Ling 404 Lecture Notes No.4
Synchronic Clines in Morphology

Productivity Clines: Japanese, Navajo, Mohawk, Eskimo, vs. Spanish, Italian, English

One of the questions will be asking throughout is where do the above languages fall on the productivity cline and why (providing data and analyses.) One question to ask is to what degree is the lexicon 'morpheme-based' or 'word-based' (Chapters 3-4)? ‘Working Memory’ is implicated in the choice. For instance, are speakers all equally productive with their morpheme-units as tucked within word, a [-Fusion] language, or do some languages rather require morphemes within words to be memorized and incorporated as part of the lexical item, a [+Fusion] language? In addition to labeling languages as [+]Synthetic (as in Turkish, Hungarian, Spanish, English, Mohawk) or [-]Synthetic (as in Chinese, Vietnamese), the following data provide an additional exercise in teasing out what might be going on in languages which carry such a large number of embedded morphemes.

Question leading to mid-term: How might such morphemes in Polysynthetic-type languages be stored and processed? The notion of [+/-Fusion] will be the central question here as we move to our mid-term material of this class. Typically, agglutinative morphemes are considered to be ‘loosely’ structured in that one morpheme has a one-to-one meaning. But the question might rather be how productive are the morphemes in isolation—viz., do they allow for movement? The question of movement, both at the word-level and at the morpheme-level will allow us to determine the nature of +/- productivity and +/- fusion.

Regarding Movement. For the coming mid-term, we shall be examining polysynthetic languages under the microscope of whether or not movement allows to creep into the morpheme level. As we see for Latin, word order is free since subject/object inflectional marking is strong such that word order doesn’t have to be fixed. What very strong INFL-based languages often allow is freedom from syntax. When grammar is incorporated so strongly and consistently into stems, stems can function on a one-to-one level without syntax determining word-order meaning. Otherwise, syntax must be employed. If we see that morphemes, like words, may also undergo movement (and are relatively unconstrained by syntax) then the question to ask is shouldn’t such morphemes rather be analyzed as free and word-based, at least in respect that they can take-on a one-to-one meaning free from syntax. The notion of free vs bound morphology also needs to be addressed. But the notion at play here is that if a language shows movement of morphology (just like how a language might show movement of word—e.g., English dative shift, John gave flowers to Mary vs. John gave Mary flowers, passive constructs, or Aux inversion for questions, etc.), then how are we to analyze such morphology? We earlier saw how clitic vs affixes behave in a different manner regarding movement—namely, clitics which seem to take-on a lexical word-based status were free to move (possessive {‘s’}), as opposed to agreement inflections {-s}).

The question we pose here is the following:

Is there any evidence for polysynthetic language-based morphology to be movement-based?
A morpheme-form vs. a word-form lexicon. (Chapters 3-4)

If all morphemes are to be characterized as rule-based (as with inflectional morphology), then all morphemes must be seen as potentially productive (not showing frequency, priming-effects and gang-effects which suggest otherwise word-magnet formation). This may be too strong a general claim for morphology (as we saw with processing and formation distinctions as found between inflection vs derivational morphology). If morphemes are not productive and seem to be formulaic bundles formulated within the lexical form, then there should be some evidence for such storage and processing.

Morpheme-form:
Whereas Latin-based languages show a good deal of inflection, much of which we are already familiar with, our task here will be to turn our attention to a word-form analysis which requires us to examine other language types. While doing so, let’s keep in mind what the major distinctions are between the two models:

For a morpheme-form lexicon, there is strong concatenation of stem and affix structure, with affixes becoming productive across regular paradigms of the language—e.g., English has N + {s} = plural, V + {s} = 3rd person/singular/present. Spanish has a slew of agreement markers across the verbal paradigm (habl-o, habl-as, etc) even with adjectival structures taking on agreement (mi-s carro-s rojo-s). We are pretty familiar with such language typologies.

One strong argument in favor of a morpheme-form model is to suggest that just as language users don’t memorize each sentence as a chunk, so too we can hypothesize that speakers don’t memorize each morpheme within words as chunks. The aspect of productivity becomes a central focal point to such a model. Such a model attempts to draw parallels between syntax and morphology (with syntax having its phrase structure rules D>N=DP, P>DP = PP, etc. and morphology having its morphological rules N + {s} = plural, etc.

