Various practice problems I

Problem 1.

Solve the following quadratic equations.
(a) $8 x^{2}+2 x-3=0$
(b) $x^{2}-2 x-5=0$

Problem 2.
Solve the following inequalities.
(a) $x^{2}+2 x-15 \geq 0$
(b) $x^{2}+x+1 \leq 0$
(c) $\frac{2 x+1}{2-x} \leq 1$

Problem 3.

Find the composite functions $f \circ g$ and $g \circ f$ where

$$
f(x)=\sqrt{x+1} \quad \text { and } \quad g(x)=\frac{1}{x-1}
$$

Simplify your answers as much as you can !

Problem 4.

If $f(x)=1 / x$, find and simplify

$$
\frac{f(-1+h)-f(-1)}{h}, \quad \quad \text { where } h \neq 0 \text { and } h \neq 1
$$

Problem 5.
Sketch the graph of the following functions.
(a) $\quad f(x)=\sqrt{x+1}-1$
(b) $\quad f(x)=|x-1|+1$
(c) $\quad f(x)= \begin{cases}-2 x+4 & \text { if } x<1 \\ 4 & \text { if } x=1 \\ x^{2}+2 & \text { if } x>1\end{cases}$
(d) $\quad f(x)= \begin{cases}|x-2| & \text { if } x \neq 2 \\ 1 & \text { if } x=2\end{cases}$

Problem 6.
Find an equation of the line that passes through the point $(-1,0)$ and is perpendicular to the line with the equation $4 x+5 y+16=0$.

Problem 7.

For $f(x)=\frac{2 x}{x+5}$ and $g(x)=\frac{x}{3 x-8}$, find $(f \circ g)(x)$ and $(g \circ f)(x)$. Simplify your results !

Problem 8.

Find the following limits.
(a) $\lim _{x \rightarrow-1} \frac{3 x^{2}+4 x+1}{x+1}$
(b) $\lim _{x \rightarrow-\infty} \frac{-2 x^{4}+3 x^{3}-7 x-10}{3 x^{4}+6 x^{2}-x+100}$

Problem 9.

Find the following limits
(a) $\lim _{x \rightarrow-2} \frac{x^{2}-4}{x+2}$
(b) $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}$
(c) $\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x-1}$
(d) $\lim _{x \rightarrow 0} \frac{1-\cos (2 x)}{3 x^{2}}$

Problem 10.

Determine the values of x, if any, at which the given function is discontinuous. At each point of discontinuity, state the condition(s) for continuity that are violated.

$$
f(x)= \begin{cases}\frac{x^{2}-1}{x+1}, & \text { if } x \neq-1 \\ 1, & \text { if } x=-1\end{cases}
$$

Problem 11.

Explain in details why $f(x)=\left\{\begin{array}{ll}2 x-3, & \text { if } x \leq-1 \\ x^{2}-4, & \text { if } x>-1\end{array}\right.$ is NOT continuous at $x=-1$.

Problem 12.

Let $y=-x^{2}$.
(a) Find the average rate of change of y with respect to x on the interval $[2,3]$.
(b) Find the (instantaneous) rate of change at $x=3$.

Problem 13.

Find the derivatives of the following functions
(a) $g(s)=2 s^{2}-\frac{4}{s}+\frac{2}{\sqrt{s}}$
(b) $\quad h(x)=\left(x+\frac{1}{x}+\frac{1}{x^{2}}\right)^{5}$
(c) $\quad F(x)=\sqrt{\frac{x^{2}+1}{x^{4}+2}+10}$

Problem 14.

For the function

$$
g(t)=\sqrt{2 t^{2}+3}
$$

find $g^{\prime \prime}$ and $g^{\prime \prime \prime}$.
Problem 15.
Differentiate the following functions with respect to the indicated variable.
(a) $h(t)=\frac{t^{2}-3 t+1}{t+1}$
(b) $f(x)=\sqrt{c^{2} x^{2}+2} \quad(c$ is a constant $)$

Problem 16.

For each of the following find the limit or show that it does not exist:
(a) $\lim _{x \rightarrow 0} x^{3} \sin \left(\frac{1}{x}\right)$
(b) $\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x-1}$
(c) $\lim _{w \rightarrow-2} \frac{(w+2)\left(w^{2}-w-6\right)}{w^{2}+4 w+4}$

Problem 17.
For $f(x)=3 x^{2}-5$ find

$$
\text { (a) } \frac{[f(x)-f(2)]}{(x-2)} ; \quad \text { (b) } \quad \lim _{x \rightarrow 2} \frac{[f(x)-f(2)]}{(x-2)} \text {. }
$$

Problem 18.
Give an ϵ, δ proof of

$$
\lim _{x \rightarrow 5} \sqrt{x-1}=2
$$

Problem 19.

Give an $\epsilon-\delta$ proof of the following limit:

$$
\lim _{x \rightarrow-1}\left(x^{2}-2 x-1\right)=2
$$

Problem 20. (4 points)
Show that the equation $x^{5}+4 x^{3}-7 x+14=0$ has at least one real solution.
Hint: Use the Intermediate Value Theorem.
Problem 21.
Find the equation of the tangent line to $y=\frac{2}{x-2}$ at $(0,-1)$.
Problem 22.
Use $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{[f(x+h)-f(x)]}{h}$ to find the derivative at $x>0$ of $f(x)=\sqrt{10 x}$.
Problem 23.
Develop a rule for $D_{x}[f(x) g(x) h(x)]$.
Problem 24.
Find the equation of the tangent line to $y=\left(x^{2}+1\right)^{4}\left(x^{4}+1\right)^{3}$ at $(1,128)$.
Problem 25.
Find

$$
\text { (a) } \quad D_{x}\left[\cos ^{4}\left(\frac{x^{2}+1}{x+1}\right)\right], \quad \text { (b) } \quad D_{t}\left\{\cos ^{2}[\cos (\cos t)]\right\}
$$

Problem 26.
Let $n!=n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1$. Thus, $4!=4 \cdot 3 \cdot 2 \cdot 1=24$ and $5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$, and so on.
We give n ! the name \mathbf{n} factorial. Find
(a) $D_{x}^{n}\left(x^{n}\right)$,
(b) $\quad D_{x}^{n}\left(\frac{1}{x}\right)$.

Note: express your results in terms of $n!$.

