Math. 150a, Spring 2024

Solutions to Various Practice Problems I

Problem 1.
—2++v4+4+32-3 —-1+5 1 3
(a) x172 = = = -, ——
16 8 2 4
2++v/4+ 20
(b) T12 = % =1+V6 (~ 3.44948, ~ —1.44948)
Problem 2.

(a) We have, 22 + 22 — 15 = (z + 5)(z — 3). Using the sign pattern method, the solution set of the inequality
22 + 22 — 15 > 0 is the set (—oo, —5] U [3, +00).

(b) Note that the quadratic equation 22 + z + 1 = 0 has no real solutions. Since the coefficient in front of z? is
positive, the graph of y = 22 + 2 + 1 lies above the z-axis (CHECK IT !).

Another way to look at this case is to notice that after completion of square, 2% + 2 +1 = (2 +1/2)*+3/4 > 0. In
other words, 22 + 2 4+ 1 > 0 for all z. Thus, there is no solution to the inequality 22 + x + 1 < 0, or equivalently,
the solution set is the empty set.
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(¢) The inequality s < 1 is equivalent to < 0. Indeed,
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The solution set of the last inequality is the set (—oo, %] U (2, +00).
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Note: Solving the inequality Zx i < 1 by reducing it to 2z + 1 < 2 — z is incorrect and leads to a wrong

solution ! Check it !

Problem 3.
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Problem 5.
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Problem 6. 4
The slope, m, of the line 4z + 5y + 16 = 0 is m = —E Note, the equation 4z + 5y + 16 = 0 is equivalent to the
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equation y = ——x — —. The slope of the line perpendicular to 4x 4+ 5y + 16 = 0 is equal to T Therefore, the
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equation of the line perpendicular to 5z + 4y 4+ 16 = 0 and passing through (—1,0) is given by y — 0 = Z(x +1), or
) 5
equivalently y = 1 + 7 Another equivalent form is 4y — 5x — 5 = 0.
Problem 7.
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Problem 8.
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Problem 10.
The only point (Why ?) where the function may be discontinuous is x = —1. Now f(z) is defined at = = —1,
f(=1) = 1. Next, we check whether the limit lim1 f(z) exists. We have,
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lim f(z) = Tim St = g EEDEHD 1) = lim - lim 1= —1—1=—2. So the limit
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lim1 f(z) indeed exists and is equal to —2.
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Finally, we observe that the third condition of continuity is not satisfied: the limit lim1 f(x) is not equal to the
T——

value of the function at © = —1. Indeed, limlf(x) = —2 but f(—1) = 1. Therefore, f(x) is not continuous at
T——

x = —1 because the third condition of continuity is not satisfied.

Problem 11.

We need to check which of the three conditions of continuity at x = —1 is not satisfied. Since f(—1) = —1, the

function f(z) is defined at x = —1 and the condition (1) of continuity is satisfied. Next, we check if the condition

(2) is satisfied, i.e., whether the limit lim1 f(x) exists. The expression 22— 1 approaches —5 whenever x approaches
T——

—1 and z < —1. On the other hand, the expression 2% — 4 approaches —3 whenever z approaches —1 and = > —1.
Therefore, lim1 f(x) does not exist. The second condition of continuity is not satisfied.
T——

Problem 12.
(a) The average rate of change from x = 2 to © = 3 is given by
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Problem 14.
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Problem 16.
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(a) For x #0, 23sin(=) = |#3sin(=)| and |sin(=)| < 1. Thus,
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Since, lim0 |z|? = 0, the Squeeze Theorem (page 68) implies that
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Problem 17.
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Problem 18.

Let € > 0. We must find § > 0 such that
O0<|z—=5]<d = |WVr—-1-2|<e

Now, for0<|z—5[<dand0<d<4 x€D f—5={r:z>1} (the domain of the function f(z) = v —1,
CHECK IT!), and
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where we used the fact that \/7 < 7 If we choose 0 = min{4, 2¢}, then
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This completes the proof.
Problem 19.

For each € > 0 we need to find § > 0 (that depends of €) such that the following implication is true:
O<|z+1<é = |(@*-22-1)-2/<e
We have
(22 =22 —1) — 2| = |2? — 22 — 3| = |z + 1||z — 3],
thus to bound |z — 3|, we assume that 0 < § < 1 (Please carefully explain why we can assume that 0 < § < 1).
Now,
lt+1<éd = |z=3|=lz+1—-4|<|z+1+|-4<1+4=5
and choose § = min{1,¢/5}. For such o

](x2—2x—1)—2|:|:U2—2:L‘—3|:\$+1||x—3|<5-§:

Problem 20.

Let f(x) = 2° + 42® — 7Tz + 14. Since f(x) is a polynomial, it is continuous on any closed interval [a,b] C IR. We
have f(0) = 14 and f(—2) = —32 — 32 4 14 + 14 = —36. Therefore, 0 € [—36,14], and the Intermediate Value
Theorem implies that there exists ¢ € (—2,0) such that f(c) =

Problem 21.

2
The slope of the tangent line to y = at (0,—1) is given by
Tz —

2 2 1 1
Mia, = lim Oth=2 02 _ = . __
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Hence, the equation of the tangent line is given by y + 1 = —%x.

Problem 22.
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Problem 23.

Problem 24. J
ﬁ = 4(2% + 1)322(z* + 1)° + (22 + 1)13(a* + 1)%425.
d
Now, the slope of the tangent line is equal to d—y(l) = 1280. Thus, the equation of the tangent line to the graph of
T
the function y= (22 +1)*(z* +1)3 at (1,128) is y— 128 =1280(x — 1).
Problem 25.
(8) 2 2 2 2
1 1 1 20 — 1
D, cost rrl = 4 cos® e —sin i T .
x+1 x+1 z+1 (x +1)2
(b)
Dy {cos?[cos(cost)]} = 2 cos[cos(cost)] x Dy[cos(cos(cost))]
= 2 cos[cos(cost)] x [—sin(cos(cost))] x Dy[cos(cost)]
= 2 cos[cos(cost)] x [—sin(cos(cost))] x [—sin(cost)] x [—sint].
Problem 26.

(a) DI(z"™) =nl.
(b) D (L) = (—1)(=2)(=3) -+ (—m)a" = (~1)" nlz—,



