
5 Integration
Chapter Preview   We are now at a critical  point  in the calculus  story.  Many  would  argue that 

this chapter  is the cornerstone  of calculus  because  it explains  the relationship  between  the two processes  of 

calculus:  differentiation  and integration.  We begin  by explaining  why finding  the area of regions  bounded  by 

the graphs  of functions  is such an important  problem  in calculus.  Then you will see how antiderivatives  lead to 

definite  integrals,  which  are used to solve this problem.  But there is more to the story.  You will also see the 

remarkable  connection  between  derivatives  and integrals,  which  is expressed  in the Fundamental  Theorem  of 

Calculus.  In this chapter,  we develop  key properties  of definite  integrals,  investigate  a few of their  many  applica -

tions,  and present  the first of several  powerful  techniques  for evaluating  definite  integrals.

5.1 Approximating Areas under Curves

The derivative  of a function  is associated  with rates of change  and slopes  of tangent  lines.  We also know that 

antiderivatives  (or indefinite  integrals)  reverse  the derivative  operation.  Figure  5.1  summarizes  our current  

understanding  and raises  the question:  What  is the geometric  meaning  of the integral?  The following  example  

reveals  a clue.

Figure 5.1

Area under a Velocity Curve  »

Consider  an object  moving  along a line with a known  position  function.  You learned  in previous  chapters  that 

the slope of the line tangent  to the graph  of the position  function  at a certain  time gives the velocity  v  at that 

time. We now turn the situation  around.  If we know the velocity  function  of a moving  object,  what can we learn 

about  its position  function?

Imagine  a car traveling  at a constant  velocity  of 60 mi /hr along a straight  highway  over a two-hour  period.  

The graph  of the velocity  function  v = 60 on the interval  0 ≤ t ≤ 2 is a horizontal  line (Figure  5.2 ). 
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Figure 5.2

The displacement  of the car between  t = 0 and t = 2 hr is found  by a familiar  formula:

displacement = rate · time

= 60 mi /hr ·2 hr = 120 mi.

Note  »

Recall  from  Section  3.6  that  the  displacement of  an object  moving  along  a line  

is given  by 

final position - initial position .

If the  velocity  of an object  is positive,  its  displacement  equals  the  distance  

traveled.

This product  is the area of the rectangle  formed  by the velocity  curve  and the t -axis between  t = 0 and t = 2 

(Figure  5.3 ). In this case (constant  positive  velocity),  we see that the area between  the velocity  curve  and the t -

axis is the displacement  of the moving  object.

Figure 5.3

Note »

Quick Check 1   What  is the displacement  of an object  that travels  at a constant  velocity  of 10 mi /hr for a 

half hour,  20 mi /hr for the next half hour,  and 30 mi /hr for the next hour?   ◆
Answer »

Because  objects  do not necessarily  move at a constant  velocity,  we first extend  these ideas  to positive  

velocities  that change over an interval  of time.  One strategy  is to divide  the time interval  into many  subintervals  

and approximate  the velocity  on each subinterval  by a constant  velocity.  Then the displacements  on each 
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subinterval  are calculated  and summed.  This strategy  produces  only an approximation  to the displacement;  

however,  this approximation  generally  improves  as the number  of subintervals  increases.

EXAMPLE  1 Approximating  the displacement

Suppose  the velocity  in m /s of an object  moving  along a line is given by the function  v = t 2, where  0 ≤ t ≤ 8. 

Approximate  the displacement  of the object  by dividing  the time interval  [0, 8] into n subintervals  of equal  

length.  On each subinterval,  approximate  the velocity  by a constant  equal  to the value of v  evaluated  at the 

midpoint  of the subinterval.

a. Begin by dividing  [0, 8] into n = 2 subintervals:  [0, 4] and [4, 8].

b. Divide  [0, 8] into n = 4 subintervals:  [0, 2], [2, 4], [4, 6], and [6, 8].

c. Divide  [0, 8] into n = 8 subintervals  of equal  length.

SOLUTION   »

a. We divide  the interval  [0, 8] into n = 2 subintervals,  [0, 4] and [4, 8], each with length  4. The velocity  on 

each subinterval  is approximated  using the value of v  evaluated  at the midpoint  of that subinterval  (Figure  

5.4).

 We approximate  the velocity  on [0, 4] by v(2) = 22 = 4 m /s. Traveling  at 4 m /s for 4 s results  in a 

displacement  of 4 m /s ·4 s = 16 m.

Therefore,  an approximation  to the displacement  over the entire  interval  [0, 8] is 

(v(2) ·4 s) + (v(6) ·4 s) = (4 m /s ·4 s) + (36 m /s ·4 s) = 160 m.

b. With n = 4 (Figure  5.4),  each subinterval  has length  2. The approximate  displacement  over the entire  

interval  is 

1 m /s

v(1)

·2 s + 9 m /s

v(3)

·2 s + 25 m /s

v(5)

·2 s + 49 m /s

v(7)

·2 s = 168 m.

c. With n = 8 subintervals  (Figure  5.4),  the approximation  to the displacement  is 170 m. In each case,  the 

approximate  displacement  is the sum of the areas of the rectangles  under  the velocity  curve.
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subintervals

n = 2

n = 4

n = 8

The midpoint of each subinterval is used to

approximate the velocity over that subinterval .

n = 2

v = t 2

1 2 3 4 5 6 7 8
t

10

20

30

40

50

60

70

v

Area ≈ 160.

