2.7 Precise Definitions of Limits

The limit definitions already encountered in this chapter are adequate for most elementary limits. However some of the terminology used, such as sufficiently close and arbitrarily large, needs clarification. The goal of this section is to give limits a solid mathematical foundation by transforming the previous limit definitions into precise mathematical statements.

Moving Toward a Precise Definition »

Note »
Assume the function f is defined for all x near a, except possibly at a. Recall that $\lim _{x \rightarrow a} f(x)=L$ means that $f(x)$ is arbitrarily close to L for all x sufficiently close (but not equal) to a. This limit definition is made precise by observing that the distance between $f(x)$ and L is $|f(x)-L|$ and that the distance between x and a is $|x-a|$.

Note »
Therefore, we write $\lim _{x \rightarrow a} f(x)=L$ if we can make $|f(x)-L|$ arbitrarily small for any x, distinct from a, with $|x-a|$ sufficiently small. For instance, if we want $|f(x)-L|$ to be less than 0.1 , then we must find a number $\delta>0$ such that

$$
|f(x)-L|<0.1 \quad \text { whenever } \quad|x-a|<\delta \quad \text { and } \quad x \neq a
$$

If, instead, we want $|f(x)-L|$ to be less than 0.001 , then we must find another number $\delta>0$ such that

$$
|f(x)-L|<0.001 \quad \text { whenever } \quad 0<|x-a|<\delta
$$

Note "

The two conditions $|x-a|<\delta$ and $x \neq a$ are written concisely as $0<|x-a|<\delta$.

For the limit to exist, it must be true that for any $\varepsilon>0$, we can always find a $\delta>0$ such that

$$
|f(x)-L|<\varepsilon \quad \text { whenever } \quad 0<|x-a|<\delta
$$

Note »

The Greek letters δ (delta) and ε (epsilon) represent small positive numbers when discussing limits.

EXAMPLE 1 Determining values of $\boldsymbol{\delta}$ from a graph

Figure 2.54 shows the graph of a linear function f with $\lim _{x \rightarrow 3} f(x)=5$. For each value of $\varepsilon>0$, determine a value of $\delta>0$ satisfying the statement

$$
|f(x)-5|<\varepsilon \quad \text { whenever } \quad 0<|x-3|<\delta
$$

a. $\quad \varepsilon=1$
b. $\quad \varepsilon=\frac{1}{2}$

Figure 2.54

SOLUTION 》

a. With $\varepsilon=1$, we want $f(x)$ to be less than 1 unit from 5 , which means $f(x)$ is between 4 and 6 . To determine a corresponding value of δ, draw the horizontal lines $y=4$ and $y=6$ (Figure 2.55). Then sketch vertical lines passing through the points where the horizontal lines and the graph of f intersect. We see that the vertical lines intersect the x-axis at $x=1$ and $x=5$. Note that $f(x)$ is less than 1 unit from 5 on the y-axis if x is within 2 units of 3 on the x-axis. So, for $\varepsilon=1$, we let $\delta=2$ or any smaller positive value.

Figure 2.55
b. With $\varepsilon=\frac{1}{2}$, we want $f(x)$ to lie within a half-unit of 5 or, equivalently, $f(x)$ must lie between 4.5 and 5.5. Proceeding as in part (a), we see that $f(x)$ is within a half-unit of 5 on the y-axis if x is less than 1 unit from 3
(Figure 2.56). So for $\varepsilon=\frac{1}{2}$, we let $\delta=1$ or any smaller positive number.

Figure 2.56
Related Exercises 9-10
The idea of a limit, as illustrated in Example 1, may be described in terms of a contest between two people named Epp and Del. First, Epp picks a particular number $\varepsilon>0$; then, he challenges Del to find a corresponding value of $\delta>0$ such that

$$
\begin{equation*}
|f(x)-5|<\varepsilon \quad \text { whenever } \quad 0<|x-3|<\delta \tag{1}
\end{equation*}
$$

To illustrate, suppose Epp chooses $\varepsilon=1$. From Example 1, we know that Del will satisfy (1) by choosing $0<\delta \leq 2$. If Epp chooses $\varepsilon=\frac{1}{2}$, then (by Example 1) Del responds by letting $0<\delta \leq 1$. If Epp lets $\varepsilon=\frac{1}{8}$, then Del chooses $0<\delta \leq \frac{1}{4}$ (Figure 2.57). In fact, there is a pattern: For any $\varepsilon>0$ that Epp chooses, no matter how small, Del with satisfy (1) by choosing a positive value of δ satisfying $0<\delta \leq 2 \varepsilon$. Del has discovered a mathemati cal relationship: If $0<\delta \leq 2 \varepsilon$ and $0<|x-3|<\delta$, then $|f(x)-5|<\varepsilon$, for any $\varepsilon>0$. This conversation illustrates the general procedure for proving that $\lim _{x \rightarrow a} f(x)=L$.

