
Math. 150a, Fall Spring 2024

Solutions to Various Practice Problems II

Problem 1.
Consider f(x) = x1/4, x = 16, and ∆x = −1.

Using f(x+ ∆x) ≈ f(x) + f ′(x)∆x, we have (15)1/4 ≈ 2− 1
4

1
163/4 = 2− 1

32
= 63

32
= 1.96875.

Problem 2.
For f(x) = (1 + 2x)−n, f ′(x) = −2n(1 + 2x)−n−1.
Thus, with a = 0, L(x) = f(a) + f ′(a)(x− a) = 1 + (−2n)(x− 0) = 1− 2nx.

Problem 3.
f(x) = 1

1 + x
, x = 4, 100∆x

x
= 2%, f ′(x) = −1

(1 + x)2 .

Thus, ∆f ≈ f ′(x)∆x =
(
−1
25

)
· (0.02) · (4) = −0.0032 and 100∆f

f
= ±1000.0032

1
1+4

= ±1.6%.

Problem 4.

902 + x2 = z2; dx

dt
= 5

2xdx
dt

= 2z dz
dt

When z = 150, x = 120, so
dz

dt
= x

z
· dx
dt

= 120
150
· 5 = 4 ft/s 90 ft

x

z

90
2

+ x
2

= z
2

Problem 5.

We want to find dy
dt when y = 12. For any t we have the

relation x2(t) + y2(t) = L2 = 202 = 400. Differentiating
with respect to t the last identity, we obtain 2x(t)dx

dt +
2y(t)dy

dt = 0, for all t. Hence, dy
dt = −x

y
dx
dt . Furthermore,

when y = 12 ft x =
√

202 − 122 =
√

256 = 16 ft, and since
dx
dt = 2 ft/sec, we obtain dy

dt = −16
12(2) = −8

3 ft/sec.
(The rate of change is negative since the ladder slides
down and the orientation of the y-axis is positive up-
wards.)

y(t)

x(t)

L=20 ft

Figure 1. A ladder is sliding down
the building.
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Problem 6.
We use the following linear approximation formula

f(x) ≈ f(a) + f ′(a)(x− a)

in order to approximate 4√81.6. Take x = 81.6, a = 81, and f(x) = 4
√
x.

Since f ′(x) = 1
4 4√

x3
, and thus f ′(81) = 1

108
, we have

4√81.6 ≈ 3 + 0.6
108

= 3 + 1
180

= 541
180

.

Problem 7.
The length of a circle with radius r is given by L = 2πr. Thus the change, ∆L, in the length of the circle can
approximated by 2π∆r (since L′(r) = 2π). Since ∆r = 2 feet, we have ∆L ≈ 2π · 2 = 4π ft. (≈ 12.56637 ft)
Problem 8.
For f(x) = (1− x)−n, (n positive integer), a = 0; f ′(x) = (−n)(1− x)−n−1(−1) and L(x) = f(0) + f ′(0)(x− 0) =
1 + nx.
In other words, for x close to zero, (1− x)−n ≈ 1 + nx.
Problem 9.
For v(R) = cR2, v′(R) = 2cR. We have 100∆R

R = 5%; thus

100∆v
v
≈ ±1002cR∆R

cR2 = ±2
(

100∆R
R

)
= ±10%.

Problem 10.
For f(R) = a

R

k +R
, f ′(R) = a

k +R−R
(k +R)2 = a

k

(k +R)2 . We have

(
100∆f

f

)
≈ ±100f

′(R)∆R
f(R)

= ±100
a k

(k+R)2

a R
k+R

∆R = ±100 k

k +R
· ∆R
R

= ± k

k +R

(
100∆R

R

)
.

Problem 11.

f ′(x) = (1 + x2)− x(2x)
(1 + x2)2 = 1− x2

(1 + x2)2 = (1− x)(1 + x)
(1 + x2)2

Since the denominator is always positive, f ′(x) has the same sign as (1 + x)(1 − x). Solving the inequalities
(1 + x)(1− x) < 0 and (1 + x)(1− x) > 0, we obtain that f ′(x) > 0 on the interval (−1, 1) and f ′(x) < 0 on the set
(−∞,−1)∪ (1,∞). We conclude from Theorem 1 on page 269 that f(x) is increasing on the interval (−1, 1) and it
is decreasing on the set (−∞,−1) ∪ (1,∞).
Problem 12.

(a): f ′(x) = 4x3 − 4x = 4x(x+ 1)(x− 1); f ′′(x) = 12x2 − 4 = 4(3x2 − 1).
Critical points are −1, 0, and 1.
f ′′(−1) = 8 > 0 so −1 −1 gives a local minimum value of f(−1) = 2.
f ′′(0) = −4 < 0 so 0 gives a local maximum value of f(0) = 3.
f ′′(1) = 8 > 0 so 1 gives a local minimum value of f(1) = 2.
Points of inflections are − 1√

3
and 1√

3
.