Problems with this model however arise when (i) either the number of morphemes become sufficiently large as to potentially burden the productive/computational work-space for dealing with a high number of individual items, or (ii) frequency-effect show-up suggesting that the morpheme is not decomposed—e.g., our [fascinating] vs [[celebrat]ing] distinction.

For a word-form lexicon however, the storage and processing of such morphemes take-on a different quality. If the lexicon exists entirely of undecomposed word forms, with very little if any decomposition of stem and affix, then an entirely different picture emerges with respect to how the language might be organized, and how elements of the language might be stored and process for the native speaker.

One benefit of having a word-form lexicon is that it forces processing of meaning along the word-level, and not at the morpheme level—forcing a memory index to sub-serve holistic chunks on a one-to-one level. Such a model might help to explain lack of productively or
other unique features found in the language which otherwise suggest the entire word-form is being memorized on a sound-to-meaning footing. We saw in class how such a move from **productivity** to **non-productivity** (or from ‘fascinating’ to ‘celebrating’) arose within a single language diachronically (e.g., break-fast > breakfast, wind-ow > window, to-morrow > tomorrow, is shopping vs the shopping, etc.). Likewise, derivational morphologies tend to weaken productivity—e.g., most young children no longer realize the verb stem [compute] as deriving the noun [[comput]er]. For instance, the derivational {al} as in the word dismissal is not productively generalized onto, say, *ignoral. This leads one to assume that the derivational {al} is not only non-productive, but is also of a stem-forming nature (i.e, it is part-and-parcel of the stem). The question here will be to tease out what might be going on with respect to multi-morpheme-based lexical items, as found in agglutinative languages such as Turkish (we will be looking at the Mohawk language in such a way).

As an opening exercise, consider Turkish below:

a) oku-r-sa-m
 (read-aorist-conditional-1sg)
 (= If I read)

b) oku-malt-y-miş-iz
 (read-neccessititative-be-rep.past-1st pl)
 (= They say that we have to read)

c) oku-ya-ma-yabil-ir-im
 (read-potential-neg-potential-aorist-1st sg)
 (= I might not be able to read)

Question: if morpheme-form, how might the items show productivity (e.g, nonce word formulation, neologisms). If word-form, how might we determine its non-productivity? These remain open-questions for morphologists.
Productivity Cline: Inflectional/Agr(eement) Affix Continuum (Synchronic)

<table>
<thead>
<tr>
<th>Semantics</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ø-Agr]</td>
<td>[-Agr]</td>
</tr>
<tr>
<td>Non-Productive (L)exical</td>
<td>Semi-productive</td>
</tr>
<tr>
<td>L3</td>
<td>L2</td>
</tr>
<tr>
<td>G2</td>
<td>G1</td>
</tr>
</tbody>
</table>

Lexical/ Word-based | Functional/ Rule-based

[Fascinating]-type | [[Celebrat]ing]-type

L3: Non-productive / Lexical: simple Lexical stems, idiosyncratic forms:
e.g., desk, book, dance, red, cold,
breakfast, under-the-gun, over-the-hill, kick-the-bucket
arrivederci, deja-vu., el-polio-loco.

These items come undecomposed either via stem or fusion integration.
Regarding storage: The item is pulled directly from out of the lexicon.

L3 vs G3: E.g., the ‘How do you do?’ example: how are the two do’s processed? Even within the word/stem processing distinction, L3 vs. G3 holds (lexical vs. Functional word status).

*L2: Semi-idiosyncratic forms/Derivational forms (fairly productive):
e.g., un-happy, desk-top, teach-er,
inter-stem change / derivation of lexical stem

▷ [[teach]er] {er} is semantic + person who performs act of the verb.
▷ [brother]: ‘teacher’ primes/processes like ‘brother’

< Insert UCLA Experiment on processing here >

Example of derivational morphemes in English, all of which render stem undecomposition: {ish}, {hood}, {ly}, {ship}…

L1: Partially fixed phrases:
e.g., ‘lose sight of’, ‘agree with’, ‘listen-to’…
Note (L2): Consider: In L2, an even finer-grained analysis such as ‘sweetheart’ and ‘strawberry’ would have a [-semantic] read as opposed to, say, ‘greenhouse’ which would be [+semantic].

