Solutions to Various Practice Problems I

Problem 1.
(a) $\quad x_{1,2}=\frac{-2 \pm \sqrt{4+32 \cdot 3}}{16}=\frac{-1 \pm 5}{8}=\frac{1}{2},-\frac{3}{4}$
(b) $x_{1,2}=\frac{2 \pm \sqrt{4+20}}{2}=1 \pm \sqrt{6} \quad(\approx 3.44948, \approx-1.44948)$

Problem 2.
(a) We have, $x^{2}+2 x-15=(x+5)(x-3)$. Using the sign pattern method, the solution set of the inequality $x^{2}+2 x-15 \geq 0$ is the set $(-\infty,-5] \cup[3,+\infty)$.
(b) Note that the quadratic equation $x^{2}+x+1=0$ has no real solutions. Since the coefficient in front of x^{2} is positive, the graph of $y=x^{2}+x+1$ lies above the x-axis (CHECK IT !).
Another way to look at this case is to notice that after completion of square, $x^{2}+x+1=(x+1 / 2)^{2}+3 / 4>0$. In other words, $x^{2}+x+1>0$ for all x. Thus, there is no solution to the inequality $x^{2}+x+1 \leq 0$, or equivalently, the solution set is the empty set.
(c) The inequality $\frac{2 x+1}{2-x} \leq 1$ is equivalent to $\frac{3 x-1}{2-x} \leq 0$. Indeed,
$\frac{2 x+1}{2-x} \leq 1 \quad \Longleftrightarrow \quad \frac{2 x+1}{2-x}-1 \leq 0 \quad \Longleftrightarrow \quad \frac{2 x+1-(2-x)}{2-x} \leq 0 \quad \Longleftrightarrow \quad \frac{3 x-1}{2-x} \leq 0 \quad \Longleftrightarrow \quad(3 x-1)(2-x) \leq 0$ and x
The solution set of the last inequality is the set $\left(-\infty, \frac{1}{3}\right] \cup(2,+\infty)$.
Note: Solving the inequality $\frac{2 x+1}{2-x} \leq 1$ by reducing it to $2 x+1 \leq 2-x$ is incorrect and leads to a wrong solution! Check it !

Problem 3.

$$
(f \circ g)(x)=f(g(x))=f\left(\frac{1}{x-1}\right)=\sqrt{\frac{1}{x-1}+1}=\sqrt{\frac{x}{x-1}}
$$

Note that $\quad \sqrt{\frac{x}{x-1}} \neq \frac{\sqrt{x}}{\sqrt{x-1}}$. Do you know why ?

$$
(g \circ f)(x)=g(f(x))=g(\sqrt{x+1})=\frac{1}{\sqrt{x+1}-1}
$$

Problem 4.

$$
\frac{f(-1+h)-f(-1)}{h}=\frac{\frac{1}{-1+h}-\frac{1}{-1}}{h}=\frac{\frac{-1-(-1)-h}{(-1)(-1+h)}}{h}=\frac{1}{(-1+h)}
$$

Problem 5.

(a)

(b)

(c)

(d)

Problem 6.
The slope, m, of the line $4 x+5 y+16=0$ is $m=-\frac{4}{5}$. Note, the equation $4 x+5 y+16=0$ is equivalent to the equation $y=-\frac{4}{5} x-\frac{16}{5}$. The slope of the line perpendicular to $4 x+5 y+16=0$ is equal to $\frac{5}{4}$. Therefore, the equation of the line perpendicular to $5 x+4 y+16=0$ and passing through $(-1,0)$ is given by $y-0=\frac{5}{4}(x+1)$, or equivalently $y=\frac{5}{4} x+\frac{5}{4}$. Another equivalent form is $4 y-5 x-5=0$.
Problem 7.