(b): g′(x) = 4x3 + 6x2 = 2x2(2x+ 3); g′′(x) = 12x2 + 12x = 12x(x+ 1).
Critical points are 0 and −3

2
.

g′(x) < 0 on
(
−∞,−3

2

)
and g′(x) > 0 on

(
−3

2
, 0
)
∪ (0,∞). Using the First Derivative Test, −3

2
gives a

local minimum of g
(
−3

2

)
= −27

16
; 0 does NOT give a local extremum.

Points of inflections are −1 and 0.
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(c): h′(x) = 2 + 2
3
x−1/3 = 2

3
3x1/3 + 1
x1/3 ; h′′(x) = −2

9
x−4/3.

Critical points are − 1
27

and 0.

h′′
(
− 1

27

)
= −16 < 0 so − 1

27
gives a local maximum value of h

(
− 1

27

)
= 1

27
.

h′(x) < 0 on
(
− 1

27
, 0
)

and h′(x) > 0 on
(
−∞,− 1

27

)
∪ (0,∞). Therefore, using the First Derivative Test,

0 gives a local minimum value of h(0) = 0.
NOTE: Since h′′(0) is not defined, one cannot use the Second Derivative Test to check x = 0 for a local
extremum.
There are NO points of inflections.

(d): F ′(x) = x(x2 + 2)
(x2 + 1)3/2 ; F ′′(x) = 2− x2

(x2 + 1)5/2 ; Critical point is 0.

F ′′(0) = 2 > 0 so 0 gives a local minimum value of F (0) = 0.
Points of inflections are −

√
2 and

√
2.

Problem 13.
(a) Critical points: x = 0 and x = 1.
(b) f is increasing on (1,∞) and f is decreasing on (−∞, 1).
(c) Local minimum at x = 1.
Note: There is no local extremum at x = 0 since f ′ does not
change sign at x = 0.
(d) f is concave up on (−∞,−2) ∪ (0,∞) and f is concave
down on (−2, 0).
(e) Inflection points: x = −2 and x = 0.
(f) For the graph see the figure to the right. x

f(x)

-2 1 40

Problem 14.

The domain of the function is Df = (−∞) ∪ (−2, 2) ∪ (2,∞).

(a) f ′(x) = 10x
(x2 − 4)2 andx = 0 is the only critical point.

NOTE: x = ±2 are not critical points since they do not belong
to the domain Df .
(b) f ′ changes sign at x = 0 from − to + and therefore it is a
relative minimum.
(c) f ′′(x) = −10 3x2 + 4

(x2 − 4)3 and therefore there are no points of

inflection. Furthermore, f ′′ > 0 on (−2, 2) (i.e., f is concave
upward on (−2, 2) and f ′′ < 0 on (−∞,−2) ∪ (2,∞) (i.e., f
is concave downward on (−∞,−2) ∪ (2,∞)).

(d) lim
x→±∞

x2 − 9
x2 − 4

= 1 and therefore y = 1 is a horizontal

asymptote. Since the numerator (x2− 9) is not zero at x = ±2,
we see that x = −2 and x = 2 are vertical asymptotes.

x

f(x)

-3 -2 -1 1 2 3

1

2

3

4

4

5

Figure 2. (e) The graph of f .
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Problem 15.
Refer to the diagram at the right.

y

6
= y + x

18
(WHY?)

18y = 6(y + x)
3y = y + x

2y = x

y = 1
2
x.

18’

6’

y x

The distance of tip of man’s shadow to the street light is D = y + x = 3
2
x. Differentiating implicitly, we have

dD

dt
= 3

2
dx

dt

and when dx

dt
= 6

dD

dt
= 3

2
· 6 = 9, or 9 ft/sec.

Problem 16.
(a) f ′(x) = 6x3(x2 − 2) = 6x3(x−

√
2)(x+

√
2).

f is decreasing on (−∞,
√

2) ∪ (0,
√

2). f is increasing on (−
√

2, 0) ∪ (
√

2,∞).

f ′′(x) = 6x2(5x2 − 6) = 30x2
(
x2 − 6

5

)
= 30x2

(
x−

√
6
5

)(
x−

√
6
5

)
.

f is concave down on
(
−
√

6
5 ,
√

6
5

)
. f is concave up on

(
−∞,−

√
6
5

)
∪
(√

6
5 ,∞

)
.

