Solutions to Various Practice Problems II

Problem 1.

Consider $f(x) = x^{1/4}$, x = 16, and $\Delta x = -1$.

Using $f(x + \Delta x) \approx f(x) + f'(x)\Delta x$, we have $(15)^{1/4} \approx 2 - \frac{1}{4} \frac{1}{16^{3/4}} = 2 - \frac{1}{32} = \frac{63}{32} = 1.96875$.

Problem 2.

For f(x) = (1+2x)-n, $f'(x) = -2n(1+2x)^{-n-1}$. Thus, with a = 0, L(x) = f(a) + f'(a)(x-a) = 1 + (-2n)(x-0) = 1 - 2nx.

Problem₃.

$$f(x) = \frac{1}{1+x}, x = 4, \ 100\frac{\Delta x}{x} = 2\%, \ f'(x) = \frac{-1}{(1+x)^2}.$$

Thus, $\Delta f \approx f'(x)\Delta x = \left(\frac{-1}{25}\right) \cdot (0.02) \cdot (4) = -0.0032$ and $100\frac{\Delta f}{f} = \pm 100\frac{0.0032}{\frac{1}{1+4}} = \pm 1.6\%.$

Problem 4.

$$90^{2} + x^{2} = z^{2}; \quad \frac{dx}{dt} = 5$$
$$2x\frac{dx}{dt} = 2z\frac{dz}{dt}$$
When $z = 150, x = 120$, so
$$\frac{dz}{dt} = \frac{x}{z} \cdot \frac{dx}{dt} = \frac{120}{150} \cdot 5 = 4 \text{ ft/s}$$

Problem 5.

We want to find $\frac{dy}{dt}$ when y = 12. For any t we have the relation $x^2(t) + y^2(t) = L^2 = 20^2 = 400$. Differentiating with respect to t the last identity, we obtain $2x(t)\frac{dx}{dt} + 2y(t)\frac{dy}{dt} = 0$, for all t. Hence, $\frac{dy}{dt} = -\frac{x}{y}\frac{dx}{dt}$. Furthermore, when y = 12 ft $x = \sqrt{20^2 - 12^2} = \sqrt{256} = 16$ ft, and since $\frac{dx}{dt} = 2$ ft/sec, we obtain $\frac{dy}{dt} = -\frac{16}{12}(2) = -\frac{8}{3}$ ft/sec. (The rate of change is negative since the ladder slides down and the origination of the y-axis is positive up.

(The rate of change is negative since the ladder slides down and the orientation of the y-axis is positive upwards.)

FIGURE 1. A ladder is sliding down the building.

Problem 6.

We use the following linear approximation formula

$$f(x) \approx f(a) + f'(a)(x-a)$$

in order to approximate $\sqrt[4]{81.6}$. Take x = 81.6, a = 81, and $f(x) = \sqrt[4]{x}$.

Since
$$f'(x) = \frac{1}{4\sqrt[4]{x^3}}$$
, and thus $f'(81) = \frac{1}{108}$, we have
 $\sqrt[4]{81.6} \approx 3 + \frac{0.6}{108} = 3 + \frac{1}{180} = \frac{541}{180}$.

Problem 7.

The length of a circle with radius r is given by $L = 2\pi r$. Thus the change, ΔL , in the length of the circle can approximated by $2\pi\Delta r$ (since $L'(r) = 2\pi$). Since $\Delta r = 2$ feet, we have $\Delta L \approx 2\pi \cdot 2 = 4\pi$ ft. (≈ 12.56637 ft)

Problem 8.

For $f(x) = (1-x)^{-n}$, (n positive integer), a = 0; $f'(x) = (-n)(1-x)^{-n-1}(-1)$ and L(x) = f(0) + f'(0)(x-0) = 1 + nx.

In other words, for x close to zero, $(1-x)^{-n} \approx 1 + nx$.

Problem 9.

For $v(R) = cR^2$, v'(R) = 2cR. We have $100\frac{\Delta R}{R} = 5\%$; thus

$$100\frac{\Delta v}{v} \approx \pm 100\frac{2cR\Delta R}{cR^2} = \pm 2\left(100\frac{\Delta R}{R}\right) = \pm 10\%$$

Problem 10.
For
$$f(R) = a \frac{R}{k+R}$$
, $f'(R) = a \frac{k+R-R}{(k+R)^2} = a \frac{k}{(k+R)^2}$. We have
 $\left(100 \frac{\Delta f}{f}\right) \approx \pm 100 \frac{f'(R)\Delta R}{f(R)} = \pm 100 \frac{a \frac{k}{(k+R)^2}}{a \frac{R}{k+R}} \Delta R = \pm 100 \frac{k}{k+R} \cdot \frac{\Delta R}{R} = \pm \frac{k}{k+R} \left(100 \frac{\Delta R}{R}\right)$.

