Solutions to Various Practice Problems II

Problem 1.

Consider $f(x)=x^{1 / 4}, x=16$, and $\Delta x=-1$.
Using $f(x+\Delta x) \approx f(x)+f^{\prime}(x) \Delta x$, we have $(15)^{1 / 4} \approx 2-\frac{1}{4} \frac{1}{16^{3 / 4}}=2-\frac{1}{32}=\frac{63}{32}=1.96875$.

Problem 2.

For $f(x)=(1+2 x)-n, f^{\prime}(x)=-2 n(1+2 x)^{-n-1}$.
Thus, with $a=0, L(x)=f(a)+f^{\prime}(a)(x-a)=1+(-2 n)(x-0)=1-2 n x$.

Problem 3.

$f(x)=\frac{1}{1+x}, x=4,100 \frac{\Delta x}{x}=2 \%, f^{\prime}(x)=\frac{-1}{(1+x)^{2}}$.
Thus, $\Delta f \approx f^{\prime}(x) \Delta x=\left(\frac{-1}{25}\right) \cdot(0.02) \cdot(4)=-0.0032 \quad$ and $\quad 100 \frac{\Delta f}{f}= \pm 100 \frac{0.0032}{\frac{1}{1+4}}= \pm 1.6 \%$.

Problem 4.

$$
\begin{aligned}
& 90^{2}+x^{2}=z^{2} ; \quad \frac{d x}{d t}=5 \\
& 2 x \frac{d x}{d t}=2 z \frac{d z}{d t} \\
& \text { When } z=150, x=120, \text { so } \\
& \frac{d z}{d t}=\frac{x}{z} \cdot \frac{d x}{d t}=\frac{120}{150} \cdot 5=4 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

Problem 5.

We want to find $\frac{d y}{d t}$ when $y=12$. For any t we have the relation $x^{2}(t)+y^{2}(t)=L^{2}=20^{2}=400$. Differentiating with respect to t the last identity, we obtain $2 x(t) \frac{d x}{d t}+$ $2 y(t) \frac{d y}{d t}=0$, for all t. Hence, $\frac{d y}{d t}=-\frac{x}{y} \frac{d x}{d t}$. Furthermore, when $y=12 \mathrm{ft} x=\sqrt{20^{2}-12^{2}}=\sqrt{256}=16 \mathrm{ft}$, and since $\frac{d x}{d t}=2 \mathrm{ft} / \mathrm{sec}$, we obtain $\frac{d y}{d t}=-\frac{16}{12}(2)=-\frac{8}{3} \mathrm{ft} / \mathrm{sec}$.
(The rate of change is negative since the ladder slides down and the orientation of the y-axis is positive upwards.)

Figure 1. A ladder is sliding down the building.

Problem 6.

We use the following linear approximation formula

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)
$$

in order to approximate $\sqrt[4]{81.6}$. Take $x=81.6, a=81$, and $f(x)=\sqrt[4]{x}$.
Since $f^{\prime}(x)=\frac{1}{4 \sqrt[4]{x^{3}}}$, and thus $f^{\prime}(81)=\frac{1}{108}$, we have

$$
\sqrt[4]{81.6} \approx 3+\frac{0.6}{108}=3+\frac{1}{180}=\frac{541}{180}
$$

Problem 7.

The length of a circle with radius r is given by $L=2 \pi r$. Thus the change, ΔL, in the length of the circle can approximated by $2 \pi \Delta r\left(\right.$ since $\left.L^{\prime}(r)=2 \pi\right)$. Since $\Delta r=2$ feet, we have $\Delta L \approx 2 \pi \cdot 2=4 \pi \mathrm{ft}$. ($\approx 12.56637 \mathrm{ft}$)

Problem 8.

For $f(x)=(1-x)^{-n},(n$ positive integer $), a=0 ; f^{\prime}(x)=(-n)(1-x)^{-n-1}(-1)$ and $L(x)=f(0)+f^{\prime}(0)(x-0)=$ $1+n x$.
In other words, for x close to zero, $(1-x)^{-n} \approx 1+n x$.

Problem 9.