Figure 2.57
Quick Check 1 In Example 1, find a positive number δ satisfying the statement $|f(x)-5|<\frac{1}{100}$ whenever $0<|x-3|<\delta$.

Answer >

$$
\delta \leq \frac{1}{50}
$$

A Precise Definition >

Example 1 dealt with a linear function, but it points the way to a precise definition of a limit for any function. As shown in Figure 2.58, $\lim _{x \rightarrow a} f(x)=L$ means that for any positive number ε, there is another positive number δ such that

$$
|f(x)-L|<\varepsilon \quad \text { whenever } \quad 0<|x-a|<\delta
$$

In all limit proofs, the goal is to find a relationship between ε and δ that gives an admissible value of δ, in terms of ε only. This relationship must work for any positive value of ε.

Note »

The value of δ in the precise definition of a limit depends only on ε.

Figure 2.58

DEFINITION Limit of a Function

Assume that $f(x)$ is defined for all x in some open interval containing a, except possibly at a. We say that the limit of $\boldsymbol{f}(\boldsymbol{x})$ as \boldsymbol{x} approaches \boldsymbol{a} is \boldsymbol{L}, written

$$
\lim _{x \rightarrow a} f(x)=L,
$$

if for any number $\varepsilon>0$ there is a corresponding number $\delta>0$ such that

$$
|f(x)-L|<\varepsilon \quad \text { whenever } \quad 0<|x-a|<\delta
$$

Note "

EXAMPLE 2 Finding $\boldsymbol{\delta}$ for a given ε using a graphing utility

Let $f(x)=x^{3}-6 x^{2}+12 x-5$ and demonstrate that $\lim _{x \rightarrow 2} f(x)=3$ as follows. For the given values of ε, use a graphing utility to find a value of $\delta>0$ such that

$$
|f(x)-3|<\varepsilon \quad \text { whenever } \quad 0<|x-2|<\delta
$$

a. $\quad \varepsilon=1$
b. $\varepsilon=\frac{1}{2}$

SOLUTION »

a. The condition $|f(x)-3|<\varepsilon=1$ implies that $f(x)$ lies between 2 and 4 . Using a graphing utility, we graph f and the lines $y=2$ and $y=4$ (Figure 2.59). These lines intersect the graph of f at $x=1$ and at $x=3$. We now
sketch the vertical lines $x=1$ and $x=3$ and observe that $f(x)$ is within 1 unit of 3 whenever x is within 1 unit of 2 on the x-axis (Figure 2.59). Therefore, with $\varepsilon=1$, we choose δ such that $0<\delta \leq 1$.

Figure 2.59
b. The condition $|f(x)-3|<\varepsilon=\frac{1}{2}$ implies that $f(x)$ lies between 2.5 and 3.5 on the y-axis. We now find that the lines $y=2.5$ and $y=3.5$ intersect the graph of f at $x \approx 1.21$ and $x \approx 2.79$ (Figure $\mathbf{2 . 6 0}$). Observe that if x is less than 0.79 units from 2 on the x-axis, then $f(x)$ is less than a half-unit from 3 on the y-axis. Therefore with $\varepsilon=\frac{1}{2}$ we let $0<\delta \leq 0.79$.

Figure 2.60

This procedure could be repeated for smaller and smaller values of $\varepsilon>0$. For each value of ε, there exists a corresponding value of δ, proving that the limit exists.

Related Exercise 13

Quick Check 2 For the function f given in Example 2, estimate a value of $\delta>0$ satisfying $|f(x)-3|<0.25$ whenever $0<|x-2|<\delta$.
Answer »
$\delta \leq 0.62$

The inequality $0<|x-a|<\delta$ means that x lies between $a-\delta$ and $a+\delta$ with $x \neq a$. We say that the interval $(a-\delta, a+\delta)$ is symmetric about \boldsymbol{a} because a is the midpoint of the interval. Symmetric intervals are convenient, but Example 3 demonstrates that we don't always get symmetric intervals without a bit of extra work.

EXAMPLE 3 Finding a symmetric interval

Figure 2.61 shows the graph of g with $\lim _{x \rightarrow 2} g(x)=3$. For each value of ε, find the corresponding values of $\delta>0$ that satisfy the condition

$$
|g(x)-3|<\varepsilon \quad \text { whenever } \quad 0<|x-2|<\delta
$$

a. $\quad \varepsilon=2$
b. $\quad \varepsilon=1$
c. For any given value of ε, make a conjecture for the corresponding values of δ that satisfy the limit condition.

