex)

37.
d

d x
esin 2 x 

x=π/4

38.
d

d x
ln e2 x + 1

x= ln 2

39–40.  Equations  of tangent  lines   Find an equation  of the line tangent  to the following  curves  at the 

point  (a, f (a)).

39. y =
ex

4
- x; a = 0

40. y = 2 ex - 1; a = ln 3

41–60.  Integrals   Evaluate  the following  integrals.  Include  absolute  values  only when needed.

41.  3

x - 10
d x

42.  d x

4 x - 3
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43.  2

x - 4
-

3

2 x + 1
d x

44.  x2

2 x3 + 1
d x

45. 
0

3 2 x - 1

x + 1
d x

46.  sec2 x

tan x
d x

47. 
3

4 d x

2 x ln x ln3(ln x)

48. 
0

π/2 sin x

1 + cos x
d x

49. 
e2

e3 d x

x ln x ln (ln x)

50. 
0

1 y ln 4 y2 + 1
y2 + 1

d y

51.  e2 x - e-2 x

2
d x

52.  3 e-4 t d t

53.  e2 x + 1 d x

54.
1

2


0

ln 2

ex d x

55. 
0

ln 3

ex e3 x + e2 x + ex  d x

56.  2 e-10 z + 3 e5 z  d z

57.  ex + e-x

ex - e-x
d x

58.  esin x

sec x
d x
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59.  e x

x
d x

60. 
-2

2 ez/2

ez/2 + 1
d z

61–62.  Arc length   Find the length  of the following  curves.

61. x = 2 e 2 y +
1

16
e- 2 y ,  for 0 ≤ y ≤ ln 2

2

62. y =
1

2
(ex + e-x), for -ln 2 ≤ x ≤ ln 2

63–70.  Logarithmic  differentiation   Use logarithmic  differentiation  to evaluate  f ' (x).

63. f (x) =
(x + 1)10

(2 x - 4)8

64. f (x) = x2 cos x

65. f (x) = x ln x

66. f (x) =
tan10 x

(5 x + 3)6

67. f (x) =
(x + 1)3/2 (x - 4)5/2

(5 x + 3)2/3

68. f (x) =
x8 cos3 x

x - 1

69. f (x) = (sin x)tan x

70. f (x) = 1 +
1

x

2 x

71. Explain  why or why not   Determine  whether  the following  statements  are true and give an 

explanation  or counterexample.  Assume  x > 0 and y > 0.

a. ln x y = ln x + ln y .

b. ln 0 = 1.

c. ln (x + y) = ln x + ln y .

d.
d

d x
e3 = e3.

e.
d

d x
(ex) = x ex-1.
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f.
dn

d xn
e3 x  = 3n e3 x , for any integer  n ≥ 1.

g. The area between  the curve  y =
1

x
 and the x-axis on the interval  [1, e] is 1.

72. Logarithmic  properties   Use the integral  definition  of the natural  logarithm  to prove  directly  that 

ln
x

y
= ln x - ln y .

73. Looking  ahead:  Integrals  of tan x  and cot x   Use a change  of variables  to verify  each integral.

a.  tan x d x = -ln cos x + C = ln sec x + C

b.  cot x d x = ln sin x + C

T 74. Behavior  at the origin  Using  calculus  and accurate  sketches,  explain  how the graphs  of 

f (x) = xp ln x  differ  as x → 0+  for p =
1

2
, 1, 2.

75. Average  value  What  is the average  value of f (x) =
1

x
 on the interval  [1, p] for p > 1? What  is the 

average  value of f  as p →∞?

76–97.  Miscellaneous  derivatives  and integrals   Compute  the following  derivatives  using  a method  of 

your choice.

76.
d

d x
x2 x 

77.
d

d x
e-10 x2 

78.
d

d x
xtan x 

79.
d

d x
ln 10 x 

80.
d

d x
(xe + ex)

81.
d

d x

x2 + 1 (x - 3)

(x + 2)3

82.
d

d x
ln sec4 x tan2 x

83.
d

d x
(sin (sin (ex)))
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84.
d

d x
sin2e3 x+1

85.
d

d x

x ex

x + 1

86.
d

d x

ex

x + 1

8

87.  x2 ex3

d x

88. 
0

π
esin x cos x d x

89. 
1

2 e e ln x

x
d x

90.  sin (ln x)

4 x
d x

91. 
1

e2 ln5 x

x
d x

92.  ln2 x + 2 ln x - 1

x
d x

93.  x

x - 2
d x   (Hint: Let u = x - 2.)

