
Math. 150a, Spring 2024

Optimization problems

Example 1

Every morning Tom leaves his house, gets water from the river, and
takes it to the farm (see Figure 1 to the right). What is the shortest
possible path that Tom has to walk?
Solution
With the notation use in Figure 1, the total distance is T (x) is

T (x) = d(x) + D(x) =
√

x2 + 102 +
√

(30 − x)2 + 202,

where d denotes the distance from the house to the river and D denotes
the distance from the river to the farm. Note that the domain of T (x)
is the interval [0, 30] (Do you know why?) The derivative of T (x) is

T ′(x) =
x

√
x2 + 102

−
30 − x

√

(30 − x)2 + 202

There are no critical numbers corresponding to the points where T ′(x)
does not exist. The only critical numbers of T (x) are points where
T ′(x) = 0. Here is the process of solving for those x where T ′(x) = 0:

Figure 1

x
√

(30 − x)2 + 202 − (30 − x)
√

x2 + 102 = 0

(30 − x)
√

x2 + 102 = x
√

(30 − x)2 + 202

(30 − x)2
(√

x2 + 102
)2

= x2
(√

(30 − x)2 + 202
)2

(30 − x)2)(x2 + 102) = x2
(
(30 − x)2 + 202

)

(x2 − 60x + 900)(x2 + 100) = x(x2 − 60x + 900 + 400)2

x4 − 60x3 + 1000x2 − 6000x + 90000 = x4 − 60x3 + 1300x2

−300x2 − 6000x + 90000 = 0

−300(x + 30)(x − 10) = 0

Since x = −30 is negative, it does not belong to the domain of T (x), thus the only solution is x = 10. Now,

T (0) = 10 + 10
√

13 ≈ 46.0555, T (10) = 30
√

2 ≈ 42.4264, T (30) = 10
√

10 + 20 ≈ 51.6228.

and the smallest of these three values is T (10) = 30
√

2. Thus, the shortest possible path for Tom is to walk to the
point along the river that is 10m downstream from the house, get water there, and then continue along the straight
line to the farm.

Figure 2. The graph of T (x) =
√

x2 + 102 +
√

(30 − x)2 + 202 for x ∈ [0, 30].
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Example 2

Find the dimensions of a rectangle with area 1000 m2 whose perimeter is as small as possible.

Solution

If the rectangle has dimensions x and y (see Figure 3 to the right), then
its area is 1000 = A = xy and its perimeter P = 2x + 2y. Eliminating
y from 1000 = xy, we obtain y = 1000/x and thus the perimeter has
the form

P (x) = 2x +
2000

x
.

The domain of P (x) is (0, ∞). We want to minimize P (x) on (0, ∞).

Since P ′(x) = 2 −
2000

x2
= (x2 − 1000)

2

x2
, the only critical number in

the domain of P (x) is x =
√

1000. Furthermore, P ′′(x) =
4000

x3
> 0

for x ∈ (0, ∞) and by the Second Derivative Test, x =
√

1000 is a local
minimum. However, since P (x) → ∞ as x → 0+ and P (x) → ∞ as
x → ∞, so there must be a minimum value of P (x), which must occur

at the critical number x =
√

1000. The dimensions of the rectangle
with minimal perimeter are x = y =

√
1000 = 10

√
10m, i,e., the

rectangle is a square. The resulting perimeter is P (
√

1000) = 4
√

1000.

y y

x

x

A=1000

Figure 3

Here is a variant of the First Derivative Test that can be used to justify the absolute minimum or absolute maximum
for functions defined not necessarily on closed intervals.

First Derivative Test for Absolute Extreme Values Suppose that c is a critical number of a continuous
function f defined on an interval.

(a) If f ′(x) > 0 for all x < c and f ′(x) < 0 for all x > c, then f(x) is the absolute maximum value of f .

(b) If f ′(x) < 0 for all x < c and f ′(x) > 0 for all x > c, then f(x) is the absolute minimum value of f .

And here is an alternative argument that can be used in Problem 2 to show that the critical number x =
√

1000

must give rise to an absolute minimum for P (x). We observe that P ′(x) = (x2 − 1000)
2

x2
< 0 for 0 < x <

√
1000 and

P ′(x) = (x2 − 1000)
2

x2
> 0 for x >

√
1000. (Do you know why?) Thus, using (b) part of the First Derivative Test

for Absolute Extreme Values, we obtain again that the absolute minimum for P (x) must occur at x =
√

1000.

Figure 4. The graph of P (x) = 2x +
2000

x
for x ∈ [0, 100].
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Example 3

A rectangular storage container with an open top is to have a volume of 10 m3. The length of its base is twice the
width Material for the base costs $10 per square meter. Material for the sides costs $6 per square meter. Find the
cost of the materials for the cheapest such container.