Figure 2.61

SOLUTION 》

a. With $\varepsilon=2$, we need a value of $\delta>0$ such that $g(x)$ is within 2 units of 3 , which means $g(x)$ is between 1 and 5, whenever x is less than δ units from 2. The horizontal lines $y=1$ and $y=5$ intersect the graph of g at $x=1$ and $x=6$. Therefore, $|g(x)-3|<2$ if x lies in the interval $(1,6)$ with $x \neq 2$ (Figure $\mathbf{2 . 6 2}$). However, we want x to lie in an interval that is symmetric about 2 . We can guarantee that $|g(x)-3|<2$ in an interval symmetric about 2 only if x is less than 1 unit away from 2 , on either side of 2 . Therefore, with $\varepsilon=2$ we take $\delta=1$ or any smaller positive number.

Figure 2.62
b. With $\varepsilon=1, g(x)$ must lie between 2 and 4 (Figure 2.63). This implies that x must be within a half-unit to the left of 2 and within 2 units to the right of 2 . Therefore $|g(x)-3|<1$ provided x lies in the interval (1.5, 4). To obtain a symmetric interval about 2 , we take $\delta=\frac{1}{2}$ or any smaller positive number. Then we are still guaranteed that $|g(x)-3|<1$ when $0<|x-2|<\frac{1}{2}$.

All values of x
such that
$\|g(x)-3\|<1$
Symmetric interval
centered at $x=2$
that guarantees
$\|g(x)-3\|<1$

Figure 2.63
c. From parts (a) and (b), it appears that if we choose $\delta \leq \frac{\varepsilon}{2}$, the limit condition is satisfied for any $\varepsilon>0$.

Related Exercises 15-16
In Examples 2 and 3, we showed that a limit exists by discovering a relationship between ε and δ that satisfies the limit condition. We now generalize this procedure.

Limit Proofs >

We use the following two-step process to prove that $\lim _{x \rightarrow a} f(x)=L$.

Steps for proving that $\lim _{x \rightarrow a} f(x)=L$

1. Find δ. Let ε be an arbitrary positive number. Use the inequality $|f(x)-L|<\varepsilon$ to find a condition of the form $|x-a|<\delta$, where δ depends only on the value of ε.
2. Write a proof. For any $\varepsilon>0$, assume $0<|x-a|<\delta$ and use the relationship between ε and δ found in Step 1 to prove that $|f(x)-L|<\varepsilon$.

Note "

The first step of the limit-proving process is the preliminary work of finding a candidate for δ. The second step verifies that the δ found in the first step actually works.

EXAMPLE 4 Limit of a linear function

Prove that $\lim _{x \rightarrow 4}(4 x-15)=1$ using the precise definition of a limit.

SOLUTION

EXAMPLE 5 Limit of a quadratic function

Prove that $\lim _{x \rightarrow 5} x^{2}=25$ using the precise definition of a limit.

SOLUTION 》

Step 1: Find δ. Given $\varepsilon>0$, our task is to find an expression for $\delta>0$ that depends only on ε, such that $\left|x^{2}-25\right|<\varepsilon$ whenever $0<|x-5|<\delta$. We begin by factoring $\left|x^{2}-25\right|$:

$$
\begin{aligned}
\left|x^{2}-25\right| & =|(x+5)(x-5)| \quad \text { Factor. } \\
& =|x+5||x-5| . \quad|a b|=|a||b|
\end{aligned}
$$

Because the value of $\delta>0$ in the inequality $0<|x-5|<\delta$ typically represents a small positive number, let's assume $\delta \leq 1$ so that $|x-5|<1$, which implies that $-1<x-5<1$ or $4<x<6$. It follows that x is positive, $|x+5|<11$, and

$$
\left|x^{2}-25\right|=|x+5||x-5|<11|x-5|
$$

Using this inequality, we have $\left|x^{2}-25\right|<\varepsilon$, provided $11|x-5|<\varepsilon$ or $|x-5|<\varepsilon / 11$. Note that two restrictions have been placed on $|x-5|$:

$$
|x-5|<1 \quad \text { and } \quad|x-5|<\frac{\varepsilon}{11}
$$

To ensure that both these inequalities are satisfied, let $\delta=\min \{1, \varepsilon / 11\}$ so that δ equals the smaller of 1 and $\varepsilon / 11$.

Note »

The minimum value of a and b is denoted $\min \{a, b\}$. If $x=\min \{a, b\}$, then x is the smaller of a and b. If $a=b$, then x equals the common value of a and b. In either case, $x \leq a$ and $x \leq b$.

Step 2: \quad Write a proof. Let $\varepsilon>0$ be given and assume $0<|x-5|<\delta$, where $\delta=\min \{1, \varepsilon / 11\}$. By factoring $x^{2}-25$, we have

$$
\left|x^{2}-25\right|=|x+5||x-5|
$$

Because $0<|x-5|<\delta$ and $\delta \leq \varepsilon / 11$, we have $|x-5|<\varepsilon / 11$. It is also the case that $|x-5|<1$ because $\delta \leq 1$, which implies that $-1<x-5<1$ or $4<x<6$. Therefore, $|x+5|<11$ and

$$
\left|x^{2}-25\right|=|x+5||x-5|<11\left(\frac{\varepsilon}{11}\right)=\varepsilon
$$

We have shown that for any $\varepsilon>0,\left|x^{2}-25\right|<\varepsilon$ whenever $0<|x-5|<\delta$, provided $0<\delta=\min \{1, \varepsilon / 11\}$. Therefore, $\lim _{x \rightarrow 5} x^{2}=25$.