Problem 11.

$$f'(x) = \frac{(1+x^2) - x(2x)}{(1+x^2)^2} = \frac{1-x^2}{(1+x^2)^2} = \frac{(1-x)(1+x)}{(1+x^2)^2}$$

Since the denominator is always positive, f'(x) has the same sign as (1 + x)(1 - x). Solving the inequalities (1+x)(1-x) < 0 and (1+x)(1-x) > 0, we obtain that f'(x) > 0 on the interval (-1, 1) and f'(x) < 0 on the set $(-\infty, -1) \cup (1, \infty)$. We conclude from Theorem 1 on page 269 that f(x) is increasing on the interval (-1, 1) and it is decreasing on the set $(-\infty, -1) \cup (1, \infty)$.

Problem 12.

(a):
$$f'(x) = 4x^3 - 4x = 4x(x+1)(x-1);$$
 $f''(x) = 12x^2 - 4 = 4(3x^2 - 1).$
Critical points are $-1, 0, \text{ and } 1.$
 $f''(-1) = 8 > 0$ so $-1 - 1$ gives a local minimum value of $f(-1) = 2.$
 $f''(0) = -4 < 0$ so 0 gives a local maximum value of $f(1) = 3.$
 $f''(1) = 8 > 0$ so 1 gives a local minimum value of $f(1) = 2.$
Points of inflections are $-\frac{1}{\sqrt{3}}$ and $\frac{1}{\sqrt{3}}$.
(b): $g'(x) = 4x^3 + 6x^2 = 2x^2(2x+3);$ $g''(x) = 12x^2 + 12x = 12x(x+1).$
Critical points are 0 and $-\frac{3}{2}$.
 $g'(x) < 0$ on $\left(-\infty, -\frac{3}{2}\right)$ and $g'(x) > 0$ on $\left(-\frac{3}{2}, 0\right) \cup (0, \infty)$. Using the First Derivative Test, $-\frac{3}{2}$ gives a local minimum of $g\left(-\frac{3}{2}\right) = -\frac{27}{16};$ 0 does **NOT** give a local extremum.
Points of inflections are -1 and 0.

(c):
$$h'(x) = 2 + \frac{2}{3}x^{-1/3} = \frac{2}{3}\frac{3x^{1/3} + 1}{x^{1/3}};$$
 $h''(x) = -\frac{2}{9}x^{-4/3}.$
Critical points are $-\frac{1}{27}$ and 0.
 $h''\left(-\frac{1}{27}\right) = -16 < 0$ so $-\frac{1}{27}$ gives a local maximum value of $h\left(-\frac{1}{27}\right) = \frac{1}{27}.$
 $h'(x) < 0$ on $\left(-\frac{1}{27}, 0\right)$ and $h'(x) > 0$ on $\left(-\infty, -\frac{1}{27}\right) \cup (0, \infty).$ Therefore, using the First Derivative Test,
0 gives a local minimum value of $h(0) = 0.$

NOTE: Since h''(0) is not defined, one cannot use the Second Derivative Test to check x = 0 for a local extremum.

There are **NO** points of inflections.

(d): $F'(x) = \frac{x(x^2+2)}{(x^2+1)^{3/2}}; \quad F''(x) = \frac{2-x^2}{(x^2+1)^{5/2}};$ Critical point is 0. F''(0) = 2 > 0 so 0 gives a local minimum value of F(0) = 0. Points of inflections are $-\sqrt{2}$ and $\sqrt{2}$.

Problem 13.

- (a) Critical points: x = 0 and x = 1.
- (b) f is increasing on $(1, \infty)$ and f is decreasing on $(-\infty, 1)$.
- (c) Local minimum at x = 1.

Note: There is **no** local extremum at x = 0 since f' does not change sign at x = 0.

(d) f is concave up on $(-\infty, -2) \cup (0, \infty)$ and f is concave down on (-2, 0).

- (e) Inflection points: x = -2 and x = 0.
- (f) For the graph see the figure to the right.

3

Problem 14.

The domain of the function is $D_f = (-\infty) \cup (-2, 2) \cup (2, \infty)$.