Solution

The volume is V = lwh =⇒ 10 = (2w)(w)h = 2w2h, so h =
5

w2
.

The cost is

C = 10(2w2) + 6[2(2wh) + 2(hw)] = 20w2 + 36wh,

and eliminating h = 5/w2, we obtain

C(w) = 20w2 + 36w
5

w2
= 20w2 +

180

w
.

The domain of C(w) is (0, ∞).

C ′(w) = 40w −
180

w2
=

(

w3 −
9

2

)
40

w2
=⇒ w = 3

√

9

2
is the only

critical number. Since C ′(w) < 0 for 0 < w < 3

√

9

2
and C ′(w) > 0 for

w > 3

√

9

2
.

h

w

2w

Figure 5

The First Derivative Test for Absolute Extreme Values yields that there is an absolute minimum for C(w)

when w = 3

√

9

2
and

C

(

3

√

9

2

)

= 20

(

3

√

9

2

)2

+
180

3

√

9/2
≈ $163.54.

Example 4

(a) Show that of all rectangles with a given area, the one with smallest perimeter is a square.

(b) Show that of all rectangles with a given perimeter, the one with the greatest area is a square.

Solution

(a) If the rectangle has sides x and y and the area A, so A = xy or y = A/x. The problem is to minimize the
perimeter P = 2x + 2y = 2x + 2A/x. The domain of P (x) is (0, ∞). Now P ′(x) = 2 − 2A/x2 = 2(x2 − A)/x2. The

only critical number is x =
√

A. Since P ′(x) < 0 for 0 < x <
√

A and P ′(x) > 0 for x >
√

A. Therefore by the First

Derivative Test for Absolute Extreme Values, P (x) has an absolute minimum at x =
√

A. The sides of the

rectangle are
√

A and A/
√

A =
√

A, so the rectangle is a square.

(b) Let p be the perimeter and x and y the lengths of the sides, so p = 2x + 2y =⇒ 2y = p − 2x =⇒ y =
1

2
p − x. The area is A(x) = x

(
1

2
p − x

)

=
1

2
px − x2. The domain of A(x) is (0, p/2) (Do you know why?). Now,

A′(x) =
1

2
p − 2x = 0 when x =

p

4
. Since A′(x) > 0 for 0 < x < p/4 and A′(x) < 0 for p/4 < x < p/2, the First

Derivative Test for Absolute Extreme Values implies that A(x) has an absolute maximum at x =
p

4
. The sides

of the rectangle are
p

4
and

p

2
−

p

4
=

p

4
, so the rectangle is a square.



4

Example 5

Find the area of the largest rectangle that can be inscribed in a right traingle with legs of lengths 3 cm and 4 cm if
two sides of rectangle lie along the legs.

Solution

The rectangle has area xy. (See Figure 6 to the right.) By similar
triangles

3 − y

x
=

3

4
=⇒ −4y = 12 − 3x or y = −

3

4
x + 3.

So the area is

A(x) = x(−
3

4
x + 3) = −

3

4
x2 + 3x, with x ∈ [0, 4].

Th critical number of A(x) is a solution to A′(x) = −3
2
x + 3 = 0 =⇒

x = 2 and y =
3

2
. Since A(0) = A(4) = 0, the maximum area is

A(2) = 3cm2.

3

4

y
x

x

3−y

Figure 6

Example 6

A right circular cylinder is inscribed in a sphere of radius r. Find the largest possible volume of such cylinder.

Solution

The cylinder has volume πy2(2x). (See Figure 7 to the right.) Also
x2 + y2 = r2 =⇒ y2 = r2 − x2, so

V (x) = π(r2−x2)(2x) = 2π(r2x−x3), where 0 ≤ x ≤ r. (Do you know why?)

V ′(x) = 2π(r2 − 3x2) = 0 =⇒ x =
r

√
3

.

Now V (0) = V (r) = 0, so there is a maximum when x = r/
√

3 and

V (r/
√

3) = π(r2 − r2/
√

3)(2r/
√

3) = 4πr3/(3
√

3).

y

x
r

Figure 7

Example 7

A piece of wire 10m long is cut into two pieces. One piece is bent into a square and the other into a circle. How
should the wire be cut so that the total area enclosed is (a) a maximum? (b) A minimum?

Solution

With the radius r of a circle (see Figure 8 to the right)

equal to
10 − x

2π
, the total area is

A(x) =
(x

4

)2

+π

(
10 − x

2π

)2

=
x2

16
+

(10 − x)2

4π
, 0 ≤ x ≤ 10.

A′(x) =
x

8
−

10 − x

2π
=

(
1

2π
+

1

8

)

x−
5

π
= 0 =⇒ x =

40

4 + π
.