Figure 5.4

Related  Exercises  3, 15–16   ◆
Quick Check 2   In Example  1, if we used n = 32 subintervals  of equal  length,  what  would  be the length  of 

each subinterval?  Find the midpoint  of the first and last subinterval.   ◆
Answer  »

The progression  in Example  1 may be continued.  Larger  values  of n mean more rectangles;  in general,  

more rectangles  give a better  fit to the region  under  the curve  (Figure  5.5 ). 
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subintervals

n = 1

n = 2

n = 4

n = 8

n = 16

n = 32

n = 64

n = 64

v = t 2

1 2 3 4 5 6 7 8
t
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40
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60

70

v

Area ≈ 170.656

Figure 5.5

With the help of a calculator,  we can generate  the approximations  in Table  5.1 using n = 1, 2, 4, 8, 16, 32, and 64 

subintervals.  Observe  that as n increases,  the approximations  appear  to approach  a limit  of approximately  

170.7 m. The limit  is the exact  displacement,  which  is represented  by the area of the region  under  the velocity  

curve.  This strategy  of taking  limits  of sums is developed  fully in Section  5.2.

Table 5.1 Approximations to the area under the

velocity curve v = t 2 on [0, 8]

Number of

subintervals

Length of

each subinterval

Approximate

displacement

(area under curve )

1 8 s 128.0 m

2 4 s 160.0 m

4 2 s 168.0 m

8 1 s 170.0 m

16 0.5 s 170.5 m

32 0.25 s 170.625 m

64 0.125 s 170.65625 m

Approximating Areas by Riemann Sums  »

We wouldn’t  spend  much  time investigating  areas under  curves  if the idea applied  only to computing  displace -

ments  from velocity  curves.  However,  the problem  of finding  areas under  curves  arises  frequently  and turns out 

to be immensely  important—as  you will see in the next two chapters.  For this reason,  we now develop  a system -

atic method  for approximating  areas under  curves.  Consider  a function  f  that is continuous  and nonnegative  
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on an interval  [a, b]. The goal is to approximate  the area of the region  R bounded  by the graph  of f  and the x-

axis from x = a to x = b (Figure  5.6 ). 

Figure 5.6

Note  »

We begin  by dividing  the interval  [a, b] into n subintervals  of equal  length,  

[x0, x1], [x1, x2], …, [xn-1, xn] ,

where  a = x0 and b = xn  (Figure  5.7 ). The length  of each subinterval,  denoted  Δx, is found  by dividing  the 

length  of the interval  by n: 

Δx =
b - a

n
.

n

…

…

Δx Δx Δx Δx

Δx =
b - a

n

x1 x2 x3 x7x0 = a x8 = b

n = 8

Figure 5.7

DEFINITION Regular  Partition

Suppose  [a, b] is a closed  interval  containing  n subintervals  

[x0, x1], [x1, x2], …, [xn-1, xn]

of equal  length  Δx =
b - a

n
 with a = x0 and b = xn . The endpoints  x0, x1, x2, …, xn-1, xn  of the 

subintervals  are called  the grid points  and they create  a regular  partition  of the interval  [a, b]. In 

general,  the kth grid point  is 

xk = a + k Δx , for k = 0, 1, 2, …, n.
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Quick Check 3   If the interval  [1, 9] is partitioned  into 4 subintervals  of equal  length,  what is Δx? List the 

grid points  x0, x1, x2, x3, and x4.  ◆
Answer  »

In the kth subinterval  [xk-1, xk ], we choose  any point  xk
*  and build  a rectangle  whose  height  is f (xk

* ), the 

value of f  at xk
*  (Figure  5.8 ). 

Figure 5.8

The area of the rectangle  on the kth subinterval  is 

height ·base = f (xk
* ) Δx, where k = 1, 2, …, n.

Summing  the areas of the rectangles  in Figure  5.8, we obtain  an approximation  to the area of R, which  is called  a 

Riemann  sum : 

f (x1
*) Δx + f (x2

*) Δx +⋯ + f (xn
* ) Δx.

Three notable  Riemann  sums are the left, right, and midpoint  Riemann  sums .

Note  »

DEFINITION Riemann  Sum

Suppose  f  is defined  on a closed  interval  [a, b], which  is divided  into n subintervals  of equal  

length  Δx. If xk
*  is any point  in the kth subinterval  [xk-1, xk ], for k = 1, 2, …, n, then 

f (x1
*) Δx + f (x2

*) Δx +⋯ + f (xn
* ) Δx

is called  a Riemann  sum  for f  on [a, b]. (Figure  5.9 ) This sum is called  

• a left Riemann  sum  if xk
*  is the left endpoint  of [xk-1, xk ]; 

• a right Riemann  sum  if xk
*  is the right endpoint  of [xk-1, xk ]; and 

• a midpoint  Riemann  sum  if xk
*  is the midpoint  of [xk-1, xk ], for k = 1, 2, …, n.

Section 5.1  Approximating Areas Under Curves 7

Copyright © 2019 Pearson Education, Inc.



Riemann Sum

Left Riemann Sum

Right Riemann Sum

Midpoint Riemann Sum

n

Each xk
* can be any point in the kth subinterval .

x1 x2 x3 x4 x5 x6x0 = a x7 = b

Riemann Sum
y = f (x)

y

Figure 5.9

EXAMPLE  2 Left and right Riemann  sums

Let R be the region  bounded  by the graph  of f (x) = 3 x  and the x–axis between  x = 4 and x = 16.

a. Approximate  the area of R using a left Riemann  sum with n = 6 subintervals.  Illustrate  the sum with the 

appropriate  rectangles.

b. Approximate  the area of R using a right Riemann  sum with n = 6 subintervals.  Illustrate  the sum with the 

appropriate  rectangles.

c. Do the area approximations  in parts  (a) and (b) underestimate  or overestimate  the actual  area under  the 

curve?