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x))=f\left(\frac{x}{3 x-8}\right)=\frac{\frac{2 x}{3 x-8}}{\frac{x}{3 x-8}+5}=\frac{\frac{2 x}{3 x-8}}{\frac{x+15 x-40}{3 x-8}}=\frac{2 x}{16 x-40}=\frac{x}{8 x-20} \\
& (g \circ f)(x)=g(f(x))=g\left(\frac{2 x}{x+5}\right)=\frac{\frac{2 x}{x+5}}{3 \frac{2 x}{x+5}-8}=\frac{\frac{2 x}{x+5}}{\frac{6 x-8 x-40}{x+5}}=\frac{2 x}{-2 x-40}=-\frac{x}{x+20}
\end{aligned}
$$

Problem 8.

(a) $\lim _{x \rightarrow-1} \frac{3 x^{2}+4 x+1}{x+1}=\lim _{x \rightarrow-1} \frac{(3 x+1)(x+1)}{x+1}=\lim _{x \rightarrow-1}(3 x+1)=\lim _{x \rightarrow-1} 3 x+\lim _{x \rightarrow-1} 1=-3+1=-2$
(b) $\lim _{x \rightarrow-\infty} \frac{-2 x^{4}+3 x^{3}-7 x-10}{3 x^{4}+6 x^{2}-x+100}=\lim _{x \rightarrow-\infty} \frac{-2+\frac{3}{x}-\frac{7}{x^{3}}-\frac{10}{x^{4}}}{3+\frac{6}{x^{2}}-\frac{1}{x^{3}}+\frac{100}{x^{4}}}=\frac{-2+\lim _{x \rightarrow-\infty} \frac{3}{x}-\lim _{x \rightarrow-\infty} \frac{7}{x^{3}}-\lim _{x \rightarrow-\infty} \frac{10}{x^{4}}}{3+\lim _{x \rightarrow-\infty} \frac{6}{x^{2}}-\lim _{x \rightarrow-\infty} \frac{1}{x^{3}}+\lim _{x \rightarrow-\infty} \frac{100}{x^{4}}}=-\frac{2}{3}$

Problem 9.

> (a) $\lim _{x \rightarrow-2} \frac{x^{2}-4}{x+2}=\lim _{x \rightarrow-2} \frac{(x-2)(x+2)}{x+2}=\lim _{x \rightarrow-2}(x-2)=\lim _{x \rightarrow-2} x-\lim _{x \rightarrow-2} 2=-2-2=-4$
> (b) $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}=\lim _{x \rightarrow 4} \frac{(\sqrt{x}-2)(\sqrt{x}+2)}{\sqrt{x}-2}=\lim _{x \rightarrow 4}(\sqrt{x}+2)=\lim _{x \rightarrow 4} \sqrt{x}+\lim _{x \rightarrow 4} 2=2+2=4$
> (c) $\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x-1}=\lim _{x \rightarrow 1}\left[\frac{(\sqrt{x+3}-2)(\sqrt{x+3}+2)}{(x-1)(\sqrt{x+3}+2)}\right]=\lim _{x \rightarrow 1} \frac{1}{\sqrt{x+3}+2}=\frac{1}{\sqrt{\lim _{x \rightarrow 1}^{x+3}+2}}=\frac{1}{4}$
> (d) $\lim _{x \rightarrow 0} \frac{1-\cos (2 x)}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{1-\left(\cos ^{2} x-\sin ^{2} x\right)}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{2 \sin ^{2} x}{3 x^{2}}=\frac{2}{3}\left(\lim _{x \rightarrow 0} \frac{\sin x}{x}\right)^{2}=\frac{2}{3} \cdot 1^{2}=\frac{2}{3}$

Problem 10.