(a) $f'(x) = \frac{10x}{(x^2 - 4)^2}$ and x = 0 is the only critical point.

NOTE: $x = \pm 2$ are not critical points since they do not belong to the domain D_f .

(b) f' changes sign at x = 0 from - to + and therefore it is a relative minimum.

 $f''(x) = -10 \frac{3x^2 + 4}{(x^2 - 4)^3}$ and therefore there are no points of (c) inflection. Furthermore, f'' > 0 on (-2, 2) (i.e., f is concave upward on (-2, 2) and f'' < 0 on $(-\infty, -2) \cup (2, \infty)$ (i.e., f is concave downward on $(-\infty, -2) \cup (2, \infty)$).

 $\lim_{x \to \pm \infty} \frac{x^2 - 9}{x^2 - 4} = 1$ and therefore y = 1 is a horizontal (d) asymptote. Since the numerator $(x^2 - 9)$ is not zero at $x = \pm 2$, we see that x = -2 and x = 2 are vertical asymptotes.

FIGURE 2. (e) The graph of f.

Problem 15. Refer to the diagram at the right.

The distance of tip of man's shadow to the street light is $D = y + x = \frac{3}{2}x$. Differentiating implicitly, we have

$$\frac{dD}{dt} = \frac{3}{2}\frac{dx}{dt}$$

and when $\frac{dx}{dt} = 6$

$$\frac{dD}{dt} = \frac{3}{2} \cdot 6 = 9, \quad \text{or} \quad 9 \text{ ft/sec.}$$

Problem 16.

Problem 16.
(a)
$$f'(x) = 6x^3(x^2 - 2) = 6x^3(x - \sqrt{2})(x + \sqrt{2}).$$

 f is decreasing on $(-\infty, \sqrt{2}) \cup (0, \sqrt{2}).$ f is increasing on $(-\sqrt{2}, 0) \cup (\sqrt{2}, \infty).$
 $f''(x) = 6x^2(5x^2 - 6) = 30x^2\left(x^2 - \frac{6}{5}\right) = 30x^2\left(x - \sqrt{\frac{6}{5}}\right)\left(x - \sqrt{\frac{6}{5}}\right).$
 f is concave down on $\left(-\sqrt{\frac{6}{5}}, \sqrt{\frac{6}{5}}\right).$ f is concave up on $\left(-\infty, -\sqrt{\frac{6}{5}}\right) \cup \left(\sqrt{\frac{6}{5}}, \infty\right).$

(b)
$$g'(x) = 15x^2(x+1)(x-1).$$

 g is decreasing on $(-1,1).$ g is increasing on $(-\infty,-1) \cup (1,\infty).$
 $g''(x) = 30x(2x^2-1) = 60x\left(x^2-\frac{1}{2}\right) = 60x\left(x+\sqrt{\frac{1}{2}}\right)\left(x-\sqrt{\frac{1}{2}}\right)$
 g is concave up on $\left(-\sqrt{\frac{1}{2}},0\right) \cup \left(\sqrt{\frac{1}{2}},\infty\right).$ g is concave down on $\left(-\infty,-\sqrt{\frac{1}{2}}\right) \cup \left(0,\sqrt{\frac{1}{2}}\right)$

(c)
$$h(x) = x^{2/3} - x^{5/3}$$
.
 $h'(x) = \frac{2}{3}x^{-1/3} - \frac{5}{3}x^{2/3} = \frac{2-5x}{3x^{1/3}}$.
 h is decreasing on $(-\infty, 0) \cup \left(\frac{2}{5}, \infty\right)$. h is increasing on $\left(0, \frac{2}{5}\right)$
 $h''(x) = -\frac{2}{9}x^{-4/3} - \frac{10}{9}x^{-1/3} = -\frac{2+10x}{9x^{4/3}}$.
 h is concave up on $\left(-\infty, -\frac{1}{5}\right)$. h is concave down on $\left(-\frac{1}{5}, 0\right) \cup (0, \infty)$.

Problem 17.

For f with $f'(x) = 2(x+2)(x+1)^2(x-2)^4(x-3)^3$ we have f'(x) < 0 on $(-2,-1) \cup (-1,2) \cup (2,3)$ f'(x) > 0 on $(-\infty,-2) \cup (3,\infty)$.

There is a relative maximum at x = -2 and there is a relative minimum at x = 3.

NOTE: There are **NO** relative extrema at x = -1 and x = 2 since f' does **NOT** change sign at these points. **Problem 18.**

FIGURE 3. A possible graph of the function defined on the interval [0, 6] and satisfying the conditions (1)-(3).