SOLUTION   »

Dividing  the interval  [a, b] = [4, 16] into n = 6 subintervals  means  the length  of each subinterval  is 

Δx =
b - a

n
=

16 - 4

6
= 2;

therefore  the grid points  are 4, 6, 8, 10, 12, 14, and 16.

a. To find the left Riemann  sum, we set x1
* , x2

* , …, x6
*  equal  to the left endpoints  of the six subintervals.  The 

heights  of the rectangles  are f (xk
* ), for k = 1, 2, …, 6.

The resulting  left Riemann  sum (Figure  5.12 ) is 

f (x1
*) Δx + f (x2

*) Δx +⋯ + f (x6
*) Δx = f (4) ·2 + f (6) ·2 + f (8) ·2 + f (10) ·2 + f (12) ·2 + f (14) ·2

= 3 4 ·2 + 3 6 ·2 + 3 8 ·2 + 3 10 ·2 + 3 12 ·2 + 3 14 ·2

≈ 105.876 .
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Left Riemann Sum

subinterval

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

x1
* = 4 x2

* = 6 x3
* = 8 x4

* = 10 x5
* = 12 x6

* = 14

Left Riemann Sum f (x) = 3 x

f (x3
* ) ·Δx = 6 2 · 2 ≈ 16.971

4

8

12

y

Figure 5.12

b. In a right Riemann  sum the right endpoints  are used for x1
* , x2

* , …, x6
* , and the heights  of the rectangles  are 

f (xk
* ), for k = 1, …, 6.

The resulting  right Riemann  sum (Figure  5.13 ) is 

f (x1
*) Δx + f (x2

*) Δx +⋯ + f (x6
*) Δx = f (6) ·2 + f (8) ·2 + f (10) ·2 + f (12) ·2 + f (14) ·2 + f (16) ·2

= 3 6 ·2 + 3 8 ·2 + 3 10 ·2 + 3 12 ·2 + 3 14 ·2 + 3 16 ·2

≈ 117.876 .
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Left Riemann Sum

Right Riemann Sum

subinterval

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

x1
* = 6 x2

* = 8 x3
* = 10 x4

* = 12 x5
* = 14 x6

* = 16

Right Riemann Sum f (x) = 3 x

f (x2
* ) ·Δx = 6 2 · 2 ≈ 16.971

4

8

12

y

Figure 5.13

c. Looking  at the graphs,  we see that the left Riemann  sum in part (a) underestimates  the actual  area of R, 

whereas  the right Riemann  sum in part (b) overestimates  the area of R. Therefore,  the area of R is between  

105.876  and 117.876.  These  approximations  improve  as the number  of rectangles  increases.

Related  Exercises  23–24,  29  ◆
Quick Check 4   If the function  in Example  2 is instead  f (x) = 1 /x, does the left Riemann  sum or the right 

Riemann  sum overestimate  the area under  the curve?   ◆
Answer  »

EXAMPLE  3 A midpoint  Riemann  sum

Let R be the region  bounded  by the graph  of f (x) = 3 x  and the x-axis between  x = 4 and x = 16. Approximate  

the area of R using  a midpoint  Riemann  sum with n = 6 subintervals.  Illustrate  the sum with the appropriate  

rectangles.

SOLUTION   »

The grid points  and the length  of the subintervals  are the same as in Example  2. To find the midpoint  Riemann  

sum, we set x1
* , x2

* , …, x6
*  equal  to the midpoints  of the subintervals.  The midpoint  of the first subinterval  is the 

average  of x0 and x1, which  is 

x1
* =

x0 + x1

2
=

4 + 6

2
= 5.

The remaining  midpoints  are also computed  by averaging  the two nearest  grid points.  The resulting  midpoint  

Riemann  sum (Figure  5.14 ) is 
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f (x1
*) Δx + f (x2

*) Δx +⋯ + f (x6
*) Δx = f (5) ·2 + f (7) ·2 + f (9) ·2 + f (11) ·2 + f (13) ·2 + f (15) ·2

= 3 5 ·2 + 3 7 ·2 + 3 9 ·2 + 3 11 ·2 + 3 13 ·2 + 3 15 ·2

≈ 112.062 .

Left Riemann Sum

Right Riemann Sum

Midpoint Riemann Sum

subinterval

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

x1
* = 5 x2

* = 7 x3
* = 9 x4

* = 11 x5
* = 13 x6

* = 15

Midpoint Riemann Sum f (x) = 3 x

f (x1
* ) ·Δx = 3 5 · 2 ≈ 13.416

4

8

12

y

Figure 5.14

Comparing  the midpoint  Riemann  sum (Figure  5.14)  with the left and right Riemann  sums (Figures  5.12 and 

5.13) suggests  that the midpoint  sum is a more accurate  estimate  of the area under  the curve.  Indeed,  in Section  

5.3, we will learn that the exact  area under  the curve  is 112.

Related  Exercises  33–34,  39  ◆
EXAMPLE  4 Riemann  sums from tables

Estimate  the area A under  the graph  of f  on the interval  [0, 2] using  left and right Riemann  sums with n = 4, 

when f  is continuous  but known  only at the points  in Table  5.2.
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Table 5.2

x f (x)

0 1

0.5 3

1.0 4.5

1.5 5.5

2.0 6.0

SOLUTION   »

With n = 4 subintervals  on the interval  [0, 2], Δx =
2

4
= 0.5. Using  the left endpoint  of each subinterval,  the left 

Riemann  sum is 

A ≈ f (0) Δx + f (0.5) Δx + f (1.0) Δx + f (1.5) Δx

= 1 ·0.5 + 3 ·0.5 + 4.5 ·0.5 + 5.5 ·0.5 = 7.0.