(b) g′(x) = 15x2(x+ 1)(x− 1).
g is decreasing on (−1, 1). g is increasing on (−∞,−1) ∪ (1,∞).

g′′(x) = 30x(2x2 − 1) = 60x
(
x2 − 1

2

)
= 60x

(
x+

√
1
2

)(
x−

√
1
2

)

g is concave up on

(
−
√

1
2
, 0

)
∪

(√
1
2
,∞

)
. g is concave down on

(
−∞,−

√
1
2

)
∪

(
0,
√

1
2

)

(c) h(x) = x2/3 − x5/3.
h′(x) = 2

3
x−1/3 − 5

3
x2/3 = 2− 5x

3x1/3 .

h is decreasing on (−∞, 0) ∪
(

2
5
,∞
)

. h is increasing on
(

0, 2
5

)
h′′(x) = −2

9
x−4/3 − 10

9
x−1/3 = −2 + 10x

9x4/3 .

h is concave up on
(
−∞,−1

5

)
. h is concave down on

(
−1

5
, 0
)
∪ (0,∞).
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(b) -10

-8

-6

-4

-2

0

2

4

6

8

10

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

3*x**5-5*x**3+1

(c)

h(x)

-1/5 2/5 1

Problem 17.
For f with f ′(x) = 2(x+ 2)(x+ 1)2(x− 2)4(x− 3)3 we have
f ′(x) < 0 on (−2,−1) ∪ (−1, 2) ∪ (2, 3)
f ′(x) > 0 on (−∞,−2) ∪ (3,∞).
There is a relative maximum at x = −2 and there is a relative minimum at x = 3.
NOTE: There are NO relative extrema at x = −1 and x = 2 since f ′ does NOT change sign at these points.
Problem 18.

(1) f(0) = 3; f(3) = 0; f(6) = 4;
(2) f ′(x) < 0 on (0, 3); f ′(x) > 0 on (3, 6);
(3) f ′′(x) > 0 on (0, 5); f ′′(x) < 0 on (5, 6).

f(x)

4

3

3 5 6

Figure 3. A possible graph of the func-
tion defined on the interval [0, 6] and sat-
isfying the conditions (1)-(3).
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Problem 19.
Let x denote 1/2 of the lower base of the rectangular, y the size of the vertical side. The area A = 2xy = 2x(8−x2)
and A′(x) = 16 − 6x2. Furthermore, A′′(x) = −12x, and x = 2

3
√

6 is a local maximum (and global maximum).

Now, y = 8−
(

2
3
√

6
)2

= 16
3

. The largest area is equal to 2 · 2
3
√

6 · 16
3

= 64
√

6
9

.

Problem 20.
Let x denote the increase in rental above $10. Then the income for car rental agency I(x) = (10 + x)(24 − x) =
−x2 + 14x+ 240. Now, I ′(x) = −2x+ 14 and I ′′(x) = −2, hence, x = 7 is a global maximum of function I(x). The
agency should charge $17 per day.
Problem 21.
(a) f ′(x) = 8 4− x2

(x2 + 4)2 . f ′′(x) = 16x(x2 − 12)
(4 + x2)

. Critical points and local extrema: x = −2 and x = 2. Points of

inflection: x = −2
√

3, x = 0, x = 2
√

3. Horizontal asymptotes: y = 0. Vertical asymptotes: none.

-3

-2

-1

0

1

2

3

-20 -15 -10 -5 0 5 10 15 20

8*x/(x**2+4)

Figure 4. Graph of the function in Problem 21(a)

(b) f ′(x) = 2
3

1
x1/3 . f ′′(x) = −2

9
1
x4/3 . Critical points and local extrema: x = 0. Points of inflection: none.

Horizontal asymptotes: none. Vertical asymptotes: none.
y

x

Figure 5. Graph of the function in Problem 21(b)

(c) f ′(x) = 1
3

(x − 2)−2/3. f ′′(x) = −2
9

(x− 2)−5/9. Critical points: x = 2. Local extrema: none. Points of
inflection: x = 2. Horizontal asymptotes: none. Vertical asymptotes: none.

(d) f ′(x) = −5x4

(x5 + 1)2 . f ′′(x) = 10x
3(3x5 − 2)
(1 + x5)3 . Critical points: x = 0. Local extrema: none. Points of inflection:

x = 0, x =
(

2
3

)1/5
. Horizontal asymptotes: y = 0. Vertical asymptotes: x = −1.
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y

x

1 2 3 4

-1-2-3-4

1

2

-1

-2

Figure 6. Graph of the function in
Problem 21(c)

-4 -2 2 4

-1

1

2

Figure 7. Graph of the function in
Problem 21(d)

Problem 22.
(a) f(x) = x

5
3 is continuous for all x ∈ IR, thus, in particular, for x ∈ [−1, 1]. Its derivative is f ′(x) = 5

3x
2
3 , which

is also continuous on (−1, 1). Thus the assumptions of the mean Value Theorem are satisfied and there exists at
least one c ∈ (−1, 1) such that

f(1)− f(−1)
1− (−1)

= f ′(c) =⇒ 1 = 5
3
c

2
3 =⇒ c = ±

(
3
5

) 3
2
≈ ±0.46.