Problem 19.

Let x denote 1/2 of the lower base of the rectangular, y the size of the vertical side. The area $A = 2xy = 2x(8-x^2)$ and $A'(x) = 16 - 6x^2$. Furthermore, A''(x) = -12x, and $x = \frac{2}{3}\sqrt{6}$ is a local maximum (and global maximum). Now, $y = 8 - \left(\frac{2}{3}\sqrt{6}\right)^2 = \frac{16}{3}$. The largest area is equal to $2 \cdot \frac{2}{3}\sqrt{6} \cdot \frac{16}{3} = \frac{64\sqrt{6}}{9}$.

Problem 20.

Let x denote the increase in rental above \$10. Then the income for car rental agency $I(x) = (10 + x)(24 - x) = -x^2 + 14x + 240$. Now, I'(x) = -2x + 14 and I''(x) = -2, hence, x = 7 is a global maximum of function I(x). The agency should charge \$17 per day.

Problem 21.

(a) $f'(x) = 8 \frac{4 - x^2}{(x^2 + 4)^2}$. $f''(x) = \frac{16x(x^2 - 12)}{(4 + x^2)}$. Critical points and local extrema: x = -2 and x = 2. Points of inflection: $x = -2\sqrt{3}$, x = 0, $x = 2\sqrt{3}$. Horizontal asymptotes: y = 0. Vertical asymptotes: none.

FIGURE 4. Graph of the function in Problem 21(a)

(b) $f'(x) = \frac{2}{3} \frac{1}{x^{1/3}}$. $f''(x) = -\frac{2}{9} \frac{1}{x^{4/3}}$. Critical points and local extrema: x = 0. Points of inflection: none. Horizontal asymptotes: none. Vertical asymptotes: none.

FIGURE 5. Graph of the function in Problem 21(b)

(c) $f'(x) = \frac{1}{3}(x-2)^{-2/3}$. $f''(x) = -\frac{2}{9}(x-2)^{-5/9}$. Critical points: x = 2. Local extrema: none. Points of inflection: x = 2. Horizontal asymptotes: none. Vertical asymptotes: none.

(d) $f'(x) = \frac{-5x^4}{(x^5+1)^2}$. $f''(x) = 10\frac{x^3(3x^5-2)}{(1+x^5)^3}$. Critical points: x = 0. Local extrema: none. Points of inflection: $x = 0, x = \left(\frac{2}{3}\right)^{1/5}$. Horizontal asymptotes: y = 0. Vertical asymptotes: x = -1.

FIGURE 6. Graph of the function in Problem 21(c)

FIGURE 7. Graph of the function in Problem 21(d)

Problem 22.

(a) $f(x) = x^{\frac{5}{3}}$ is continuous for all $x \in \mathbb{R}$, thus, in particular, for $x \in [-1, 1]$. Its derivative is $f'(x) = \frac{5}{3}x^{\frac{2}{3}}$, which is also continuous on (-1, 1). Thus the assumptions of the mean Value Theorem are satisfied and there exists at least one $c \in (-1, 1)$ such that

$$\frac{f(1) - f(-1)}{1 - (-1)} = f'(c) \implies 1 = \frac{5}{3}c^{\frac{2}{3}} \implies c = \pm \left(\frac{3}{5}\right)^{\frac{3}{2}} \approx \pm 0.46$$
$$\left(\frac{3}{5}\right)^{\frac{3}{2}} \in [-1, 1],$$

Note: Both $\pm \left(\frac{3}{5}\right)^{\frac{3}{2}} \in [-1,1].$

(b) The function g(x) = |x| is continuous for all $x \in \mathbb{R}$, in particular, for $x \in [-2, 2]$. However,

$$g'(x) = \begin{cases} -1, & \text{if } x < 0, \\ 1, & \text{if } x > 0, \end{cases}$$

and g'(0) does **NOT** exist. Thus, g'(x) does not exist for all $x \in (-2, 2)$. The assumptions of the Mean Value Theorem are not satisfied.

Problem 23.

Let $f(x) = \sqrt{x}$ so $f'(x) = \frac{1}{2\sqrt{x}}$. Apply the Mean Value Theorem to f on the interval [x, x+2] for x > 0. (Do you know why the assumptions of the Mean Value Theorem are satisfied ?) Thus

$$\sqrt{x+2} - \sqrt{x} = \frac{1}{2\sqrt{c}}(x+2-x) = \frac{1}{\sqrt{c}}$$
 for some $c \in (x, x+2)$.