The only point (Why ?) where the function may be discontinuous is $x=-1$. Now $f(x)$ is defined at $x=-1$, $f(-1)=1$. Next, we check whether the limit $\lim _{x \rightarrow-1} f(x)$ exists. We have,
$\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}=\lim _{x \rightarrow-1} \frac{(x-1)(x+1)}{x+1}=\lim _{x \rightarrow-1}(x-1)=\lim _{x \rightarrow-1} x-\lim _{x \rightarrow-1} 1=-1-1=-2$. So the limit $\lim _{x \rightarrow-1} f(x)$ indeed exists and is equal to -2 .
Finally, we observe that the third condition of continuity is not satisfied: the limit $\lim _{x \rightarrow-1} f(x)$ is not equal to the value of the function at $x=-1$. Indeed, $\lim _{x \rightarrow-1} f(x)=-2$ but $f(-1)=1$. Therefore, $f(x)$ is not continuous at $x=-1$ because the third condition of continuity is not satisfied.
Problem 11.
We need to check which of the three conditions of continuity at $x=-1$ is not satisfied. Since $f(-1)=-1$, the function $f(x)$ is defined at $x=-1$ and the condition (1) of continuity is satisfied. Next, we check if the condition (2) is satisfied, i.e., whether the limit $\lim _{x \rightarrow-1} f(x)$ exists. The expression $2 x-1$ approaches -5 whenever x approaches -1 and $x<-1$. On the other hand, the expression $x^{2}-4$ approaches -3 whenever x approaches -1 and $x>-1$. Therefore, $\lim _{x \rightarrow-1} f(x)$ does not exist. The second condition of continuity is not satisfied.

Problem 12.

(a) The average rate of change from $x=2$ to $x=3$ is given by

$$
\frac{f(3)-f(2)}{3-2}=\frac{-9-(-4)}{3-2}=-5
$$

(b) The instantaneous rate of change at $x=3$ is $f^{\prime}(3)$:

$$
f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{-(3+h)^{2}-(-9)}{h}=\lim _{h \rightarrow 0} \frac{-h^{2}-6 h}{h}=\lim _{h \rightarrow 0}(-h-6)=-6 .
$$

Problem 13.

$$
\begin{array}{ll}
\text { (a) } g^{\prime}(s)=4 s+\frac{4}{s^{2}}-\frac{1}{\sqrt{s^{3}}} & \text { (b) } h^{\prime}(x)=5\left(x+\frac{1}{x}+\frac{1}{x^{2}}\right)^{4}\left[1-\frac{1}{x^{2}}-\frac{2}{x^{3}}\right] \\
\text { (c) } F^{\prime}(x)=\frac{1}{2}\left(\frac{x^{2}+1}{x^{4}+2}+10\right)^{-1 / 2}\left[\frac{2 x\left(x^{4}+2\right)-\left(x^{2}+1\right) 4 x^{3}}{\left(x^{4}+2\right)^{2}}\right]
\end{array}
$$

Problem 14.
Since $g^{\prime}(t)=\left(\sqrt{2 t^{2}+3}\right)^{\prime}=\frac{2 t}{\sqrt{2 t^{2}+3}}$, we have

$$
g^{\prime \prime}(t)=\left(\frac{2 t}{\sqrt{2 t^{2}+3}}\right)^{\prime}=\frac{6}{\left(2 t^{2}+3\right)^{3 / 2}} \quad \text { and } \quad g^{\prime \prime \prime}(t)=\left[\frac{6}{\left(2 t^{2}+3\right)^{3 / 2}}\right]^{\prime}=-\frac{36 t}{\left(2 t^{2}+3\right)^{5 / 2}}
$$

Problem 15.

(a) $h^{\prime}(t)=\frac{(2 t-3)(t+1)-\left(t^{2}-3 t+1\right) \cdot 1}{(t+1)^{2}}=\frac{t^{2}+2 t-4}{(t+1)^{2}}$
(b) $f^{\prime}(x)=\frac{2 c^{2} x}{2 \sqrt{c^{2} x^{2}+2}}=\frac{c^{2} x}{\sqrt{c^{2} x^{2}+2}}$

Problem 16.