For $v(R)=c R^{2}, v^{\prime}(R)=2 c R$. We have $100 \frac{\Delta R}{R}=5 \%$; thus

$$
100 \frac{\Delta v}{v} \approx \pm 100 \frac{2 c R \Delta R}{c R^{2}}= \pm 2\left(100 \frac{\Delta R}{R}\right)= \pm 10 \%
$$

Problem 10.

For $f(R)=a \frac{R}{k+R}, f^{\prime}(R)=a \frac{k+R-R}{(k+R)^{2}}=a \frac{k}{(k+R)^{2}}$. We have

$$
\left(100 \frac{\Delta f}{f}\right) \approx \pm 100 \frac{f^{\prime}(R) \Delta R}{f(R)}= \pm 100 \frac{a \frac{k}{(k+R)^{2}}}{a \frac{R}{k+R}} \Delta R= \pm 100 \frac{k}{k+R} \cdot \frac{\Delta R}{R}= \pm \frac{k}{k+R}\left(100 \frac{\Delta R}{R}\right)
$$

Problem 11.

$$
f^{\prime}(x)=\frac{\left(1+x^{2}\right)-x(2 x)}{\left(1+x^{2}\right)^{2}}=\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}=\frac{(1-x)(1+x)}{\left(1+x^{2}\right)^{2}}
$$

Since the denominator is always positive, $f^{\prime}(x)$ has the same sign as $(1+x)(1-x)$. Solving the inequalities $(1+x)(1-x)<0$ and $(1+x)(1-x)>0$, we obtain that $f^{\prime}(x)>0$ on the interval $(-1,1)$ and $f^{\prime}(x)<0$ on the set $(-\infty,-1) \cup(1, \infty)$. We conclude from Theorem 1 on page 269 that $f(x)$ is increasing on the interval $(-1,1)$ and it is decreasing on the set $(-\infty,-1) \cup(1, \infty)$.

Problem 12.

(a): $\quad f^{\prime}(x)=4 x^{3}-4 x=4 x(x+1)(x-1) ; \quad f^{\prime \prime}(x)=12 x^{2}-4=4\left(3 x^{2}-1\right)$.

Critical points are $-1,0$, and 1 .
$f^{\prime \prime}(-1)=8>0$ so $-1-1$ gives a local minimum value of $f(-1)=2$.
$f^{\prime \prime}(0)=-4<0$ so 0 gives a local maximum value of $f(0)=3$.
$f^{\prime \prime}(1)=8>0$ so 1 gives a local minimum value of $f(1)=2$.
Points of inflections are $-\frac{1}{\sqrt{3}}$ and $\frac{1}{\sqrt{3}}$.
(b): $\quad g^{\prime}(x)=4 x^{3}+6 x^{2}=2 x^{2}(2 x+3) ; \quad g^{\prime \prime}(x)=12 x^{2}+12 x=12 x(x+1)$.

Critical points are 0 and $-\frac{3}{2}$.
$g^{\prime}(x)<0$ on $\left(-\infty,-\frac{3}{2}\right)$ and $g^{\prime}(x)>0$ on $\left(-\frac{3}{2}, 0\right) \cup(0, \infty)$. Using the First Derivative Test, $-\frac{3}{2}$ gives a local minimum of $g\left(-\frac{3}{2}\right)=-\frac{27}{16} ; \quad 0$ does NOT give a local extremum.
Points of inflections are -1 and 0 .
(c): $\quad h^{\prime}(x)=2+\frac{2}{3} x^{-1 / 3}=\frac{2}{3} \frac{3 x^{1 / 3}+1}{x^{1 / 3}} ; \quad h^{\prime \prime}(x)=-\frac{2}{9} x^{-4 / 3}$.

Critical points are $-\frac{1}{27}$ and 0 .
$h^{\prime \prime}\left(-\frac{1}{27}\right)=-16<0$ so $-\frac{1}{27}$ gives a local maximum value of $h\left(-\frac{1}{27}\right)=\frac{1}{27}$.
$h^{\prime}(x)<0$ on $\left(-\frac{1}{27}, 0\right)$ and $h^{\prime}(x)>0$ on $\left(-\infty,-\frac{1}{27}\right) \cup(0, \infty)$. Therefore, using the First Derivative Test, 0 gives a local minimum value of $h(0)=0$.