Next observe that

$$\frac{1}{\sqrt{x+2}} < \frac{1}{\sqrt{c}} < \frac{1}{\sqrt{x}}.$$

Thus as $x \to \infty$, $\frac{1}{\sqrt{c}} \to 0$. Therefore

$$\lim_{x \to \infty} \left(\sqrt{x+2} - \sqrt{x}\right) = \lim_{x \to \infty} \frac{1}{\sqrt{c}} = 0$$

Problem 24.

(a)

(a)
$$\int \left(x - \frac{1}{x}\right)^2 dx = \int \left(x^2 - 2 + \frac{1}{x}\right) dx = \frac{1}{3}x^3 - 2x - \frac{1}{x} + C.$$

(b)
$$\int \frac{1}{\sqrt{3x+2}} dx = \begin{cases} u = 3x+2\\ du = 3dx \end{cases} = \frac{1}{3}\int u^{-1/2} du = \frac{2}{3}u^{1/2} + C = \frac{2}{3}(3x+2)^{1/2} + C.$$

(c)
$$\int x(1-x^2)^{1/4} dx = \begin{cases} u = 1-x^2\\ du = -2xdx \end{cases} = -\frac{1}{2}\int u^{1/4} du = -\frac{2}{5}u^{5/4} + C = -\frac{2}{5}(1-x^2)^{5/4} + C.$$

(d)
$$\int \frac{(1+\tan(x))^{1/3}}{\cos^2(x)} dx = \begin{cases} u = 1+\tan x\\ du = (\cos^2 x)^{-2}dx \end{cases} = \int u^{1/3} du = \frac{3}{4}u^{4/3} + C = \frac{3}{4}(1+\tan x)^{4/3} + C.$$

Problem 25.

(a)
$$\sum_{i=1}^{5} \left[(3i+4)^{10} - (3i+1)^{10} \right] = \sum_{i=1}^{5} \left\{ [3(i+1)+1]^{10} - [3i+1]^{10} \right\}.$$

This is a collapsing sum, and thus,

$$\sum_{i=1}^{5} \left[(3i+4)^{10} - (3i+1)^{10} \right] = 19^{10} - 4^{10}.$$

(b)
$$\sum_{k=1}^{n} (3k^2 - 2k + 1) = 3\frac{n(n+1)(2n+1)}{6} - 2\frac{n(n+1)}{2} + n = \frac{1}{2}n(2n^2 + n + 1).$$

Problem 26

$$A_n = f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x = \sum_{i=1}^n f(x_i)\Delta x. \text{ Here, } f(x) = x^3, \ \Delta x = \frac{2}{n} \text{ and } x_i = \frac{2i}{n}. \text{ Thus,}$$
$$\sum_{i=1}^n f(x_i)\Delta x = \sum_{i=1}^n \left(\frac{2i}{n}\right)^3 \frac{2}{n} = \frac{16}{n^4} \sum_{i=1}^n i^3 = \frac{16}{n^4} \left[\frac{n(n+1)}{2}\right]^2 \xrightarrow[n \to \infty]{} 4.$$

Problem 27.

Problem 27. $\int_{-1}^{2} (2+4x) dx = -A + B = -\frac{1}{2} \cdot 2 \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{5}{2} \cdot 10 = 12$, where A is the area of the right triangle with vertices (-1, -2), (-1, 0), and $(-\frac{1}{2}, 0)$, and B is the area of the right triangle with vertices $(-\frac{1}{2}, 0)$, (2, 0), and (2, 10). For details see the picture below.

FIGURE 8. Graph of y = 2 + 4x between [-1, 2] with the corresponding regions below and above the graph.

Problem 28.

Partition the interval [2, 6] into n equal subintervals, each of length $\Delta x = 4/n$. In each subinterval $[x_{i-1}, x_i]$ use $\bar{x}_i = x_i = 2 + \frac{4i}{n}$. Then

$$R_P = \sum_{i=1}^n f(\bar{x}_i) \Delta x = \sum_{i=1}^n \left[(2 + \frac{4i}{n})^2 + 6 \right] \frac{4}{n} = \sum_{i=1}^n \left[10 + \frac{16i}{n} + \frac{16i^2}{n^2} \right] \frac{4}{n} \xrightarrow[n \to \infty]{} 40 + 32 + \frac{64}{3} = \frac{280}{3}.$$