(a) For $x \neq 0, x^{3} \sin \left(\frac{1}{x}\right)=\left|x^{3} \sin \left(\frac{1}{x}\right)\right|$ and $\left|\sin \left(\frac{1}{x}\right)\right| \leq 1$. Thus,

$$
0 \leq\left|x^{3} \sin \left(\frac{1}{x}\right)\right| \leq|x|^{3}
$$

Since, $\lim _{x \rightarrow 0}|x|^{3}=0$, the Squeeze Theorem (page 68) implies that

$$
\lim _{x \rightarrow 0} x^{3} \sin \left(\frac{1}{x}\right)=0
$$

(b) $\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x-1}=\lim _{x \rightarrow 1}\left[\frac{(\sqrt{x+3}-2)(\sqrt{x+3}+2)}{(x-1)(\sqrt{x+3}+2)}\right]=\lim _{x \rightarrow 1} \frac{1}{\sqrt{x+3}+2}=\frac{1}{4}$.
(c) $\lim _{w \rightarrow-2} \frac{(w+2)\left(w^{2}-w-6\right)}{w^{2}+4 w+4}=\lim _{w \rightarrow-2} \frac{(w+2)(w-3)(w+2)}{(w+2)^{2}}=\lim _{w \rightarrow-2}(w-3)=-5$.

Problem 17.

$$
\begin{gathered}
\text { (a) } \frac{[f(x)-f(2)]}{x-2}=\frac{3 x^{2}-5-\left(3 \cdot 2^{2}-5\right)}{x-2}=\frac{3 x^{2}-12}{x-2} \\
\text { (b) } \lim _{x \rightarrow 2} \frac{[f(x)-f(2)]}{x-2}=\lim _{x \rightarrow 2} \frac{3 x^{2}-5-7}{x-2}=\lim _{x \rightarrow 2} 3 \frac{(x-2)(x+2)}{x-2}=\lim _{x \rightarrow 2} 3(x+2)=12 .
\end{gathered}
$$

Problem 18.

Let $\epsilon>0$. We must find $\delta>0$ such that

$$
0<|x-5|<\delta \quad \Longrightarrow \quad|\sqrt{x-1}-2|<\epsilon
$$

Now, for $0<|x-5|<\delta$ and $0<\delta \leq 4 \quad x \in D_{\sqrt{x-1}}=\{x: x \geq 1\}$ (the domain of the function $f(x)=\sqrt{x-1}$, CHECK IT !), and

$$
|\sqrt{x-1}-2|=\left|\frac{(\sqrt{x-1}-2)(\sqrt{x-1}+2)}{\sqrt{x-1}+2}\right|=\frac{|x-5|}{\sqrt{x-1}+2} \leq \frac{|x-5|}{2}
$$

where we used the fact that $\frac{1}{\sqrt{x-1}+2} \leq \frac{1}{2}$. If we choose $\delta=\min \{4,2 \epsilon\}$, then

$$
|\sqrt{x-1}-2|=\left|\frac{(\sqrt{x-1}-2)(\sqrt{x-1}+2)}{\sqrt{x-1}+2}\right|=\frac{|x-5|}{\sqrt{x-1}+2} \leq \frac{|x-5|}{2}<\frac{\delta}{2} \leq \frac{2 \epsilon}{2}=\epsilon
$$

This completes the proof.

Problem 19.

For each $\epsilon>0$ we need to find $\delta>0$ (that depends of ϵ) such that the following implication is true:

$$
0<|x+1|<\delta \quad \Longrightarrow \quad\left|\left(x^{2}-2 x-1\right)-2\right|<\epsilon .
$$

We have

$$
\left|\left(x^{2}-2 x-1\right)-2\right|=\left|x^{2}-2 x-3\right|=|x+1||x-3|,
$$

thus to bound $|x-3|$, we assume that $0<\delta \leq 1$ (Please carefully explain why we can assume that $0<\delta \leq 1$). Now,

$$
|x+1|<\delta \quad \Longrightarrow \quad|x-3|=|x+1-4| \leq|x+1|+|-4|<1+4=5
$$

and choose $\delta=\min \{1, \epsilon / 5\}$. For such δ

$$
\left|\left(x^{2}-2 x-1\right)-2\right|=\left|x^{2}-2 x-3\right|=|x+1||x-3|<5 \cdot \frac{\epsilon}{5}=\epsilon .
$$

Problem 20.