NOTE: Since $h^{\prime \prime}(0)$ is not defined, one cannot use the Second Derivative Test to check $x=0$ for a local extremum.

There are NO points of inflections.
(d): $\quad F^{\prime}(x)=\frac{x\left(x^{2}+2\right)}{\left(x^{2}+1\right)^{3 / 2}} ; \quad F^{\prime \prime}(x)=\frac{2-x^{2}}{\left(x^{2}+1\right)^{5 / 2}} ;$ Critical point is 0.
$F^{\prime \prime}(0)=2>0$ so 0 gives a local minimum value of $F(0)=0$.
Points of inflections are $-\sqrt{2}$ and $\sqrt{2}$.

Problem 13.

(a) Critical points: $x=0$ and $x=1$.
(b) f is increasing on $(1, \infty)$ and f is decreasing on $(-\infty, 1)$.
(c) Local minimum at $x=1$.

Note: There is no local extremum at $x=0$ since f^{\prime} does not change sign at $x=0$.
(d) f is concave up on $(-\infty,-2) \cup(0, \infty)$ and f is concave down on $(-2,0)$.
(e) Inflection points: $x=-2$ and $x=0$.
(f) For the graph see the figure to the right.

Problem 14.

The domain of the function is $D_{f}=(-\infty) \cup(-2,2) \cup(2, \infty)$.
(a) $f^{\prime}(x)=\frac{10 x}{\left(x^{2}-4\right)^{2}}$ and $x=0$ is the only critical point.

NOTE: $x= \pm 2$ are not critical points since they do not belong to the domain D_{f}.
(b) $\quad f^{\prime}$ changes sign at $x=0$ from - to + and therefore it is a relative minimum.
(c) $f^{\prime \prime}(x)=-10 \frac{3 x^{2}+4}{\left(x^{2}-4\right)^{3}}$ and therefore there are no points of inflection. Furthermore, $f^{\prime \prime}>0$ on $(-2,2)$ (i.e., f is concave upward on $(-2,2)$ and $f^{\prime \prime}<0$ on $(-\infty,-2) \cup(2, \infty) \quad$ (i.e., f is concave downward on $(-\infty,-2) \cup(2, \infty))$.
(d) $\lim _{x \rightarrow \pm \infty} \frac{x^{2}-9}{x^{2}-4}=1$ and therefore $y=1$ is a horizontal asymptote. Since the numerator $\left(x^{2}-9\right)$ is not zero at $x= \pm 2$, we see that $x=-2$ and $x=2$ are vertical asymptotes.

Figure 2. (e) The graph of f.

Problem 15.

Refer to the diagram at the right.

$$
\begin{aligned}
\frac{y}{6} & =\frac{y+x}{18} \quad(\mathbf{W H Y} ?) \\
18 y & =6(y+x) \\
3 y & =y+x \\
2 y & =x \\
y & =\frac{1}{2} x
\end{aligned}
$$

The distance of tip of man's shadow to the street light is $D=y+x=\frac{3}{2} x$. Differentiating implicitly, we have

$$
\frac{d D}{d t}=\frac{3}{2} \frac{d x}{d t}
$$

and when $\frac{d x}{d t}=6$

$$
\frac{d D}{d t}=\frac{3}{2} \cdot 6=9, \quad \text { or } \quad 9 \mathrm{ft} / \mathrm{sec}
$$

Problem 16.