G1: periphrases:
 e.g., ‘be going to’, ‘as far as’, ‘in fact’ ...(in their early stages)

 [[I am going to] __] > I am gonna __ (as future tense marker).

Note that the infinitive verb would remain productive within the non-productive scheme.

G2: Semi-bound forms such as functional words:
 e.g., can, must, auxiliary verbs (do, be, have) and Clitics ‘ll, ’s (possessive) since such items can float across syntax: ‘of’ can be stranded, ‘s can be displaced:

 _ Mary is all I can think of_
 (Of Mary is all I can think)

Clitics vs Inflections

 The cat in the hat, his toy….

 [his] > {’s} in language change: {his} stem became clitic {’s}

 Tom ’ll go > Tom_ who lives by the park ’ll go.

But crucially note that the pronoun ‘us’ {_’s} can’t float and rather functions as an inflectional affix (marking case). There seems to be some fusion with let and us (let’s) to a degree that it is non-productive, becoming subject to discourse/pragmatics (as shown with distinction between declarative and imperative):

 Let’s go (let us go) but *let’s out! (let us out!) with imperative.

 (*Let’s be! > Let us be! (CP>TP + force/CP) > Let’s go (-force/TP))

This is very different from affix inflections which can’t float:
 e.g., Mary play-s the guitar > *Mary play_ [in the park]-s the guitar.

 (i) He is a man who serves on behalf of the president > He is a [N president] ’s [N man] => OK for compounding
 (ii) This man eats rat-s > *He is a rat-s-eater

 (See ‘Rat-eater’ experiment, class lecture notes #3)
G3: Affixes (Inflectional) which change grammatical function (very productive):
e.g., Plural {s}, Tense {-s}, {ed}, Aspect {ed}, {en}, {ing}, Case {m} (I vs me),

Regarding G3: a further distinction could be made between inter and intra-phrasal constructs (how far does the affix travel?)

Hence plural {s} may be processed more locally and may contain some fusion properties of the lexical N stem (as in the non-count noun [news], as opposed to [[book]s]). Number in this respect may be treated as [+Interp] (interpretable/semantic). It is noteworthy that plural inflections are the first to be acquired by young children and plurals typically don’t suffer deletion regarding. Specific Language Impairment (SLI). On the other hand, AGREement {s} is late acquired and does suffer deletion in SLI.

Functional/Inflectional affixes have a morphosyntactic relation with another item (the lexical host). Distance between original (functional) source and (lexical) host may play a part in processing (as the above shows).

In summary, the above cline shows the degree of fusion which could take place for affix formations. For instance, in the word notwithstanding note that there is no counterpart withstanding—the word notwithstanding started out as a phrase and became lexicalized via fusion.

Some Data: Japanese, Navajo, Mohawk, Eskimo, vs. Spanish, Italian, English

[1] Word Order and Shift at morpheme-level:

Navajo = SOV word order

Morphemes:

Ashkii At’éd bi-ilstá passive {bi} prefix morpheme on verb
Boy girl saw
(The girl saw the boy)

At’éd Ashkii yi-y-iiltsá active {yi} prefix morpheme on verb
Girl boy saw
(The girl saw the boy) √iiltsá (= stem)
English = active SVO, passive OVS

John kissed Mary
Mary was kissed by John
active: {ed} past tense
passive: {be} past participle {en}, by-phrase

Japanese = SOV

John-ga Mary-o butta
John-subj Mary-obj hit
{ga} suffix / subject-case marker
{o} suffix / object-case marker
(John hit Mary)

[2] **From Word Order to Head Parameter** (See [8] below for +/-Head initial)

Japanese:
John-ga [Mary-Ø to] [Kuruma da] [Kobe ni] itta
John-subj [Mary with] [car by] [Kobe to] went
(John went to Kobe by car with Mary)

(note: no case marking on ‘Mary’ when w/ postposition {to} (= with))

{ni} dative case marking/postposition {‘to’}
{to} postposition (‘with’)

Phrase Structure Rules:

- D > N, DP
- Adj>N, AdjP
- Aux>V, AuxP (VP)
- Prep>DP, PP

Japanese:

- PP (postposition)
 Kobe ni
 Mary with

- HP (- Head initial)
 Comp Head

- HP (+ Head initial)
 Head Comp

English:

- N P
 Kobe ni
 (= to Kobe)

- Comp Head
 to Kobe
 with Mary

- Head Comp

XP (XPhrase)
Head labels the phrase.