Using the right endpoint  of each subinterval,  the right Riemann  sum is 

A ≈ f (0.5) Δx + f (1.0) Δx + f (1.5) Δx + f (2.0) Δx

= 3 ·0.5 + 4.5 ·0.5 + 5.5 ·0.5 + 6.0 ·0.5 = 9.5.

With only five function  values,  these  estimates  of the area are necessarily  crude.  Better  estimates  are obtained  

by using more subintervals  and more function  values.

Related  Exercises  43–44  ◆
Sigma (Summation) Notation  »

Working  with Riemann  sums is cumbersome  with large numbers  of subintervals.  Therefore,  we pause  for a 

moment  to introduce  some notation  that simplifies  our work.

Sigma (or summation), notation is used to express  sums in a compact  way.  For example,  the sum 

1 + 2 + 3 +⋯ + 10 is represented  in sigma  notation  as 
k=1

10

k . Here is how the notation  works.  The symbol  ∑ 

(sigma, the Greek  capital  S) stands  for sum. The index k  takes  on all integer  values  from the lower  limit  (k = 1) to 

the upper  limit  (k = 10). The expression  that immediately  follows  ∑ (the summand) is evaluated  for each value 

of k , and the resulting  values  are summed.  Here are some examples.
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k=1

99

k = 1 + 2 + 3 +⋯ + 99 = 4950


k=1

n

k = 1 + 2 +⋯ + n


k=0

3

k2 = 02 + 12 + 22 + 32 = 14


k=1

4

(2 k + 1) = 3 + 5 + 7 + 9 = 24


k=-1

2

k2 + k = (-1)2 + (-1) + 02 + 0 + 12 + 1 + 22 + 2 = 8

The index  in a sum is a dummy  variable . It is internal  to the sum, so it does not matter  what  symbol  you choose  

as an index.  For example,  


k=1

99

k = 
n=1

99

n = 
p=1

99

p.

Two properties  of sums are useful  in upcoming  work.  Suppose  {a1, a2, …, an} and {b1, b2, …, bn} are two sets 

of real numbers,  and suppose  c  is a real number.  Then we can factor  constants  out of a sum: 

Constant Multiple Rule 
k=1

n

c ak = c 
k=1

n

ak .

We can also split  a sum into two sums:  

Addition Rule 
k=1

n

(ak + bk ) = 
k=1

n

ak + 
k=1

n

bk .

In the coming  examples  and exercises,  the following  formulas  for sums of powers  of integers  are essential.

THEOREM  5.1 Sums of Powers  of Integers

Let n be a positive  integer  and c  a real number.


k=1

n

c = c n 
k=1

n

k =
n (n + 1)

2


k=1

n

k2 =
n (n + 1) (2 n + 1)

6

k=1

n

k3 =
n2(n + 1)2

4

Note  »

Formulas  for  
k=1

n

k p , where  p  is a positive  integer,  have  been  known  for  

centuries.  The  formulas  for  p = 0, 1, 2, and  3 are  relatively  simple.  The  formulas  

become  complicated  as p  increases.
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Riemann Sums Using Sigma Notation »

With sigma  notation,  a Riemann  sum has the convenient  compact  form 

f (x1
*) Δx + f (x2

*) Δx +⋯ + f (xn
* ) Δx = 

k=1

n

f (xk
* ) Δx.

To express  left, right,  and midpoint  Riemann  sums in sigma  notation,  we must  identify  the points  xk
* . 

 For left Riemann  sums,  the left endpoints  of the subintervals  are xk
* = a + (k - 1) Δx, for k = 1, …, n.

 For right Riemann  sums,  the right endpoints  of the subintervals  are xk
* = a + k Δx, for k = 1, …, n.

 For midpoint  Riemann  sums,  the midpoints  of the subintervals  are xk
* = a + k -

1

2
Δx, for k = 1, …, n.

Note  »

The three Riemann  sums are written  compactly  as follows.

DEFINITION Left,  Right,  and Midpoint  Riemann  Sums  in Sigma  Notation

Suppose  f  is defined  on a closed  interval  [a, b], which  is divided  into n subintervals  of equal  

length  Δx. If xk
*  is a point  in the kth subinterval  [xk-1, xk ], for k = 1, 2, …, n, then the Riemann  

sum of f  on [a, b] is 
k=1

n

f (xk
* ) Δx. Three  cases  arise in practice.  

•  
k=1

n

f (xk
* ) Δx  is a left Riemann  sum  if xk

* = a + (k - 1) Δx.

•  
k=1

n

f (xk
* ) Δx  is a right Riemann  sum  if xk

* = a + k Δx.

•  
k=1

n

f (xk
* ) Δx  is a midpoint  Riemann  sum  if xk

* = a + k -
1

2
Δx.

EXAMPLE  5 Calculating  Riemann  sums

Evaluate  the left, right,  and midpoint  Riemann  sums of f (x) = x3 + 1 between  a = 0 and b = 2 using n = 50 

subintervals.  Make a conjecture  about  the exact  area under  the curve  (Figure  5.15 ).
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Figure 5.15

SOLUTION   »

With n = 50, the length  of each subinterval  is 

Δx =
b - a

n
=

2 - 0

50
=

1

25
= 0.04.