(a) $f^{\prime}(x)=6 x^{3}\left(x^{2}-2\right)=6 x^{3}(x-\sqrt{2})(x+\sqrt{2})$.
f is decreasing on $(-\infty, \sqrt{2}) \cup(0, \sqrt{2}) . \quad f$ is increasing on $(-\sqrt{2}, 0) \cup(\sqrt{2}, \infty)$.
$f^{\prime \prime}(x)=6 x^{2}\left(5 x^{2}-6\right)=30 x^{2}\left(x^{2}-\frac{6}{5}\right)=30 x^{2}\left(x-\sqrt{\frac{6}{5}}\right)\left(x-\sqrt{\frac{6}{5}}\right)$.
f is concave down on $\left(-\sqrt{\frac{6}{5}}, \sqrt{\frac{6}{5}}\right)$. f is concave up on $\left(-\infty,-\sqrt{\frac{6}{5}}\right) \cup\left(\sqrt{\frac{6}{5}}, \infty\right)$.
(b) $g^{\prime}(x)=15 x^{2}(x+1)(x-1)$.
g is decreasing on $(-1,1) . \quad g$ is increasing on $(-\infty,-1) \cup(1, \infty)$.
$g^{\prime \prime}(x)=30 x\left(2 x^{2}-1\right)=60 x\left(x^{2}-\frac{1}{2}\right)=60 x\left(x+\sqrt{\frac{1}{2}}\right)\left(x-\sqrt{\frac{1}{2}}\right)$
g is concave up on $\left(-\sqrt{\frac{1}{2}}, 0\right) \cup\left(\sqrt{\frac{1}{2}}, \infty\right) . \quad g$ is concave down on $\left(-\infty,-\sqrt{\frac{1}{2}}\right) \cup\left(0, \sqrt{\frac{1}{2}}\right)$
(c) $\quad h(x)=x^{2 / 3}-x^{5 / 3}$.
$h^{\prime}(x)=\frac{2}{3} x^{-1 / 3}-\frac{5}{3} x^{2 / 3}=\frac{2-5 x}{3 x^{1 / 3}}$.
h is decreasing on $(-\infty, 0) \cup\left(\frac{2}{5}, \infty\right) . \quad h$ is increasing on $\left(0, \frac{2}{5}\right)$
$h^{\prime \prime}(x)=-\frac{2}{9} x^{-4 / 3}-\frac{10}{9} x^{-1 / 3}=-\frac{2+10 x}{9 x^{4 / 3}}$.
h is concave up on $\left(-\infty,-\frac{1}{5}\right)$. h is concave down on $\left(-\frac{1}{5}, 0\right) \cup(0, \infty)$.
(a)

(b)

(c)

Problem 17.

For f with $f^{\prime}(x)=2(x+2)(x+1)^{2}(x-2)^{4}(x-3)^{3}$ we have
$f^{\prime}(x)<0 \quad$ on $\quad(-2,-1) \cup(-1,2) \cup(2,3)$
$f^{\prime}(x)>0 \quad$ on $\quad(-\infty,-2) \cup(3, \infty)$.
There is a relative maximum at $x=-2$ and there is a relative minimum at $x=3$.
NOTE: There are NO relative extrema at $x=-1$ and $x=2$ since f^{\prime} does NOT change sign at these points.
Problem 18.
(1) $f(0)=3 ; \quad f(3)=0 ; \quad f(6)=4$;
(2) $f^{\prime}(x)<0$ on $(0,3) ; \quad f^{\prime}(x)>0$ on $(3,6)$;
(3) $f^{\prime \prime}(x)>0$ on $(0,5) ; \quad f^{\prime \prime}(x)<0$ on $(5,6)$.

Figure 3. A possible graph of the function defined on the interval $[0,6]$ and satisfying the conditions (1)-(3).

Problem 19.

Let x denote $1 / 2$ of the lower base of the rectangular, y the size of the vertical side. The area $A=2 x y=2 x\left(8-x^{2}\right)$ and $A^{\prime}(x)=16-6 x^{2}$. Furthermore, $A^{\prime \prime}(x)=-12 x$, and $x=\frac{2}{3} \sqrt{6}$ is a local maximum (and global maximum).
Now, $y=8-\left(\frac{2}{3} \sqrt{6}\right)^{2}=\frac{16}{3}$. The largest area is equal to $2 \cdot \frac{2}{3} \sqrt{6} \cdot \frac{16}{3}=\frac{64 \sqrt{6}}{9}$.

Problem 20.

Let x denote the increase in rental above $\$ 10$. Then the income for car rental agency $I(x)=(10+x)(24-x)=$ $-x^{2}+14 x+240$. Now, $I^{\prime}(x)=-2 x+14$ and $I^{\prime \prime}(x)=-2$, hence, $x=7$ is a global maximum of function $I(x)$. The agency should charge $\$ 17$ per day.
Problem 21.
(a) $\quad f^{\prime}(x)=8 \frac{4-x^{2}}{\left(x^{2}+4\right)^{2}} . \quad f^{\prime \prime}(x)=\frac{16 x\left(x^{2}-12\right)}{\left(4+x^{2}\right)}$. Critical points and local extrema: $x=-2$ and $x=2$. Points of inflection: $x=-2 \sqrt{3}, x=0, x=2 \sqrt{3}$. Horizontal asymptotes: $y=0$. Vertical asymptotes: none.