A(0) = 25/π ≈ 7.96, A(10) = 6.25 and A(40/(4 + π)) ≈
3.5, so the maximum occurs when x = 0 (no cut) and the
minimum occurs when x = 40/(4 + π) m.

rx
4

x 10−x
10

Figure 8
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Example 8
A fence 8 ft tall runs parallel to a tall building at a distance of 4 ft from the building. What is the length of the
shortest ladder that will reach from the ground over the fence to the wall of the building?

Solution

With the notation as in Figure 9,

L = 8 csc θ + 4 sec θ, with 0 < θ < π/2. (Do you know why?)

dL

dθ
= −8 csc cot θ + 4 sec θ tan θ = 0 ⇐⇒ −8

cos θ

sin2 θ
+ 4

sin θ

cos2 θ
= 0

⇐⇒ tan3 θ = 2 ⇐⇒ tan θ =
3
√

2 ⇐⇒ θ = tan−1(
3
√

2) .

Next, dL/dθ < 0 when 0 < θ < tan−1( 3
√

2) and dL/dθ > 0 when

tan−1( 3
√

2) < θ < π.2, so L has an absolute minimum when θ ==
tan−1( 3

√
2) and the shortest ladder has length

L = 8

√

1 + 22/3

21/3
+ 4
√

1 + 22/3 ≈ 16.65 ft.

Note that when tan θ = 3
√

2 then sinθ =
21/3

√

1 + 22/3
and cos θ =

1
√

1 + 22/3
.

4

8

L

θ

θ

Figure 9

Second, more complicated method

With the notation as in Figure 10 to the right, we must minimize

L =
√

x2 + (4 + y)2,

where
x

4 + y
=

8

y
, It is simpler to find an absolute minimum of L2

(Do you know why minimizing L2 instead of L is allowed here?)
Eliminating x, we obtain

L2 = 64

(
4 + y

y

)2

+ (4 + y)2, with y > 0.

(L2)′(y) =
2(y4 + 4y3 − 256y − 1024)

y3
= 2

(4 + y)(y3 − 256)

y3
= 0.

The only critical number is y = (256)1/3 = 422/3. Since L2 →
∞ as y → ∞ and L2 → ∞ as y → 0+ and (L2)′′(y) =
2(y4 + 512y + 3072)

y4
> 0 for all y > 0, L2 has a minimum at

y = (256)1/3 = 422/3. The minimum is

L((256)1/3) = 4
√

621/3 + 322/3 + 5 = 8

√

1 + 22/3

21/3
+ 4
√

1 + 22/3

︸ ︷︷ ︸

the same answer as in the first method. Can you check it ?

4

8

L

y

x

Figure 10

Example 9
For a fish swimming at a speed v relative to water, the energy expenditure per unit time is proportional to v3. It is
believed that migrating fish try to minimize the total energy required to swim a fixed distance. If the fish swimming

against a current u (u < v), then the time required to swim a distance L is
L

v − u
and the total energy required to

swim the distance is given by

E(v) = αv3 ·
L

v − u
, where α > 0 is a proportionality constant.

(a) Determine the value that minimize E.
(b) Sketch the graph of E.
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Solution

(a)

E(v) =
αLv3

v − u
, with v > u

implies that

E′(v) = αL
(v − u)3v2 − v3

(v − u)2
= αL

v2(2v − 3u)

(v − u)2
= 0

when 2v = 3u =⇒ v =
3

2
u. Since E′(v) < 0 for u < v <

3

2
u and

E′(v) > 0 for v >
3

2
u. Therefore, by the First Derivative Test

for Absolute Extreme Values, E(v) has an absolute minimum at

v =
3

2
u.

Note: This result has been verified experimentally; migrating fish
swim against a current at a speed 50% greater than the current speed.

(b)

0

E

vu
1.5u

Figure 11

Example 10

A boat leaves a dock at 2:00 pm and travels due south at a speed of 20 km/h. Another boat has been heading due
east at 15 km/h and reaches the same dock at 3:00 pm/ At what time were the two boats closest together?

Solution

Let t be the time, in hours, after 2:00 pm. The position of the boat
heading south at time t is (0, −20t). The position of the boat heading
east at time t is (−15 + 15t, 0). (Do you know why?) Distance D(t)
between the boats is

D(t) =
√

202t2 + 152(t − 1)2 =⇒ D2(t) = 202t2 + 152(t − 1)2.

Note that it is simpler to minimize f(t) = D2(t) = 202t2 +152(t−1)2.

f ′(t) = 800t+450(t−1) = 1250t−450 = 0 when t =
450

1250
= 0.36 h.

Since f ′′(t) > 0, t = 0.36 gives a minimum. Now,

0.36 h ×
60 min

h
= 21 min 36 s

so the boats are closest together at 2:21:36 pm.

S

E

N

W

15km/h

20km/h

Figure 12