Note: Both ±
(

3
5

) 3
2
∈ [−1, 1].

(b) The function g(x) = |x| is continuous for all x ∈ IR, in particular, for x ∈ [−2, 2]. However,

g′(x) =

{
−1, if x < 0,
1, if x > 0,

and g′(0) does NOT exist. Thus, g′(x) does not exist for all x ∈ (−2, 2). The assumptions of the Mean Value
Theorem are not satisfied.
Problem 23.
Let f(x) =

√
x so f ′(x) = 1

2
√
x

. Apply the Mean Value Theorem to f on the interval [x, x+ 2] for x > 0. (Do you

know why the assumptions of the Mean Value Theorem are satisfied ? ) Thus
√
x+ 2−

√
x = 1

2
√
c
(x+ 2− x) = 1√

c
for some c ∈ (x, x+ 2).

Next observe that
1√
x+ 2

<
1√
c
<

1√
x
.

Thus as x→∞, 1√
c
→ 0. Therefore

lim
x→∞

(√
x+ 2−

√
x
)

= lim
x→∞

1√
c

= 0.
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Problem 24.
(a)

(a)
∫ (

x− 1
x

)2
dx =

∫ (
x2 − 2 + 1

x

)
dx = 1

3
x3 − 2x− 1

x
+ C.

(b)
∫

1√
3x+ 2

dx =
{
u = 3x+ 2
du = 3dx

}
= 1

3

∫
u−1/2 du = 2

3
u1/2 + C = 2

3
(3x+ 2)1/2 + C.

(c)
∫
x(1− x2)1/4 dx =

{
u = 1− x2

du = −2xdx

}
= −1

2

∫
u1/4 du = −2

5
u5/4 + C = −2

5
(1− x2)5/4 + C.

(d)
∫

(1 + tan(x))1/3

cos2(x)
dx =

{
u = 1 + tanx
du = (cos2 x)−2dx

}
=
∫
u1/3 du = 3

4
u4/3 + C = 3

4
(1 + tanx)4/3 + C.

Problem 25.

(a)
5∑

i=1

[
(3i+ 4)10 − (3i+ 1)10] =

5∑
i=1

{
[3(i+ 1) + 1]10 − [3i+ 1]10} .

This is a collapsing sum, and thus,
5∑

i=1

[
(3i+ 4)10 − (3i+ 1)10] = 1910 − 410.

(b)
n∑

k=1
(3k2 − 2k + 1) = 3n(n+ 1)(2n+ 1)

6
− 2n(n+ 1)

2
+ n = 1

2
n(2n2 + n+ 1).

Problem 26.
An = f(x1)∆x+ f(x2)∆x+ · · ·+ f(xn)∆x =

n∑
i=1

f(xi)∆x. Here, f(x) = x3, ∆x = 2
n

and xi = 2i
n

. Thus,

n∑
i=1

f(xi)∆x =
n∑

i=1

(
2i
n

)3 2
n

= 16
n4

n∑
i=1

i3 = 16
n4

[
n(n+ 1)

2

]2
→

n→∞
4.

Problem 27.∫ 2
−1(2 + 4x) dx = −A + B = −1

2
· 2 · 1

2
+ 1

2
· 5

2
· 10 = 12, where A is the area of the right triangle with vertices

(−1,−2), (−1, 0), and (−1
2
, 0), and B is the area of the right triangle with vertices (−1

2
, 0), (2, 0), and (2, 10). For

details see the picture below.

-3

-2

-1

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6

-1-2

area A

area B

y=2+4x

x

y

Figure 8. Graph of y = 2 + 4x between [−1, 2] with the corresponding regions below and above the graph.
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Problem 28.
Partition the interval [2, 6] into n equal subintervals, each of length ∆x = 4/n. In each subinterval [xi−1, xi] use
x̄i = xi = 2 + 4i

n
. Then

RP =
n∑

i=1
f(x̄i)∆x =

n∑
i=1

[
(2 + 4i

n
)2 + 6

]
4
n

=
n∑

i=1

[
10 + 16i

n
+ 16i2

n2

]
4
n
→

n→∞
40 + 32 + 64

3
= 280

3
.