Figure 4. Graph of the function in Problem 21(a)
(b) $f^{\prime}(x)=\frac{2}{3} \frac{1}{x^{1 / 3}} . f^{\prime \prime}(x)=-\frac{2}{9} \frac{1}{x^{4 / 3}}$. Critical points and local extrema: $x=0$. Points of inflection: none. Horizontal asymptotes: none. Vertical asymptotes: none.

Figure 5. Graph of the function in Problem 21(b)
(c) $f^{\prime}(x)=\frac{1}{3}(x-2)^{-2 / 3} . \quad f^{\prime \prime}(x)=-\frac{2}{9}(x-2)^{-5 / 9}$. Critical points: $x=2$. Local extrema: none. Points of inflection: $x=2$. Horizontal asymptotes: none. Vertical asymptotes: none.
(d) $f^{\prime}(x)=\frac{-5 x^{4}}{\left(x^{5}+1\right)^{2}} . f^{\prime \prime}(x)=10 \frac{x^{3}\left(3 x^{5}-2\right)}{\left(1+x^{5}\right)^{3}}$. Critical points: $x=0$. Local extrema: none. Points of inflection: $x=0, x=\left(\frac{2}{3}\right)^{1 / 5}$. Horizontal asymptotes: $y=0$. Vertical asymptotes: $x=-1$.

Figure 6. Graph of the function in Problem 21(c)

Figure 7. Graph of the function in Problem 21(d)

Problem 22.

(a) $\quad f(x)=x^{\frac{5}{3}}$ is continuous for all $x \in \mathbb{R}$, thus, in particular, for $x \in[-1,1]$. Its derivative is $f^{\prime}(x)=\frac{5}{3} x^{\frac{2}{3}}$, which is also continuous on $(-1,1)$. Thus the assumptions of the mean Value Theorem are satisfied and there exists at least one $c \in(-1,1)$ such that

$$
\frac{f(1)-f(-1)}{1-(-1)}=f^{\prime}(c) \quad \Longrightarrow \quad 1=\frac{5}{3} c^{\frac{2}{3}} \quad \Longrightarrow \quad c= \pm\left(\frac{3}{5}\right)^{\frac{3}{2}} \approx \pm 0.46
$$

Note: Both $\pm\left(\frac{3}{5}\right)^{\frac{3}{2}} \in[-1,1]$.
(b) The function $g(x)=|x|$ is continuous for all $x \in \mathbb{R}$, in particular, for $x \in[-2,2]$. However,

$$
g^{\prime}(x)= \begin{cases}-1, & \text { if } x<0 \\ 1, & \text { if } x>0\end{cases}
$$

and $g^{\prime}(0)$ does NOT exist. Thus, $g^{\prime}(x)$ does not exist for all $x \in(-2,2)$. The assumptions of the Mean Value Theorem are not satisfied.

Problem 23.

Let $f(x)=\sqrt{x}$ so $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$. Apply the Mean Value Theorem to f on the interval $[x, x+2]$ for $x>0$. (Do you know why the assumptions of the Mean Value Theorem are satisfied?) Thus

$$
\sqrt{x+2}-\sqrt{x}=\frac{1}{2 \sqrt{c}}(x+2-x)=\frac{1}{\sqrt{c}} \quad \text { for some } c \in(x, x+2) .
$$

Next observe that

$$
\frac{1}{\sqrt{x+2}}<\frac{1}{\sqrt{c}}<\frac{1}{\sqrt{x}}
$$

Thus as $x \rightarrow \infty, \frac{1}{\sqrt{c}} \rightarrow 0$. Therefore

$$
\lim _{x \rightarrow \infty}(\sqrt{x+2}-\sqrt{x})=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{c}}=0 .
$$

Problem 24.