Japanese:

Morphemes:

John-no imooto-ga sinda
(John-poss sister-subj died)

{no} = Genitive/possessive Inflection
{ga} = object/accusative case

(= John’s sister died)

Mohawk: There are no inflectional markers to the noun for case. Instead, Mohawk changes a prefix on the verb. Mohawk therefore has relatively free Word Order (similar to what Latin had).

Mohawk: SVO vs. SOV order

Morphemes:

Sak uwári [shako-núhwe’s]
Jim Mary [he/her-likes]
(= Jim likes Mary) = SVO
(He likes her)

{shako} = prefix on verb: he/her antecedent pronouns: (he/Jim, > her/Mary)

 [+masc] > [-masc]

{núhwe} = like

{’s} = present tense

In Mohawk, the verb agrees both with it subject and object (verb-internal agreement).

Sak uwári [ruwa- núhwe’s]
Jim Mary [she/him-likes]
(= Mary likes Jim) = SOV
(She likes him)

{ruwa} = prefix on verb: she/him antecedent

[-masc] > [+masc]

Note: no morphological word order change—only inflectional change. Mohawk keeps consistent morpheme-level order within stem—e.g., *nuhwe’s-shako.

Japanese:

Morphemes:

John-no imooto-ga
(John-poss sister-subj)

{no} Possessive/Genitive Case
{ga} nominative/Subject Case

(= John’s sister).

Mohawk:

Morphemes:

Sak [rao-wise’]
Jim [his-glass]
(= Jim’s glass)

{rao} Possessive prefix on noun (like verbs)

(= Jim’s glass)
Recall our discussion of English clitics:

a) The cat’s toy
b) The [cat in the hat]’s toy.
c) The cat in the hat, his toy. (where ‘s began as lexical item {his}).

Owira’a wahrake’ ne o’wahru
(Baby ate the meat)

Owira’a [waha-`wahrake’]
(Baby [meat-ate])

English—Noun Incorporation

Noun + Noun
[dog] [house] = [doghouse] (*dog-s-house) No INFL within stem-building.

[rat] [eater] = [rateater] (* rat-s-eater)
{er} (derivational morpheme {er} = lexical/stem-building)

Dish-washer-s {er}. {s} INFL comes at end
Dish-washing {ing} = Gerund, lexical stem-building

But note: No N+V incorporation: *dish-washed (English bans N+V incorp).

[6] Verbal Inflection:

Mohawk: Verb stem: {nuhwe} = ‘like’
Prefix: Morphology: Subj/Obj AGR
Object incorporation:

ke-nuhwe’s {ke} = I/it (pronouns) I/it like (I like it)
se-nuhwe’s {se} = you/it you/it likes (you like it)
ra-nuhwe’s {ra} = he/it he/it likes (he like it)
ye-nuhwe’s {ye} = she/it she/it likes (she likes it)
yakwa-nuhwe’s {yakwa} = we/like we/it like (we like it)

{‘s} = present tense
{ra} = default ‘/it’ (object)
{rake} = ‘he/me’ e.g., rake-nuhwe’s (he likes me)
{ya} = he/you
{ro} = he/him
{shako} = he/her e.g., shako-nuhwe’s (he likes her)
Antecedent indexing:

\[
\begin{aligned}
\text{Sak} & \quad \text{Atya’tawi} & \quad \text{[ra-nuhwe’s]} & \quad \{	ext{ra}\} = \text{he/it} \\
\text{Dress} & \quad \text{Sak} & \quad \{	ext{he/it}-\text{likes}\} & \quad \{	ext{nuhwe’}\} = \text{likes} \\
\end{aligned}
\]

\{'s\} present tense inflection

Free Word order:

Sak Atya’tawi [ra-nuhwe’s] \quad \text{Strong inflected / incorporated}

Strong inflected / incorporated languages show relatively free order

(e.g., Latin)

Note that such binding is similar to what we find with English reflexives:

\[
\begin{aligned}
\text{Sak} & \quad \text{Atya’tawi} & \quad \{	ext{ra-nuhwe’s}\} \\
\end{aligned}
\]

But also note that English binding is constrained within a clause projection (locality of binding) whereas Mohwak (since it is lexically organized) escapes such binding constraints and is free (like what we find with English pronouns).