Justifying Limit Laws >

The precise definition of a limit is used to prove the limit laws in Theorem 2.3. Essential in several of these proofs is the triangle inequality, which states that

$$
|x+y| \leq|x|+|y|, \text { for all real numbers } x \text { and } y .
$$

EXAMPLE 6 Proof of Limit Law 1

Prove that if $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, then

$$
\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x) .
$$

SOLUTION »

Assume that $\varepsilon>0$ is given. Let $\lim _{x \rightarrow a} f(x)=L$, which implies there exists a $\delta_{1}>0$ such that

$$
|f(x)-L|<\frac{\varepsilon}{2} \text { whenever } 0<|x-a|<\delta_{1}
$$

Note "

Because $\lim _{x \rightarrow a} f(x)$ exists, if there exists a $\delta>0$ for any given $\varepsilon>0$, then there also exists a $\delta>0$ for any given $\frac{\varepsilon}{2}$.

Similarly, let $\lim _{x \rightarrow a} g(x)=M$, which implies there exists a $\delta_{2}>0$ such that

$$
|g(x)-M|<\frac{\varepsilon}{2} \quad \text { whenever } \quad 0<|x-a|<\delta_{2}
$$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ and suppose $0<|x-a|<\delta$. Because $\delta \leq \delta_{1}$, it follows that $0<|x-a|<\delta_{1}$ and $|f(x)-L|<\varepsilon / 2$. Similarly, because $\delta \leq \delta_{2}$, it follows that $0<|x-a|<\delta_{2}$ and $|g(x)-M|<\varepsilon / 2$. Therefore,

$$
\begin{array}{rlrl}
|(f(x)+g(x))-(L+M)| & =|(f(x)-L)+(g(x)-M)| & & \text { Rearrange terms. } \\
& \leq|f(x)-L|+|g(x)-M| & \text { Triangle inequality. } \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon . &
\end{array}
$$

We have shown that given any $\varepsilon>0$, if $0<|x-a|<\delta$ then $|(f(x)+g(x))-(L+M)|<\varepsilon$, which implies that
$\lim _{x \rightarrow a}[f(x)+g(x)]=L+M=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$.

Note "

Proofs of other limit laws are outlined in Exercises 43-44.

Infinite Limits »

In Section 2.4, we stated that $\lim _{x \rightarrow a} f(x)=\infty$ if $f(x)$ grows arbitrarily large as x approaches a. More precisely, this means that for any positive number N (no matter how large), $f(x)$ is larger than N if x is sufficiently close to a
but not equal to a.
Note »
Notice that for infinite limits, N plays the role that ε plays for ordinary limits. It sets a tolerance or bound for the function values $f(x)$.

DEFINITION Two-Sided Infinite Limit

The infinite limit $\lim _{x \rightarrow a} f(x)=\infty$ means that for any positive number N there exists a corresponding $\delta>0$ such that

$$
f(x)>N \quad \text { whenever } \quad 0<|x-a|<\delta .
$$

Note »

Precise definitions for $\lim _{x \rightarrow a} f(x)=-\infty, \lim _{x \rightarrow a^{+}} f(x)=-\infty, \lim _{x \rightarrow a^{+}} f(x)=\infty$,
$\lim _{x \rightarrow a^{-}} f(x)=-\infty$, and $\lim _{x \rightarrow a^{-}} f(x)=\infty$ are given in Exercises 57-63.
As shown in Figure 2.64 , to prove that $\lim _{x \rightarrow a} f(x)=\infty$, we let N represent any positive number. Then we find a value of $\delta>0$, depending only on N, such that

$$
f(x)>N \quad \text { whenever } \quad 0<|x-a|<\delta
$$

This process is similar to the two-step process for finite limits.

Figure 2.64

Steps for proving that $\lim _{x \rightarrow a} f(x)=\infty$

1. Find δ. Let N be an arbitrary positive number. Use the statement $f(x)>N$ to find an inequality of the form $|x-a|<\delta$, where δ depends only on N.
2. Write a proof. For any $N>0$, assume $0<|x-a|<\delta$ and use the relationship between N and δ found in Step 1 to prove that $f(x)>N$.

EXAMPLE 7 An Infinite Limit Proof

Let $f(x)=\frac{1}{(x-2)^{2}}$. Prove that $\lim _{x \rightarrow 2} f(x)=\infty$.