The value of xk
*  for the left Riemann  sum is 

xk
* = a + (k - 1) Δx = 0 + 0.04 (k - 1) = 0.04 k - 0.04,

for k = 1, 2, …, 50. Therefore,  the left Riemann  sum, evaluated  with a calculator,  is 


k=1

n

f (xk
* ) Δx = 

k=1

50

f (0.04 k - 0.04) 0.04 = 5.8416 .

To evaluate  the right Riemann  sum, we let xk
* = a + k Δx = 0.04 k  and find that


k=1

n

f (xk
* ) Δx = 

k=1

50

f (0.04 k) 0.04 = 6.1616 .

For the midpoint  Riemann  sum, we let 

xk
* = a + k -

1

2
Δx = 0 + 0.04 k -

1

2
= 0.04 k - 0.02.

The value of the sum is 


k=1

n

f (xk
* ) Δx = 

k=1

50

f (0.04 k - 0.02) 0.04 = 5.9992 .

Because  f  is increasing  on [0, 2], the left Riemann  sum underestimates  the area of the shaded  region  in Figure  

5.15, while  the right Riemann  sum overestimates  the area.  Therefore,  the exact  area lies between  5.8416  and 

6.1616.  The midpoint  Riemann  sum usually  gives the best estimate  for increasing  or decreasing  functions.

Table  5.3 shows  the left, right,  and midpoint  Riemann  sum approximations  for values  of n up to 200. All 
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three sets of approximations  approach  a value near 6, which  is a reasonable  estimate  of the area under  the 

curve.  In Section  5.2, we show rigorously  that the limit  of all three Riemann  sums as n →∞ is 6.

Table 5.3 Left, right, and

midpoint Riemann

sum

approximations

n Ln Rn Mn

20 5.61 6.41 5.995

40 5.8025 6.2025 5.99875

60 5.86778 6.13444 5.99944

80 5.90063 6.10063 5.99969

100 5.9204 6.0804 5.9998

120 5.93361 6.06694 5.99986

140 5.94306 6.05735 5.9999

160 5.95016 6.05016 5.99992

180 5.95568 6.04457 5.99994

200 5.9601 6.0401 5.99995

ALTERNATIVE  SOLUTION   

It is worth  examining  another  approach  to Example  5. Consider  the right Riemann  sum given previously:  


k=1

n

f (xk
* ) Δx = 

k=1

50

f (0.04 k) 0.04.

Rather  than evaluating  this sum with a calculator,  we note that f (0.04 k) = (0.04 k)3 + 1 and then use the proper -

ties of sums:  


k=1

n

f (xk
* ) Δx = 

k=1

50

(0.04 k)3 + 1
f x

k
* 

0.04⏟
Δx

= 
k=1

50

(0.04 k)3 0.04 + 
k=1

50

1 ·0.04 (ak + bk ) =ak +bk

= (0.04)4 
k=1

50

k3 + 0.04×
k=1

50

1. c ak = c ak

Using the summation  formulas  for powers  of integers  in Theorem  5.1, we find that 


k=1

50

1 = 50 and 
k=1

50

k3 =
502 ·512

4
.

Substituting  the values  of these sums into the right Riemann  sum yields  
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k=1

50

f (xk
* ) Δx =

3851

625
= 6.1616 ,

confirming  the result  given by a calculator.  The idea of evaluating  Riemann  sums for arbitrary values  of n is 

used in Section  5.2, where  we evaluate  the limit  of the Riemann  sum as n →∞.

Related  Exercises  51–52  ◆
Exercises  »

Getting  Started   »

Practice  Exercises   »

15. Approximating  displacement   The velocity  in ft /s of an object  moving  along a line is given by 

v = 3 t 2 + 1 on the interval  0 ≤ t ≤ 4, where  t  is measured  in seconds.

a. Divide  the interval  [0, 4] into n = 4 subintervals,  [0, 1], [1, 2], [2, 3], and [3, 4]. On each 

subinterval,  assume  the object  moves  at a constant  velocity  equal  to v  evaluated  at the midpoint  

of the subinterval  and use these approximations  to estimate  the displacement  of the object  on 

[0, 4] (see part (a) of the figure).

b. Repeat  part (a) for n = 8 subintervals  (see part (b) of the figure).

T 16. Approximating  displacement   The velocity  in ft /s of an object  moving  along a line is given by 

v = 10 t  on the interval  1 ≤ t ≤ 7, where  t  is measured  in seconds.

a. Divide  the interval  [1, 7] into n = 3 subintervals,  [1, 3], [3, 5], and [5, 7]. On each subinterval,  

assume  the object  moves  at a constant  velocity  equal  to v  evaluated  at the midpoint  of the 

subinterval  and use these approximations  to estimate  the displacement  of the object  on [1, 7] 

(see part (a) of the figure).  

b. Repeat  part (a) for n = 6 subintervals  (see part (b) of the figure).
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17–22.  Approximating  displacement   The velocity  of an object  is given by the following  functions  on a 

specified  interval.  Approximate  the displacement  of the object  on this interval  by subdividing  the interval  

into n subintervals.  Use the left endpoint  of each subinterval  to compute  the height  of the rectangles.