(a)

$$
\text { (a) } \int\left(x-\frac{1}{x}\right)^{2} d x=\int\left(x^{2}-2+\frac{1}{x}\right) d x=\frac{1}{3} x^{3}-2 x-\frac{1}{x}+C \text {. }
$$

(b) $\int \frac{1}{\sqrt{3 x+2}} d x=\left\{\begin{array}{c}u=3 x+2 \\ d u=3 d x\end{array}\right\}=\frac{1}{3} \int u^{-1 / 2} d u=\frac{2}{3} u^{1 / 2}+C=\frac{2}{3}(3 x+2)^{1 / 2}+C$.
(c) $\int x\left(1-x^{2}\right)^{1 / 4} d x=\left\{\begin{aligned} u & =1-x^{2} \\ d u & =-2 x d x\end{aligned}\right\}=-\frac{1}{2} \int u^{1 / 4} d u=-\frac{2}{5} u^{5 / 4}+C=-\frac{2}{5}\left(1-x^{2}\right)^{5 / 4}+C$.
(d)

$$
\int \frac{(1+\tan (x))^{1 / 3}}{\cos ^{2}(x)} d x=\left\{\begin{aligned}
u & =1+\tan x \\
d u & =\left(\cos ^{2} x\right)^{-2} d x
\end{aligned}\right\}=\int u^{1 / 3} d u=\frac{3}{4} u^{4 / 3}+C=\frac{3}{4}(1+\tan x)^{4 / 3}+C .
$$

Problem 25.

$$
\text { (a) } \sum_{i=1}^{5}\left[(3 i+4)^{10}-(3 i+1)^{10}\right]=\sum_{i=1}^{5}\left\{[3(i+1)+1]^{10}-[3 i+1]^{10}\right\} \text {. }
$$

This is a collapsing sum, and thus,

$$
\sum_{i=1}^{5}\left[(3 i+4)^{10}-(3 i+1)^{10}\right]=19^{10}-4^{10}
$$

(b) $\sum_{k=1}^{n}\left(3 k^{2}-2 k+1\right)=3 \frac{n(n+1)(2 n+1)}{6}-2 \frac{n(n+1)}{2}+n=\frac{1}{2} n\left(2 n^{2}+n+1\right)$.

Problem 26.
$A_{n}=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$. Here, $f(x)=x^{3}, \Delta x=\frac{2}{n}$ and $x_{i}=\frac{2 i}{n}$. Thus,

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\sum_{i=1}^{n}\left(\frac{2 i}{n}\right)^{3} \frac{2}{n}=\frac{16}{n^{4}} \sum_{i=1}^{n} i^{3}=\frac{16}{n^{4}}\left[\frac{n(n+1)}{2}\right]^{2} \underset{n \rightarrow \infty}{\rightarrow} 4
$$

Problem 27.

$\int_{-1}^{2}(2+4 x) d x=-A+B=-\frac{1}{2} \cdot 2 \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{5}{2} \cdot 10=12$, where A is the area of the right triangle with vertices $(-1,-2),(-1,0)$, and $\left(-\frac{1}{2}, 0\right)$, and B is the area of the right triangle with vertices $\left(-\frac{1}{2}, 0\right),(2,0)$, and $(2,10)$. For details see the picture below.

Figure 8. Graph of $y=2+4 x$ between $[-1,2]$ with the corresponding regions below and above the graph.

Problem 28.
Partition the interval [2,6] into n equal subintervals, each of length $\Delta x=4 / n$. In each subinterval $\left[x_{i-1}, x_{i}\right]$ use $\bar{x}_{i}=x_{i}=2+\frac{4 i}{n}$. Then

$$
R_{P}=\sum_{i=1}^{n} f\left(\bar{x}_{i}\right) \Delta x=\sum_{i=1}^{n}\left[\left(2+\frac{4 i}{n}\right)^{2}+6\right] \frac{4}{n}=\sum_{i=1}^{n}\left[10+\frac{16 i}{n}+\frac{16 i^{2}}{n^{2}}\right] \frac{4}{n} \underset{n \rightarrow \infty}{\rightarrow} 40+32+\frac{64}{3}=\frac{280}{3} .
$$