SOLUTION »

Step 1: \quad Find $\delta>0$. Assuming $N>0$, we use the inequality $\frac{1}{(x-2)^{2}}>N$ to find δ, where δ depends only on N. Taking reciprocals of this inequality, it follows that

$$
\begin{aligned}
(x-2)^{2} & <\frac{1}{N} \\
|x-2| & <\frac{1}{\sqrt{N}} . \text { Take the square root of both sides. }
\end{aligned}
$$

Note "
Recall that $\sqrt{x^{2}}=|x|$.
The inequality $|x-2|<\frac{1}{\sqrt{N}}$ has the form $|x-2|<\delta$ if we let $\delta=\frac{1}{\sqrt{N}}$. We now write a proof based on this relationship between δ and N.

Step 2: \quad Write a proof. Suppose $N>0$ is given. Let $\delta=\frac{1}{\sqrt{N}}$ and assume $0<|x-2|<\delta=\frac{1}{\sqrt{N}}$. Squaring both sides of the inequality $|x-2|<\frac{1}{\sqrt{N}}$ and taking reciprocals, we have

$$
\begin{array}{ll}
(x-2)^{2}<\frac{1}{N} & \text { Square both sides. } \\
\frac{1}{(x-2)^{2}}>N . & \text { Take reciprocals of both sides. }
\end{array}
$$

We see that for any positive N, if $0<|x-2|<\delta=\frac{1}{\sqrt{N}}$, then $f(x)=\frac{1}{(x-2)^{2}}>N$. It follows that $\lim _{x \rightarrow 2} \frac{1}{(x-2)^{2}}=\infty$. Note that because $\delta=\frac{1}{\sqrt{N}}, \delta$ decreases as N increases.

Quick Check 3 In Example 7, if N is increased by a factor of 100 , how must δ change?
Answer >
δ must decrease by a factor of $\sqrt{100}=10$ (at least).

Limits at Infinity »

Precise definitions can also be written for the limits at infinity $\lim _{x \rightarrow \infty} f(x)=L$ and $\lim _{x \rightarrow-\infty} f(x)=L$. For discussion and examples, see Exercises 64-65.

Exercises »

Getting Started »

Practice Exercises »
11. Determining values of δ from a graph The function f in the figure satisfies $\lim _{x \rightarrow 3} f(x)=6$. Determine the largest value of $\delta>0$ satisfying each statement.
a. If $0<|x-3|<\delta$, then $|f(x)-6|<3$.
b. If $0<|x-3|<\delta$, then $|f(x)-6|<1$.

12. Determining values of $\boldsymbol{\delta}$ from a graph The function f in the figure satisfies $\lim _{x \rightarrow 4} f(x)=5$. Determine the largest value of $\delta>0$ satisfying each statement.
a. If $0<|x-4|<\delta$, then $|f(x)-5|<1$.
b. If $0<|x-4|<\delta$, then $|f(x)-5|<0.5$.

T 13. Finding δ for a given ε using a graph Let $f(x)=x^{3}+3$ and note that $\lim _{x \rightarrow 0} f(x)=3$. For each value of ε, use a graphing utility to find all values of $\delta>0$ such that $|f(x)-3|<\varepsilon$ whenever $0<|x-0|<\delta$. Sketch graphs illustrating your work.
a. $\varepsilon=1$
b. $\varepsilon=0.5$

T 14. Finding δ for a given ε using a graph Let $g(x)=2 x^{3}-12 x^{2}+26 x+4$ and note that $\lim _{x \rightarrow 2} g(x)=24$. For each value of ε, use a graphing utility to find all values of $\delta>0$ such that $|g(x)-24|<\varepsilon$ whenever $0<|x-2|<\delta$. Sketch graphs illustrating your work.
a. $\varepsilon=1$
b. $\varepsilon=0.5$
15. Finding a symmetric interval The function f in the figure satisfies $\lim _{x \rightarrow 2} f(x)=3$. For each value of ε, find all values of $\delta>0$ such that

$$
\begin{equation*}
|f(x)-3|<\varepsilon \quad \text { whenever } \quad 0<|x-2|<\delta \tag{2}
\end{equation*}
$$

a. $\quad \varepsilon=1$
b. $\varepsilon=\frac{1}{2}$
c. For any $\varepsilon>0$, make a conjecture about the corresponding values of δ satisfying (2).

16. Finding a symmetric interval The function f in the figure satisfies $\lim _{x \rightarrow 4} f(x)=5$. For each value of ε, find all values of $\delta>0$ such that

$$
\begin{equation*}
|f(x)-5|<\varepsilon \quad \text { whenever } \quad 0<|x-4|<\delta \tag{3}
\end{equation*}
$$

a. $\varepsilon=2$
b. $\varepsilon=1$
c. For any $\varepsilon>0$, make a conjecture about the corresponding values of δ satisfying (3).

T 17. Finding a symmetric interval Let $f(x)=\frac{2 x^{2}-2}{x-1}$ and note that $\lim _{x \rightarrow 1} f(x)=4$. For each value of ε, use a graphing utility to find all values of $\delta>0$ such that $|f(x)-4|<\varepsilon$ whenever $0<|x-1|<\delta$.
a. $\varepsilon=2$
b. $\varepsilon=1$
c. For any $\varepsilon>0$, make a conjecture about the value of δ that satisfies the preceding inequality.