17. v = 2 t + 1 (m /s), for 0 ≤ t ≤ 8; n = 2

18. v = t 3 + 1 (m /s), for 0 ≤ t ≤ 3; n = 3

19. v =
1

2 t + 1
(m /s), for 0 ≤ t ≤ 8; n = 4

20. v =
t 2

2
+ 4 (ft /s), for 0 ≤ t ≤ 12; n = 6

T 21. v = 4 t + 1 (mi /hr), for 0 ≤ t ≤ 15; n = 5

22. v =
t + 3

6
(m /s), for 0 ≤ t ≤ 4; n = 4

23–24.  Left and right  Riemann  sums   Use the figures  to calculate  the left and right Riemann  sums for f  on 

the given interval  and for the given value  of n.

23. f (x) = x + 1 on [1, 6]; n = 5

24. f (x) =
1

x
on [1, 5]; n = 4
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25–32.  Left and right  Riemann  sums   Complete  the following  steps for the given function,  interval,  and 

value of n.

a. Sketch  the graph  of the function  on the given interval.

b. Calculate  Δx and the grid points  x0, x1, … , xn.

c. Illustrate  the left and right Riemann  sums.  Then determine  which  Riemann  sum underestimates  

and which  sum overestimates  the area under  the curve.

d. Calculate  the left and right Riemann  sums.

25. f (x) = x + 1 on [0, 4]; n = 4

26. f (x) = 9 - x  on [3, 8]; n = 5

T 27. f (x) = cos x on 0,
π
2
; n = 4

28. f (x) = sin (π x /6) on [0, 3]; n = 3

29. f (x) = x2 - 1 on [2, 4]; n = 4

30. f (x) = 2 x2 on [1, 6]; n = 5

T 31. f (x) = x on [0, 3]; n = 6

T 32. f (x) = 2x on [0, 1]; n = 4

33. A midpoint  Riemann  sum   Approximate  the area of the region  bounded  by the graph  of 

f (x) = 100 - x2 and the x-axis on [0, 10] with n = 5 subintervals.  Use the midpoint  of each 

subinterval  to determine  the height  of each rectangle  (see figure).
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T 34. A midpoint  Riemann  sum   Approximate  the area of the region  bounded  by the graph  of 

f (t ) = cos
t

2
 and the t -axis on [0, π] with n = 4 subintervals.  Use the midpoint  of each subinterval  to 

determine  the height  of each rectangle  (see figure).

35. Free fall   On October  14, 2012,  Felix  Baumgartner stepped  off of a balloon  capsule  at an altitude  of 

almost  39 km above  Earth’s  surface  and he began  his free fall.  His velocity  in m /s during  the fall is 

given in the figure.  It is claimed  that Felix  reached  the speed  of sound  34 seconds  into his fall and 

that he continued  to fall at supersonic  speed  for 30 seconds.  (Source:  

http://www.redbullstratos.com)

a. Divide  the interval  [34, 64] into n = 5 subintervals  with the grid points  x0 = 34, x1 = 40, x2 = 46, 

x3 = 52, x4 = 58, and x5 = 64. Use left and right Riemann  sums to estimate  how far Felix  fell while  

traveling  at supersonic  speed.

b. It is claimed  that the actual  distance  that Felix  fell at supersonic  speed  was approximately  

10,485 m. Which  estimate  in part (a) produced  the more accurate  estimate?

c. How could  you obtain  more accurate  estimates  of the total  distance  fallen  than those  found  in 

part (a)? 

36. Free fall   Use geometry  and the figure  given in Exercise  35 to estimate  how far Felix  fell in the first 

20 seconds  of his free fall.

37–42.  Midpoint  Riemann  sums   Complete  the following  steps for the given function,  interval,  and value  

of n.

20 Chapter 5 •  Integration

Copyright © 2019 Pearson Education, Inc.

http://www.redbullstratos.com/about-felix/accomplishments/


a. Sketch  the graph  of the function  on the given interval.

b. Calculate  Δx and the grid points  x0, x1, …, xn.

c. Illustrate  the midpoint  Riemann  sum by sketching  the appropriate  rectangles.

d. Calculate  the midpoint  Riemann  sum.

37. f (x) = 2 x + 1 on [0, 4]; n = 4

T 38. f (x) = 2 cos(π x /2) on [0, 1]; n = 6

T 39. f (x) = x on [1, 3]; n = 4

40. f (x) = x2 on [0, 4]; n = 4

41. f (x) =
1

x
on [1, 6]; n = 5

42. f (x) = 4 - x on [-1, 4]; n = 5

43–44.  Riemann  sums  from  tables   Evaluate  the left and right Riemann  sums for f over the given interval  

for the given value  of n.

43. [0, 2]; n = 4

x 0 0.5 1 1.5 2

f (x) 5 3 2 1 1

44. [1, 5]; n = 8

x 1 1.5 2 2.5 3 3.5 4 4.5 5

f (x) 0 2 3 2 2 1 0 2 3

45. Displacement  from a table  of velocities   The velocities  (in mi /hr) of an automobile  moving  along a

straight  highway  over a two-hour  period  are given in the following  table.

t (hr) 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

v (mi /hr) 50 50 60 60 55 65 50 60 70

a. Sketch  a smooth  curve  passing  through  the data points.

b. Find the midpoint  Riemann  sum approximation  to the displacement  on [0, 2] with n = 2 and 

n = 4 subintervals.