Let $f(x)=x^{5}+4 x^{3}-7 x+14$. Since $f(x)$ is a polynomial, it is continuous on any closed interval $[a, b] \subset \mathbb{R}$. We have $f(0)=14$ and $f(-2)=-32-32+14+14=-36$. Therefore, $0 \in[-36,14]$, and the Intermediate Value Theorem implies that there exists $c \in(-2,0)$ such that $f(c)=0$.

Problem 21.

The slope of the tangent line to $y=\frac{2}{x-2}$ at $(0,-1)$ is given by

$$
\mathrm{m}_{\tan }=\lim _{h \rightarrow 0} \frac{\frac{2}{0+h-2}-\frac{2}{0-2}}{h}=\lim _{h \rightarrow 0} \frac{1}{(h-2)}=-\frac{1}{2} .
$$

Hence, the equation of the tangent line is given by $y+1=-\frac{1}{2} x$.

Problem 22.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0}(\sqrt{10}) \frac{\sqrt{x+h}-\sqrt{x}}{h}=(\sqrt{10}) \lim _{h \rightarrow 0} \frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}=\frac{\sqrt{10}}{2 \sqrt{x}}=\frac{5}{\sqrt{10 x}} .
$$

Problem 23.

$$
\begin{aligned}
D_{x}[f(x) g(x) h(x)] & =\left[D_{x} f(x)\right][g(x) h(x)]+f(x) D_{x}[g(x) h(x)] \\
& =\left[D_{x} f(x)\right][g(x) h(x)]+f(x) h(x)\left[D_{x} g(x)\right]+f(x) g(x)\left[D_{x} h(x)\right] .
\end{aligned}
$$

Problem 24.

$$
\frac{d y}{d x}=4\left(x^{2}+1\right)^{3} 2 x\left(x^{4}+1\right)^{3}+\left(x^{2}+1\right)^{4} 3\left(x^{4}+1\right)^{2} 4 x^{3} .
$$

Now, the slope of the tangent line is equal to $\frac{d y}{d x}(1)=1280$. Thus, the equation of the tangent line to the graph of the function $y=\left(x^{2}+1\right)^{4}\left(x^{4}+1\right)^{3}$ at $(1,128)$ is $y-128=1280(x-1)$.
Problem 25.
(a)

$$
D_{x}\left[\cos ^{4}\left(\frac{x^{2}+1}{x+1}\right)\right]=4 \cos ^{3}\left(\frac{x^{2}+1}{x+1}\right)\left[-\sin \left(\frac{x^{2}+1}{x+1}\right)\right]\left(\frac{x^{2}+2 x-1}{(x+1)^{2}}\right) .
$$

(b)

$$
\begin{aligned}
D_{t}\left\{\cos ^{2}[\cos (\cos t)]\right\} & =2 \cos [\cos (\cos t)] \times D_{t}[\cos (\cos (\cos t))] \\
& =2 \cos [\cos (\cos t)] \times[-\sin (\cos (\cos t))] \times D_{t}[\cos (\cos t)] \\
& =2 \cos [\cos (\cos t)] \times[-\sin (\cos (\cos t))] \times[-\sin (\cos t)] \times[-\sin t]
\end{aligned}
$$

Problem 26.

(a) $D_{x}^{n}\left(x^{n}\right)=n!$.
(b) $\quad D_{x}^{n}\left(\frac{1}{x}\right)=(-1)(-2)(-3) \cdots(-n) x^{-n-1}=(-1)^{n} n!x^{-n-1}$.