T 18. Finding a symmetric interval Let $f(x)=\left\{\right.$| $\frac{1}{3} x+1$ | if $x \leq 3$ |
| :--- | :--- |
| 3 | |
| $\frac{1}{2} x+\frac{1}{2}$ | if $x>3$ | and note that $\lim _{x \rightarrow 3} f(x)=2$. For each value of ε, use a graphing utility to find all values of $\delta>0$ such that $|f(x)-2|<\varepsilon$ whenever $0<|x-3|<\delta$.

a. $\varepsilon=\frac{1}{2}$
b. $\varepsilon=\frac{1}{4}$
c. For any $\varepsilon>0$, make a conjecture about the value of δ that satisfies the preceding inequality.

19-42. Limit proofs Use the precise definition of a limit to prove the following limits. Specify a relationship between ε and δ that guarantees the limit exists.
19. $\lim _{x \rightarrow 1}(8 x+5)=13$
20. $\lim _{x \rightarrow 3}(-2 x+8)=2$
21. $\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}=8$ (Hint: Factor and simplify.)
22. $\lim _{x \rightarrow 3} \frac{x^{2}-7 x+12}{x-3}=-1$
23. $\lim _{x \rightarrow 0}|x|=0$
24. $\lim _{x \rightarrow 0}|5 x|=0$
25. $\lim _{x \rightarrow 7} f(x)=9$, where $f(x)= \begin{cases}3 x-12 & \text { if } x \leq 7 \\ x+2 & \text { if } x>7\end{cases}$
26. $\lim _{x \rightarrow 5} f(x)=4$, where $f(x)= \begin{cases}2 x-6 & \text { if } x \leq 5 \\ -4 x+24 & \text { if } x>5\end{cases}$
27. $\lim _{x \rightarrow 0} x^{2}=0$ (Hint: Use the identity $\sqrt{x^{2}}=|x|$.)
28. $\lim _{x \rightarrow 3}(x-3)^{2}=0$ (Hint: Use the identity $\sqrt{x^{2}}=|x|$.)
29. $\lim _{x \rightarrow 2}\left(x^{2}+3 x\right)=10$
30. $\lim _{x \rightarrow 4}\left(2 x^{2}-4 x+1\right)=17$
31. $\lim _{x \rightarrow-3}|2 x|=6$ (Hint: Use the inequality $\| a|-|b|| \leq|a-b|$, which holds for all constants a and b (see Exercise 74).)
32. $\lim _{x \rightarrow 25} \sqrt{x}=5$ (Hint: The factorization $x-25=(\sqrt{x}-5)(\sqrt{x}+5)$ implies that $\sqrt{x}-5=\frac{x-25}{\sqrt{x}+5}$.)
33. $\lim _{x \rightarrow 3} \frac{1}{x}=\frac{1}{3}$ (Hint: As $x \rightarrow 3$, eventually the distance between x and 3 is less than 1 . Start by assuming $|x-3|<1$ and show $\frac{1}{|x|}<\frac{1}{2}$.)
34. $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}=4$ (Hint: Multiply the numerator and denominator by $\sqrt{x}+2$.)
35. $\lim _{x \rightarrow 1 / 10} \frac{1}{x}=10$ (Hint: To find δ, you need to bound x away from 0 . So let $\left|x-\frac{1}{10}\right|<\frac{1}{20}$.)
36. $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0$
37. $\lim _{x \rightarrow 0}\left(x^{2}+x^{4}\right)=0$ (Hint. You may use the fact that if $|x|<c$, then $x^{2}<c^{2}$.)
38. $\lim _{x \rightarrow a} b=b$ for any constants a and b
39. $\lim _{x \rightarrow a}(m x+b)=m a+b$ for any constants a, b, and m
40. $\lim _{x \rightarrow 3} x^{3}=27$
41. $\lim _{x \rightarrow 1} x^{4}=1$
42. $\lim _{x \rightarrow 5} \frac{1}{x^{2}}=\frac{1}{25}$
43. Proof of Limit Law 2 Suppose $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$. Prove that $\lim _{x \rightarrow a}(f(x)-g(x))=L-M$.
44. Proof of Limit Law 3 Suppose $\lim _{x \rightarrow a} f(x)=L$. Prove that $\lim _{x \rightarrow a}(c f(x))=c L$, where c is a constant.