46. Displacement  from a table  of velocities   The velocities  (in m /s) of an automobile  moving  along a 

straight  freeway  over a four-second  period  are given in the following  table.

t (s) 0 0.5 1 1.5 2 2.5 3 3.5 4

v (m /s) 20 25 30 35 30 30 35 40 40

a. Sketch  a smooth  curve  passing  through  the data points.

b. Find the midpoint  Riemann  sum approximation  to the displacement  on [0, 4] with n = 2 and 

n = 4 subintervals.
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47. Sigma  notation   Express  the following  sums using sigma  notation.  (Answers  are not unique.)

a. 1 + 2 + 3 + 4 + 5

b. 4 + 5 + 6 + 7 + 8 + 9

c. 12 + 22 + 32 + 42

d. 1 +
1

2
+

1

3
+

1

4

48. Sigma  notation   Express  the following  sums using sigma  notation.  (Answers  are not unique.)

a. 1 + 3 + 5 + 7 +⋯ + 99

b. 4 + 9 + 14 +⋯ + 44

c. 3 + 8 + 13 +⋯ + 63

d.
1

1 ·2
+

1

2 ·3
+

1

3 ·4
+⋯ +

1

49 ·50

49. Sigma  notation   Evaluate  the following  expressions.

a. 
k=1

10

k

b. 
k=1

6

(2 k + 1)

c. 
k=1

4

k2

d. 
n=1

5

1 + n2

e. 
m=1

3 2 m + 2

3

f. 
j=1

3

(3 j - 4)

g. 
p=1

5

2 p + p2

h. 
n=0

4

sin
n π

2

T 50. Evaluating  sums   Evaluate  the following  expressions  by two methods.  (i) Use Theorem  5.1. (ii) Use a 

calculator.

a. 
k=1

45

k

b. 
k=1

45

(5 k - 1)
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c. 
k=1

75

2 k2

d. 
n=1

50

1 + n2

e. 
m=1

75 2 m + 2

3

f. 
j=1

20

(3 j - 4)

g. 
p=1

35

2 p + p2

h. 
n=0

40

n2 + 3 n - 1

T 51–54.  Riemann  sums  for larger  values  of n  Complete  the following  steps for the given function  f  and 

interval.

a. For the given value  of n, use sigma  notation  to write  the left, right,  and midpoint  Riemann  sums.  

Then evaluate  each sum using  a calculator.

b. Based on the approximations  found  in part (a), estimate  the area of the region  bounded  by the 

graph of f  and the x-axis on the interval.

51. f (x) = 3 x on [0, 4]; n = 40

52. f (x) = x2 + 1 on [-1, 1]; n = 50

53. f (x) = x2 - 1 on [2, 5]; n = 75

54. f (x) = cos 2 x on 0,
π
4
; n = 60

T 55–58.  Approximating  areas  with a calculator   Use a calculator  and right Riemann  sums to approximate  

the area of the given region.  Present  your calculations  in a table  showing  the approximations  for n = 10, 

30, 60, and 80 subintervals.  Make  a conjecture  about  the limit  of Riemann  sums as n →∞.

55. The region  bounded  by the graph  of f (x) = 12 - 3 x2 and the x-axis on the interval  [-1, 1].

56. The region  bounded  by the graph  of f (x) = 3 x2 + 1 and the x-axis on the interval  [-1, 1].

57. The region  bounded  by the graph  of f (x) =
1 - cos x

2
 and the x-axis on the interval  [-π, π].

58. The region  bounded  by the graph  of f (x) = (sin x + cos x) and the x-axis on the interval  [0, π /2].

59. Explain  why or why not   Determine  whether  the following  statements  are true and give an 

explanation  or counterexample.
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a. Consider  the linear  function  f (x) = 2 x + 5 and the region  bounded  by its graph  and the x-axis 

on the interval  [3, 6]. Suppose  the area of this region  is approximated  using midpoint  Riemann  

sums.  Then the approximations  give the exact  area of the region  for any number  of subintervals.

b. A left Riemann  sum always  overestimates  the area of a region  bounded  by a positive  increasing  

function  and the x-axis on an interval  [a, b].

c. For an increasing  or decreasing  nonconstant  function  on an interval  [a, b] and a given value of 

n, the value of the midpoint  Riemann  sum always  lies between  the values  of the left and right 

Riemann  sums.

T 60. Riemann  sums  for a semicircle   Let f (x) = 1 - x2 .

a. Show that the graph  of f  is the upper  half of a circle  of radius  1 centered  at the origin.

b. Estimate  the area between  the graph  of f  and the x-axis on the interval  [-1, 1] using  a midpoint  

Riemann  sum with n = 25.

c. Repeat  part (b) using n = 75 rectangles.

d. What happens  to the midpoint  Riemann  sums on [-1, 1] as n →∞?

T 61–64.  Sigma  notation  for Riemann  sums   Use sigma  notation  to write  the following  Riemann  sums.  

Then evaluate  each Riemann  sum using Theorem  5.1 or a calculator.

61. The right Riemann  sum for f (x) = x + 1 on [0, 4] with n = 50

62. The left Riemann  sum for f (x) =
3

x
 on [1, 3] with n = 30

63. The midpoint  Riemann  sum for f (x) = x3 on [3, 11] with n = 32

64. The midpoint  Riemann  sum for f (x) = 1 + cos π x  on [0, 2] with n = 50

65–68.  Identifying  Riemann  sums   Fill in the blanks  with an interval  and a value  of n. 

65. 
k=1

4

f (1 + k) ·1 is a right Riemann  sum for f  on the interval  [___, ___] with n = ___.

66. 
k=1

4

f (2 + k) ·1 is a right Riemann  sum for f  on the interval  [___, ___] with n = ___.

67. 
k=1

4

f (1.5 + k) ·1 is a midpoint  Riemann  sum for f  on the interval  [___, ___] with n = ___.

68. 
k=1

8

f 1.5 +
k

2
·

1

2
 is a left Riemann  sum for f  on the interval  [___, ___] with n = ___.

