Various practice problems I

Problem 1.

Solve the following quadratic equations.

(a)
$$8x^2 + 2x - 3 = 0$$
 (b) $x^2 - 2x - 5 = 0$

Problem 2. Solve the following inequalities.

(a)
$$x^2 + 2x - 15 \ge 0$$
 (b) $x^2 + x + 1 \le 0$ (c) $\frac{2x+1}{2-x} \le 1$

Problem 3.

Find the composite functions $f \circ g$ and $g \circ f$ where

 $f(x) = \sqrt{x+1}$ and $g(x) = \frac{1}{x-1}$.

Simplify your answers as much as you can !

Problem 4.

If f(x) = 1/x, find and simplify

$$\frac{f(-1+h) - f(-1)}{h}, \qquad \text{where } h \neq 0 \text{ and } h \neq 1.$$

Problem 5.

Sketch the graph of the following functions.

(a)
$$f(x) = \sqrt{x+1} - 1$$
 (b) $f(x) = |x-1| + 1$ (c) $f(x) = \begin{cases} -2x+4 & \text{if } x < 1\\ 4 & \text{if } x = 1\\ x^2+2 & \text{if } x > 1 \end{cases}$ (d) $f(x) = \begin{cases} |x-2| & \text{if } x \neq 2\\ 1 & \text{if } x = 2 \end{cases}$

Problem 6.

Find an equation of the line that passes through the point (-1, 0) and is perpendicular to the line with the equation 4x + 5y + 16 = 0.

Problem 7. For $f(x) = \frac{2x}{x+5}$ and $g(x) = \frac{x}{3x-8}$, find $(f \circ g)(x)$ and $(g \circ f)(x)$. Simplify your results !

Problem 8.

Find the following limits.

(a)
$$\lim_{x \to -1} \frac{3x^2 + 4x + 1}{x + 1}$$
 (b)
$$\lim_{x \to -\infty} \frac{-2x^4 + 3x^3 - 7x - 10}{3x^4 + 6x^2 - x + 100}$$

Problem 9.

Find the following limits

(a)
$$\lim_{x \to -2} \frac{x^2 - 4}{x + 2}$$
 (b) $\lim_{x \to 4} \frac{x - 4}{\sqrt{x} - 2}$ (c) $\lim_{x \to 1} \frac{\sqrt{x + 3} - 2}{x - 1}$ (d) $\lim_{x \to 0} \frac{1 - \cos(2x)}{3x^2}$

Problem 10.

Determine the values of x, if any, at which the given function is discontinuous. At each point of discontinuity, state the condition(s) for continuity that are violated.

$$f(x) = \begin{cases} \frac{x^2 - 1}{x + 1}, & \text{if } x \neq -1\\ 1, & \text{if } x = -1. \end{cases}$$

Problem 11.

Explain in details why $f(x) = \begin{cases} 2x - 3, & \text{if } x \leq -1 \\ x^2 - 4, & \text{if } x > -1 \end{cases}$ is **NOT** continuous at x = -1.

Problem 12. Let $y = -x^2$.

- (a) Find the average rate of change of y with respect to x on the interval [2, 3].
- (b) Find the (instantaneous) rate of change at x = 3.

Problem 13.

Find the derivatives of the following functions

(a)
$$g(s) = 2s^2 - \frac{4}{s} + \frac{2}{\sqrt{s}}$$
 (b) $h(x) = \left(x + \frac{1}{x} + \frac{1}{x^2}\right)^5$ (c) $F(x) = \sqrt{\frac{x^2 + 1}{x^4 + 2} + 10}$
4.

Problem 1 For the function

$$g(t) = \sqrt{2t^2 + 3}$$

find g'' and g'''.

Problem 15. Differentiate the following functions with respect to the indicated variable.

(a)
$$h(t) = \frac{t^2 - 3t + 1}{t + 1}$$
 (b) $f(x) = \sqrt{c^2 x^2 + 2}$ (c is a constant)

Problem 16.

For each of the following find the limit or show that it does not exist:

(a) $\lim_{x \to 0} x^3 \sin(\frac{1}{r})$ (b) $\lim_{x \to 1} \frac{\sqrt{x+3}-2}{x-1}$ (c) $\lim_{w \to -2} \frac{(w+2)(w^2 - w - 6)}{w^2 + 4w + 4}$

Problem 17. For $f(x) = 3x^2 - 5$ find

(a)
$$\frac{[f(x) - f(2)]}{(x-2)}$$
; (b) $\lim_{x \to 2} \frac{[f(x) - f(2)]}{(x-2)}$

Problem 18.

Give an ϵ , δ proof of

$$\lim_{x \to 5} \sqrt{x-1} = 2.$$

Problem 19.

Give an $\epsilon - \delta$ proof of the following limit:

$$\lim_{x \to -1} (x^2 - 2x - 1) = 2$$

Problem 20. (4 points)

Show that the equation $x^5 + 4x^3 - 7x + 14 = 0$ has at least one real solution. Hint: Use the Intermediate Value Theorem.

Problem 21.

Find the equation of the tangent line to $y = \frac{2}{x-2}$ at (0, -1).

Problem 22.

Use $f'(x) = \lim_{h \to 0} \frac{[f(x+h) - f(x)]}{h}$ to find the derivative at x > 0 of $f(x) = \sqrt{10x}$.

Problem 23. Develop a rule for $D_x[f(x)g(x)h(x)]$.

Problem 24.

Find the equation of the tangent line to $y = (x^2 + 1)^4 (x^4 + 1)^3$ at (1, 128).

Problem 25.

(a)
$$D_x \left[\cos^4 \left(\frac{x^2 + 1}{x + 1} \right) \right]$$
, (b) $D_t \{ \cos^2 [\cos(\cos t)] \}$.

Problem 26.

Let $n! = n(n-1)(n-2)\cdots 3 \cdot 2 \cdot 1$. Thus, $4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$ and $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$, and so on. We give n! the name **n** factorial. Find

(a)
$$D_x^n(x^n)$$
, (b) $D_x^n\left(\frac{1}{x}\right)$.

Note: express your results in terms of n!.