Note the agglutinative formation of the expression ‘that house is white’ where in English we need to express a copular ‘Be’ verb to link subject with modification (not so in Mohawk where arguments are expressed within the verb):

\[
\text{Thikv kanuhsa’ ka-rakv-hne’}
\]

(\text{that} \quad \text{house} \quad \text{it-white-past}) \quad \{	ext{hne}\} = \text{lexical/adverbial past tense}

(\text{it whited}) \quad \text{(e.g., ‘yesterday’)}

(= \text{that whited house})

Such strong inflection is similar to what we find in +INFL languages like Spanish, Italian:

<table>
<thead>
<tr>
<th>Spanish</th>
<th>Verb stem:</th>
<th>Suffix:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pronoun: (\emptyset)</td>
<td>{habl} = ‘speak’</td>
<td></td>
</tr>
<tr>
<td>habl-o (I speak)</td>
<td>{o} 1\text{st} pers ‘I’ /sg/present</td>
<td></td>
</tr>
<tr>
<td>habl-as (you speak)</td>
<td>{as} 2\text{nd} pers ‘you’ /sg/present</td>
<td></td>
</tr>
<tr>
<td>habl-a (she speaks)</td>
<td>{a} 3\text{rd} pers ‘he/she’ /sg/present</td>
<td></td>
</tr>
<tr>
<td>habl-amos (we speak)</td>
<td>{amos} 1\text{st} pers ‘we’ /pl</td>
<td></td>
</tr>
<tr>
<td>habl-ais/an (you speak)</td>
<td>{ais} 2\text{nd} pers ‘you’ /pl</td>
<td></td>
</tr>
<tr>
<td>habl-an (they speak)</td>
<td>{an} 3\text{rd} pers ‘they’ /pl</td>
<td></td>
</tr>
</tbody>
</table>
Italian

Ø {parl} = ‘speak’
parl-o
parl-I
parl-a
parl-iamo
parl-ate
parl-ano

Note how both Spanish and Italian (Mohawk) parl-o (i) can’t allow for a bare stem (*habl/parl/nuhwe) and (ii) would allow pro-drop (subject pronoun drop).

The main distinction between Spanish/Italian and Mohawk is that in Mohawk, the prefix agrees with both subject and object—the object of the verb is expressed inside the verb (similar to what would be expected of agglutinative type languages). Spanish/Italian suffix only agrees/marks subject with object not incorporated inside verb.

However, note how weak object/pronoun (clitic, pre-position) both in Spanish/Italian/French may take-on object incorporation, similar to Mohawk:

[7] Object incorporation:

Spanish: [yo [te-amo]] = or [Ø [te-amo]] with pro-drop
(I you-love)
(= I love you)

Italian: [Io [ti-amo]]
I [you love]

French: [je [t’aime]]
I [you love]

Question: In Mohawk, such strong lexical incorporation may make it difficult to separate individual pronoun marking. In the case of e.g., Spanish above, some native speakers indeed may not realize that ‘te-mo’ is a composed item [te [amo]] and rather may process/understand it as a chunk [teamo]—noting the over-application of double pronouns in Spanish—e.g., [Yo [teamo] a ti] (I you-love you).

When languages like Mohawk incorporate subject and objects within the stem, only the notion of +/- prefix surfaces as a parameter (not +/-Head initial since the notion of a phrase with two independent words which form a constituency is more closely linked word internal). In other words, agglutinative style languages move phrasal structure to the morpheme level where a ‘lexical magnetic theory’ (lexicalization/ or ‘fascinating’–type) may apply (magnetic in the sense that we have lost the concatenation aspect of the morpheme—as seen in morpheme loss over time in English [[break] [fast]] (to break a fast) or [[wind] [ow]] {ow} = ‘eye’ (wind in eye). We note that Mohawk requires the expression inside the verb. There is no verbal phrase expression in Mohawk:

VP (Mohawk)

[N + V]
ke-nuhwe’s
(I–it like)
(= I like it)

VP (Spanish)