69. Approximating  areas   Estimate  the area of the region  bounded  by the graph  of f (x) = x2 + 2 and the 

x-axis on [0, 2] in the following  ways.

a. Divide  [0, 2] into n = 4 subintervals  and approximate  the area of the region  using a left Riemann  

sum. Illustrate  the solution  geometrically.

a. Divide  [0, 2] into n = 4 subintervals  and approximate  the area of the region  using a midpoint  

Riemann  sum. Illustrate  the solution  geometrically.
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a. Divide  [0, 2] into n = 4 subintervals  and approximate  the area of the region  using a right 

Riemann  sum. Illustrate  the solution  geometrically.

70. Displacement  from a velocity  graph   Consider  the velocity  function  for an object  moving  along a 

line (see figure).

a. Describe  the motion  of the object  over the interval  [0, 6].

b. Use geometry  to find the displacement  of the object  between  t = 0 and t = 3.

c. Use geometry  to find the displacement  of the object  between  t = 3 and t = 5.

d. Assuming  the velocity  remains  30 m /s, for t ≥ 4, find the function  that gives the displacement  

between  t = 0 and any time t ≥ 4.

71. Displacement  from a velocity  graph   Consider  the velocity  function  for an object  moving  along a 

line (see figure).

a. Describe  the motion  of the object  over the interval  [0, 6].

b. Use geometry  to find the displacement  of the object  between  t = 0 and t = 2.

c. Use geometry  to find the displacement  of the object  between  t = 2 and t = 5.

d. Assuming  that the velocity  remains  10 m /s, for t ≥ 5, find the function  that gives the 

displacement  between  t = 0 and any time t ≥ 5.

72. Flow rates   Suppose  a gauge  at the outflow  of a reservoir  measures  the flow rate of water  in units  of 

ft3 hr. In Chapter  6, we show that the total  amount  of water  that flows out of the reservoir  is the area 

under  the flow rate curve.  Consider  the flow rate function  shown  in the figure.

a. Find the amount  of water  (in units  of ft3) that flows out of the reservoir  over the interval  [0, 4].

b. Find the amount  of water  that flows out of the reservoir  over the interval  [8, 10].

c. Does more water  flow out of the reservoir  over the interval  [0, 4] or [4, 6]?

d. Show that the units  of your answer  are consistent  with the units  of the variables  on the axes.
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73. Mass from density   A thin 10-cm  rod is made  of an alloy whose  density  varies  along its length  

according  to the function  shown  in the figure.  Assume  density  is measured  in units  of g /cm. In 

Chapter  6, we show that the mass of the rod is the area under  the density  curve.

a. Find the mass of the left half of the rod (0 ≤ x ≤ 5).

b. Find the mass of the right half of the rod (5 ≤ x ≤ 10).

c. Find the mass of the entire  rod (0 ≤ x ≤ 10).

d. Find the point  along the rod at which  it will balance  (called  the center  of mass).

74–75.  Displacement  from velocity   The following  functions  describe  the velocity  of a car (in mi /hr ) 

moving  along  a straight  highway  for a 3-hr interval.  In each case,  find the function  that gives  the 

displacement  of the car over the interval  [0, t ], where  0 ≤ t ≤ 3.

74. v(t ) =  40 if 0 ≤ t ≤ 1.5

50 if 1.5 < t ≤ 3
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75. v(t ) =

30 if 0 ≤ t ≤ 2

50 if 2 < t ≤ 2.5

44 if 2.5 < t ≤ 3

 

T 76–77.  Functions  with absolute  value   Use a calculator  and the method  of your choice  to approximate  the 

area of the following  regions.  Present  your calculations  in a table,  showing  approximations  using  n = 16, 

32, and 64 subintervals.  Make  a conjecture  about  the limits  of the approximations.

76. The region  bounded  by the graph  of f (x) = 25 - x2 and the x-axis on the interval  [0, 10]

77. The region  bounded  by the graph  of f (x) = 1 - x3 and the x-axis on the interval  [-1, 2]

Explorations  and Challenges   »

78. Riemann  sums  for constant  functions   Let f (x) = c, where  c > 0, be a constant  function  on [a, b]. 

Prove that any Riemann  sum for any value of n gives the exact  area of the region  between  the graph  

of f  and the x-axis on [a, b].

79. Riemann  sums  for linear  functions   Assume  the linear  function  f (x) = m x + c  is positive  on the 

interval  [a, b]. Prove  that the midpoint  Riemann  sum with any value of n gives the exact  area of the 

region  between  the graph  of f  and the x-axis on [a, b].
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80. Shape  of the graph  for left Riemann  sums   Suppose  a left Riemann  sum is used to approximate  the 

area of the region  bounded  by the graph  of a positive  function  and the x-axis on the interval  [a, b]. 

Fill in the following  table to indicate  whether  the resulting  approximation  underestimates  or 

overestimates  the exact  area in the four cases  shown.  Use a sketch  to explain  your reasoning  in each 

case.

Increasing on [a, b] Decreasing on [a, b]

Concave up on [a, b]

Concave down on [a, b]

81. Shape  of the graph  for right  Riemann  sums    Suppose  a right Riemann  sum is used to approximate  

the area of the region  bounded  by the graph  of a positive  function  and the x-axis on the interval  

[a, b]. Fill in the following  table to indicate  whether  the resulting  approximation  underestimates  or

overestimates  the exact  area in the four cases  shown.  Use a sketch  to explain  your reasoning  in each 

case.

Increasing on [a, b] Decreasing on [a, b]

Concave up on [a, b]

Concave down on [a, b]
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