94. 
0

ln 4 ex

3 + 2 ex
d x

95. 
0

π/6 sin 2 y

sin2 y + 2
d y   (Hint: sin 2 y = 2 sin y cos y .)

96.  e2 x

e2 x + 1
d x

97.  d t

t ln t 2

98–99.  First  and second  derivative  analysis

a. Find the critical  points  of f .

b. Use the First  Derivative  Test to locate  the local maximum  and minimum  values.

c. Determine  the intervals  on which  f is concave  up or concave  down.  Identify  any inflection  points.

98. f (x) = x4 e-x
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99. f (x) = x e-x22

100–101.  Linear  approximation

a. Find the linear  approximation  L to the function  f  at the point  a.

b. Graph  f  and L on the same set of axes.

c. Use the linear  approximation  to estimate  the given quantity.

100. f (x) = ln (1 + x); a = 0; ln 1.9

101. f (x) = e-x ; a = ln 2; 
1

e

102. Solid of revolution   The region  bounded  by the graphs  of x = 0, x = ln y , and x = 2 - ln y  in the 

first quadrant  is revolved  about  the y-axis.  What  is the volume  of the resulting  solid?

Explorations  and Challenges   »

103. Probability  as an integral  Two points  P  and Q  are chosen  randomly,  one on each of two adjacent  

sides of a unit square  (see figure).  What  is the probability  that the area of the triangle  formed  by the 

sides of the square  and the line segment  P Q is less than one-fourth  the area of the square?  Begin  by 

showing  that x  and y  must  satisfy  x y <
1

2
in order  for the area condition  to be met.  Then argue that 

the required  probability  is 
1

2
+ 

1/2

1 d x

2 x
 and evaluate  the integral.

104–107.  Logistic  growth   Scientists  often use the logistic  growth  function  P(t ) =
P0 K

P0 + (K - P0) e-r0 t
 to 

model  population  growth,  where  P0 is the initial  population  at time t = 0, K  is the carrying  capacity , and 

r0 is the base growth  rate. The carrying  capacity  is a theoretical  upper  bound  on the total  population  that 

the surrounding  environment  can support.  The figure  shows  the sigmoid  (S-shaped)  curve  associated  with 

a typical  logistic  model.  
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T 104. Population  crash   The logistic  model  can be used for situations  in which  the initial  population  P0 is 

above the carrying  capacity  K . For example,  consider  a deer population  of 1500 on an island  where  a 

large fire has reduced  the carrying  capacity  to 1000 deer.

a. Assuming  a base growth  rate of r0 = 0.1 and an initial  population  of P(0) = 1500, write  a logistic  

growth  function  for the deer population  and graph  it. Based  on the graph,  what happens  to the 

deer population  in the long run?

b. How fast (in deer per year)  is the population  declining  immediately  after the fire at t = 0?

c. How long does it take for the deer population  to decline  to 1200 deer?

T 105. Gone fishing   When  a reservoir  is created  by a new dam, 50 fish are introduced  into the reservoir,  

which  has an estimated  carrying  capacity  of 8000 fish. A logistic  model  of the fish population  is 

P(t ) =
400,000

50 + 7950 e-0.5 t
, where  t  is measured  in years.

a. Graph  P  using  a graphing  utility.  Experiment  with different  windows  until  you produce  an S-

shaped  curve  characteristic  of the logistic  model.  What  window  works  well for this function?

b. How long does it take for the population  to reach 5000 fish? How long does it take for the 

population  to reach 90% of the carrying  capacity?

c. How fast (in fish per year)  is the population  growing  at t = 0? At t = 5?

d. Graph  P ' and use the graph  to estimate  the year in which  the population  is growing  fastest.

T 106. World  population  (part  1)  The population  of the world  reached  6 billion  in 1999 (t = 0). Assume  the 

carrying  capacity  is 15 billion  and the base growth  rate is r0 = 0.025 per year.

a. Write a logistic  growth  function  for the world’s  population  (in billions),  and graph  your equation  

on the interval  0 ≤ t ≤ 200 using a graphing  utility.

b. What will the population  be in the year 2020?  When  will it reach 12 billion?