[N + V]
te-am-o
{Ø} suffix marks 1st person ‘I’
(you-love)
(= I love you)
Note however such phrase expressions as found in English vs. Japanese showing contrast in +/-Head initial parameter involving word order):

[8] +/-Head initial Parameter

[+ Head initial] [-Head initial]

English:

<table>
<thead>
<tr>
<th>VP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>N</td>
</tr>
<tr>
<td>eat</td>
<td>cake</td>
</tr>
<tr>
<td>(John eats cake)</td>
<td></td>
</tr>
</tbody>
</table>

Japanese:

<table>
<thead>
<tr>
<th>VP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>V</td>
</tr>
<tr>
<td>hon-o</td>
<td>yonda</td>
</tr>
<tr>
<td>(book</td>
<td>read)</td>
</tr>
<tr>
<td>(John book read)</td>
<td></td>
</tr>
<tr>
<td>(= John read a book)</td>
<td></td>
</tr>
</tbody>
</table>

(We’ll speak more about the Head initial parameter when we turn to syntax, part-2 of class).

[9] More incorporation (Mohawk)

N+V incorporation (not possible in English)

wa’ eksohare’
(she dish-washed)
(= She did the dishes)

{ks} = dish, {ohare} = wash

where in English a light verb ‘do’ must be inserted.

The Farsi language (Iran) shows same type of light verb insertion,
e.g., [{kardan} + verb]

ashare’ tu-hsv’-ne’
(knife-past-fell-down)

*{tu} past tense/INFL prefix marker, or causative (?)

{ne} post-position ‘down’ (like in Japanese {ni}).

{hsv} ‘fall’

* {hne} suffix past tense/adverbial

{tu} prefix inflection, past (?)
If so, then \{hnw\} is lexical and \{tu\} is inflectional with Mohawk showing both lexical/derivational and functional/inflectional morphologies (like English).

\textbf{Uwari ta-yu-hsv-ht-e-ne ashare’}
(Mary made-to-fall down knife)
\{Uwari\} = Mary
\{ta\} = past (inflection) (?)
\text{(vowel change from \{tu\} above)}
\{yu\} = she/it (vowel change from \{ye\})
\{hsv\} = fall
\{ht\} = transitive/causative
\text{(light verb affix ‘to make’) }
\{ne\} = down
\{ashare’\} = knife
\{tu/ta\} (vowel flux) ‘past’
\{hsv\} = ‘fall’

\textbf{Tuhsv-ne} = ‘made fall down’

[10] \textbf{INFlections / Case Marking}

\textbf{Japanese: morphemic}

\textbf{Subject-topic:}
John-wa sono hon-o yonda
\{wa\} topic marker
\{o\} object
(John-topic that book-obj read)
(speaking of John-subj, he read the book)
(= John read the book)

\textbf{Object-topic:}
Kono hon-wa John-ga yonda
\{ga\} subject
(This book-topic John-subj read)
(speaking of this book-obj, John-subj read the book)
(= John read the book)

\textbf{Post-position:}
John-ga Kobe-ni itta
\{ni\} post-position ‘to’
(compare to Mohawk \{ne\} in [9] above)
(John-subj Kobe-to went)
(= John went to Kobe)
Mohawk: phonemic
Subj-Obj Inflection:

Ke-nuhwe’s
(I/it-like-present)
(= I like it)

But,

Ka-raku-hne
(I/it-white-past)
(It whited)

Thikv kanusha ka-raku-hne
(that house it-white-past)

Question: Is \{k\}_√k the morpheme stem with vowel changes for inflection, or is \{ke\} \{ka\} lexicalized (incorporated into the stem)?

Accusative languages

Japanese:

John-ga Mary-ni hon-o yatta
(John-Subj Mary- I.O book-obj gave)

Morphemes:

\{ni\} Indirect-object/post-position
\{ga\} subject
\{o\} object/accusative case

[12] Ergative Languages: (Eskimo)

Subjects take accusative inflection.

Atuaga-q tikissimmangilaq
Book-obj hasn’t-come
(= The book hasn’t come yet)

But notice how the ‘book’ takes an accusative/object case marker while remains in subject position (of SVX order).

For ergative structures, this translates into:

(Someone hasn’t brought the book yet)

English examples of ergative types:
The window broke > ‘someone broke the window’