45-48. Limit proofs for infinite limits Use the precise definition of infinite limits to prove the following limits.
45. $\lim _{x \rightarrow 4} \frac{1}{(x-4)^{2}}=\infty$
46. $\lim _{x \rightarrow-1} \frac{1}{(x+1)^{4}}=\infty$
47. $\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}+1\right)=\infty$
48. $\lim _{x \rightarrow 0}\left(\frac{1}{x^{4}}-\sin x\right)=\infty$
49. Explain why or why not Determine whether the following statements are true and give an explanation or counterexample. Assume a and L are finite numbers and assume $\lim _{x \rightarrow a} f(x)=L$.
a. For a given $\varepsilon>0$, there is one value of $\delta>0$ for which $|f(x)-L|<\varepsilon$ whenever $0<|x-a|<\delta$.
b. The limit $\lim _{x \rightarrow a} f(x)=L$ means that given an arbitrary $\delta>0$, we can always find an $\varepsilon>0$ such that $|f(x)-L|<\varepsilon$ whenever $0<|x-a|<\delta$.
c. The limit $\lim _{x \rightarrow a} f(x)=L$ means that for any arbitrary $\varepsilon>0$, we can always find a $\delta>0$ such that $|f(x)-L|<\varepsilon$ whenever $0<|x-a|<\delta$.
d. If $|x-a|<\delta$, then $a-\delta<x<a+\delta$.
50. Finding δ algebraically Let $f(x)=x^{2}-2 x+3$.
a For $\varepsilon=0.25$, find the largest value of $\delta>0$ satisfying the statement

$$
|f(x)-2|<\varepsilon \quad \text { whenever } \quad 0<|x-1|<\delta .
$$

b. Verify that $\lim _{x \rightarrow 1} f(x)=2$ as follows. For any $\varepsilon>0$, find the largest value of $\delta>0$ satisfying the statement

$$
|f(x)-2|<\varepsilon \quad \text { whenever } \quad 0<|x-1|<\delta .
$$

51-55. Precise definitions for left- and right-sided limits Use the following definitions.
Assume f exists for all x near a with $x>a$. We say that the limit of $f(x)$ as \boldsymbol{x} approaches a from the right of a is L and write $\lim _{x \rightarrow a^{+}} f(x)=L$, if for any $\varepsilon>0$ there exists $\delta>0$ such that

$$
|f(x)-L|<\varepsilon \quad \text { whenever } \quad 0<x-a<\delta .
$$

Assume f exists for all x near a with $x<a$. We say that the limit of $f(x)$ as x approaches a from the left of \boldsymbol{a} is L and write $\lim _{x \rightarrow a^{-}} f(x)=L$, if for any $\varepsilon>0$ there exists $\delta>0$ such that

$$
|f(x)-L|<\varepsilon \quad \text { whenever } \quad 0<a-x<\delta .
$$

51. Comparing definitions Why is the last inequality in the definition of $\lim _{x \rightarrow a} f(x)=L$, namely, $0<|x-a|<\delta$, replaced with $0<x-a<\delta$ in the definition of $\lim _{x \rightarrow a^{+}} f(x)=L$?
52. Comparing definitions Why is the last inequality in the definition of $\lim _{x \rightarrow a} f(x)=L$, namely, $0<|x-a|<\delta$, replaced with $0<a-x<\delta$ in the definition of $\lim _{x \rightarrow a^{-}} f(x)=L$?
53. One-sided limit proofs Prove the following limits for

$$
f(x)= \begin{cases}3 x-4 & \text { if } x<0 \\ 2 x-4 & \text { if } x \geq 0\end{cases}
$$

a. $\lim _{x \rightarrow 0^{+}} f(x)=-4$
b. $\lim _{x \rightarrow 0^{-}} f(x)=-4$
c. $\lim _{x \rightarrow 0} f(x)=-4$
54. Determining values of δ from a graph The function f in the figure satisfies $\lim _{x \rightarrow 2^{+}} f(x)=0$ and $\lim _{x \rightarrow 2^{-}} f(x)=1$. Determine all values of $\delta>0$ that satisfy each statement.
a. $|f(x)-0|<2$ whenever $0<x-2<\delta$
b. $|f(x)-0|<1$ whenever $0<x-2<\delta$
c. $|f(x)-1|<2$ whenever $0<2-x<\delta$
d. $|f(x)-1|<1$ whenever $0<2-x<\delta$

55. One-sided limit proof Prove that $\lim _{x \rightarrow 0^{+}} \sqrt{x}=0$.

Explorations and Challenges 》

56. The relationship between one-sided and two-sided limits Prove the following statements to establish the fact that $\lim _{x \rightarrow a} f(x)=L$ if and only if $\lim _{x \rightarrow a^{-}} f(x)=L$ and $\lim _{x \rightarrow a^{+}} f(x)=L$.
a. If $\lim _{x \rightarrow a^{-}} f(x)=L$ and $\lim _{x \rightarrow a^{+}} f(x)=L$, then $\lim _{x \rightarrow a} f(x)=L$.
b. If $\lim _{x \rightarrow a} f(x)=L$, then $\lim _{x \rightarrow a^{-}} f(x)=L$ and $\lim _{x \rightarrow a^{+}} f(x)=L$.
57. Definition of one-sided infinite limits We write $\lim _{x \rightarrow a^{+}} f(x)=-\infty$ if for any negative number N, there exists $\delta>0$ such that

$$
f(x)<N \text { whenever } 0<x-a<\delta .
$$

a. Write an analogous formal definition for $\lim _{x \rightarrow a^{+}} f(x)=\infty$.
b. Write an analogous formal definition for $\lim _{x \rightarrow a^{-}} f(x)=-\infty$.
c. Write an analogous formal definition for $\lim _{x \rightarrow a^{-}} f(x)=\infty$.