107. World  population  (part  2)  The relative  growth  rate  r  of a function  f  measures  the rate of change  of 

the function  compared  to its value at a particular  point.  It is computed  as r(t ) =
f ' (t )

f (t )
.

a. Confirm  that the relative  growth  rate in 1999 (t = 0) for the logistic  model  in Exercise  72 is 

r(0) =
P ' (0)

P(0)
= 0.015. This means  the world's  population  was growing  at 1.5% per year in 1999.

b. Compute  the relative  growth  rate of the world's  population  in 2010 and 2020.  What  appears  to 

be happening  to the relative  growth  rate as time increases?
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c. Evaluate  lim
t→∞ r(t ) = lim

t→∞
P ' (t )

P(t )
, where  P(t ) is the logistic  growth  function  from Exercise  106. 

What does your answer  say about  populations  that follow  a logistic  growth  pattern?

108. Snow plow problem   With snow on the ground  and falling  at a constant  rate,  a snow plow began  

plowing  down  a long straight  road at noon.  The plow traveled  twice  as far in the first hour as it did in 

the second  hour.  At what  time did the snow start falling?  Assume  the plowing  rate is inversely  

proportional  to the depth  of the snow.

109. Depletion  of natural  resources   Suppose  that r(t ) = r0 e-k t  is the rate at which  a nation  extracts  oil, 

where  r0 = 107 barrels /yr is the current  rate of extraction.  Suppose  also that the estimate  of the total  

oil reserve  is 2×109 barrels .

a. Find Q(t ), the total  amount  of oil extracted  by the nation  after t  years.

b. Evaluate  lim
t→∞ Q(t ) and explain  the meaning  of this limit.

c. Find the minimum  decay  constant  k  for which  the total  oil reserves  will last forever.

d. Suppose  r0 = 2×107 barrels /yr and the decay  constant  k  is the minimum  value found  in part (c). 

How long will the total  oil reserves  last?

110. Derivative  of ln x   Differentiate  ln x  for x > 0 and differentiate  ln(-x) for x < 0 to conclude  that 
d

d x
(ln x) = 1

x
.

111. Properties  of ex   Use the inverse  relations  between  ln x  and ex   (exp(x)) and the properties  of ln x  to 

prove the following  properties.

a. exp (0) = 1

b. exp (x - y) =
exp (x)

exp (y)

c. (exp (x))p = exp (p x), where  p is an integer

112. ln x  is unbounded   Use the following  argument  to show that lim
x→∞ ln x =∞ and lim

x→0+
ln x = -∞.

a. Make a sketch  of the function  f (x) =
1

x
 on the interval  [1, 2]. Explain  why the area of the region  

bounded  by y = f (x) and the x-axis on [1, 2] is ln 2.

b. Construct  a rectangle  over the interval  [1, 2] with height  
1

2
. Explain  why ln 2 >

1

2
.

c. Show that ln 2n >
n

2
 and ln 2-n < -

n

2
.

d. Conclude  that lim
x→∞ ln x =∞ and lim

x→0+
ln x = -∞.

113. Bounds  on e   Use a left Riemann  sum with n = 2 subintervals  of equal  length  to approximate  

ln 2 = 
1

2 d t

t
 and show that ln 2 < 1. Use a right Riemann  sum with n = 7 subintervals  of equal  

length  to approximate  ln 3 = 
1

3 d t

t
 and show that ln 3 > 1.
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114. Alternate  proof  of product  property   Assume  that y > 0 is fixed and that x > 0. Show that 

d

d x
(ln x y) =

d

d x
(ln x). Recall  that if two functions  have the same derivative,  they differ  by a 

constant.  Set x = 1 to evaluate  the constant  and prove  that ln x y = ln x + ln y .

115. Harmonic  sum  In Chapter  10, we will encounter  the harmonic  sum 1 +
1

2
+

1

3
+⋯ +

1

n
. Use a right 

Riemann  sum to approximate  
1

n d x

x
 (with unit spacing  between  the grid points)  to show that 

1 +
1

2
+

1

3
+⋯ +

1

n
> ln (n + 1). Use this fact to conclude  that lim

n→∞ 1 +
1

2
+

1

3
+⋯ +

1

n
 does not 

exist.

T 116. Tangency  question   It is easily  verified  that the graphs  of y = x2 and y = ex  have no points  of 

intersection  (for x > 0), while  the graphs  of y = x3 and y = ex  have two points  of intersection.  It 

follows  that for some real number  2 < p < 3, the graphs  of y = xp  and y = ex  have exactly  one point  of 

intersection  (for x > 0). Using  analytical  and/or  graphical  methods,  determine  p and the coordinates  

of the single  point  of intersection.

117. Property  of exponents   Prove  that for real numbers  x, y , a, and b ≠ 0, 
a

b

x

=
ax

bx
.
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