58-59. One-sided infinite limits Use the definitions given in Exercise 57 to prove the following infinite limits.
58. $\lim _{x \rightarrow 1^{+}} \frac{1}{1-x}=-\infty$
59. $\lim _{x \rightarrow 1^{-}} \frac{1}{1-x}=\infty$

60-61. Definition of an infinite limit We write $\lim _{x \rightarrow a} f(x)=-\infty$ iffor any negative number M, there exists a $\delta>0$ such that

$$
f(x)<M \quad \text { whenever } \quad 0<|x-a|<\delta
$$

Use this definition to prove the following statements.
60. $\lim _{x \rightarrow 1} \frac{-2}{(x-1)^{2}}=-\infty$
61. $\lim _{x \rightarrow-2} \frac{-10}{(x+2)^{4}}=-\infty$
62. Suppose $\lim _{x \rightarrow a} f(x)=\infty$. Prove that $\lim _{x \rightarrow a}(f(x)+c)=\infty$ for any constant c.
63. Suppose $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=\infty$. Prove that $\lim _{x \rightarrow a}(f(x)+g(x))=\infty$.

64-65. Definition of a limit at infinity The limit at infinity $\lim _{x \rightarrow \infty} f(x)=L$ means that for any $\varepsilon>0$, there exists $N>0$ such that

$$
|f(x)-L|<\varepsilon \quad \text { whenever } \quad x>N
$$

Use this definition to prove the following statements.
64. $\lim _{x \rightarrow \infty} \frac{10}{x}=0$
65. $\lim _{x \rightarrow \infty} \frac{2 x+1}{x}=2$

66-67. Definition of infinite limits at infinity We write $\lim _{x \rightarrow \infty} f(x)=\infty$ iffor any positive number M, there is a corresponding $N>0$ such that

$$
f(x)>M \quad \text { whenever } \quad x>N .
$$

Use this definition to prove the following statements.
66. $\lim _{x \rightarrow \infty} \frac{x}{100}=\infty$
67. $\lim _{x \rightarrow \infty} \frac{x^{2}+x}{x}=\infty$
68. Proof of the Squeeze Theorem Assume the functions f, g, and h satisfy the inequality $f(x) \leq g(x) \leq h(x)$ for all values of x near a, except possibly at a. Prove that if $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$, then $\lim _{x \rightarrow a} g(x)=L$.
69. Limit proof Suppose f is defined for all x near a, except possibly at a. Assume that for any integer $N>0$ there is another integer $M>0$ such that $|f(x)-L|<1 / N$ whenever $|x-a|<1 / M$. Prove that $\lim _{x \rightarrow a} f(x)=L$ using the precise definition of a limit.

70-72. Proving that $\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} \boldsymbol{f}(\boldsymbol{x}) \neq \boldsymbol{L}$ Use the following definition for the nonexistence of a limit. Assume f is defined for all x near a, except possibly at a. We write $\lim _{x \rightarrow a} f(x) \neq L$ iffor some $\varepsilon>0$, there is no value of $\delta>0$ satisfying the condition

$$
|f(x)-L|<\varepsilon \text { whenever } 0<|x-a|<\delta
$$

70. For the following function, note that $\lim _{x \rightarrow 2} f(x) \neq 3$. Find all values of $\varepsilon>0$ for which the preceding condition for nonexistence is satisfied.

71. Prove that $\lim _{x \rightarrow 0} \frac{|x|}{x}$ does not exist.
72. Let

$$
f(x)= \begin{cases}0 & \text { if } x \text { is rational } \\ 1 & \text { if } x \text { is irrational } .\end{cases}
$$

Prove that $\lim _{x \rightarrow a} f(x)$ does not exist for any value of a. (Hint: Assume $\lim _{x \rightarrow a} f(x)=L$ for some values of a and L, and let $\varepsilon=\frac{1}{2}$.)
73. A continuity proof Suppose f is continuous at a and defined for all x near a. If $f(a)>0$, show that there is a positive number $\delta>0$ for which $f(x)>0$ for all x in $(a-\delta, a+\delta)$. (In other words, f is positive for all x in some interval containing a.)
74. Show that $||a|-|b|| \leq|a-b|$ for all constants a and b. (Hint. Write $|a|=|(a-b)+b|$ and apply the triangle inequality to $|(a-b)+b|$.)

