
43 NEAREST NEIGHBORS IN HIGH-DIMENSIONAL
SPACES

Alexandr Andoni and Piotr Indyk

INTRODUCTION

In this chapter we consider the following problem: given a set P of points in a
high-dimensional space, construct a data structure that given any query point q
finds the point in P closest to q. This problem, called nearest neighbor search1,
is of significant importance to several areas of computer science, including pattern
recognition, searching in multimedia data, vector compression [GG91], computa-
tional statistics [DW82], and data mining. Many of these applications involve data
sets that are very large (e.g., a database containing Web documents could contain
over one billion documents). Moreover, the dimensionality of the points is usually
large as well (e.g., in the order of a few hundred). Therefore, it is crucial to design
algorithms that scale well with the database size as well as with the dimension.

The nearest neighbor problem is an example of a large class of proximity
problems, which, roughly speaking, are problems whose definitions involve the
notion of distance between the input points. Apart from nearest neighbor search,
the class contains problems like closest pair, diameter, minimum spanning tree and
variants of clustering problems.

Many of these problems were among the first investigated in the field of compu-
tational geometry. As a result of this research effort, many efficient solutions have
been discovered for the case when the points lie in a space of constant dimension.
For example, if the points lie in the plane, the nearest neighbor problem can be
solved with O(log n) time per query, using only O(n) storage [SH75, LT80]. Similar
results can be obtained for other problems as well. Unfortunately, as the dimen-
sion grows, the algorithms become less and less efficient. More specifically, their
space or time requirements grow exponentially in the dimension. In particular, the
nearest neighbor problem has a solution with O(dO(1) log n) query time, but using
roughly nO(d) space [Cla88, Mei93]. Alternatively, if one insists on linear or near-
linear storage, the best known running time bound for random input is of the form
min(2O(d), dn), which is essentially linear in n even for moderate d. Worse still, the
exponential dependence of space and/or time on the dimension (called the “curse
of dimensionality”) has been observed in applied settings as well. Specifically, it is
known that many popular data structures (using linear or near-linear storage), ex-
hibit query time linear in n when the dimension exceeds a certain threshold (usually
10–20, depending on the number of points), e.g., see [WSB98] for more information.

The lack of success in removing the exponential dependence on the dimension
led many researchers to conjecture that no efficient solutions exists for these prob-
lems when the dimension is sufficiently large (e.g., see [MP69]). At the same time,
it raised the question: Is it possible to remove the exponential dependence on d,

1Many other names occur in literature, including best match, post office problem and nearest
neighbor.

1135

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1136 A. Andoni and P. Indyk

if we allow the answers to be approximate. The notion of approximation is best
explained for the nearest neighbor search: instead of reporting a point p closest to
q, the algorithm is allowed to report any point within distance (1 + ε) times the
distance from q to p. Similar definitions can be naturally applied to other problems.
Note that this approach is similar to designing efficient approximation algorithms
for NP-hard problems.

Over the years, a number of researchers have shown that indeed in many cases
approximation enables a reduction of the dependence on dimension from exponen-
tial to polynomial. In this chapter we will survey these results. In addition, we
will discuss the issue of proving that the curse of dimensionality is inevitable if one
insists on exact answers, and survey the known results in this direction.

Although this chapter is devoted almost entirely to approximation algorithms
with running times polynomial in the dimension, the notion of approximate nearest
neighbor was first formulated in the context of algorithms with exponential query
times, leading to a large number of results including [Cla94, AMN+98, DGK01,
HP01, Cha02a, SSS06, AMM09, ADFM11]. Chapter 32 of this Handbook covers
such results in more detail.

43.1 APPROXIMATE NEAR NEIGHBOR

Almost all algorithms for proximity problems in high-dimensional spaces proceed
by reducing the problem to the problem of finding an approximate near neighbor,
which is the decision version of the approximate nearest-neighbor problem. Thus,
we start from describing the results for the former problem.

All the NNS algorithms are based on space partitions (even if not always framed
this way). We distinguish two broad classes of partitions: 1) data-independent
approaches, where the partition is independent of the given dataset P , and 2)
data-dependent approaches, where the partition depends on the dataset P .

For the definitions of metric spaces and normed spaces, see Chapter 8.

GLOSSARY

Approximate Near Neighbor, or (r, c)-NN: Given a set P on n points in a
metric space M = (X,D), design a data structure that supports the following
operation: For any query q ∈ X, if there exists p ∈ P such that D(p, q) ≤ r, find
a point p′ ∈ P such that D(q, p′) ≤ cr

Dynamic problems: Problems that involve designing a data structure for a set of
points (e.g., approximate near neighbor) and support insertions and deletions of
points. We distinguish dynamic problems from their static versions by adding
the word “Dynamic” (or letter “D”) in front of their names (or acronyms). E.g.,
the dynamic version of the approximate near-neighbor problem is denoted by
(r, c)-DNN.

Hamming metric: A metric (Σd, D) where Σ is a set of symbols, and for any
p, q ∈ Σd, D(p, q) is equal to the number of i ∈ {1 . . . d} such that pi 6= qi.

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 43: Nearest neighbors in high-dimensional spaces 1137

DATA-INDEPENDENT APPROACH

The first algorithms for (r, c)-NN in high dimensions were obtained by using the
technique of random projections, as introduced in the paper by Kleinberg [Kle97].
Although his algorithms still suffered from the curse of dimensionality (i.e., used
exponential storage or had Ω(n) query time), his ideas provided inspiration for
designing improved algorithms.

Later algorithms are based on the technique of Locality-Sensitive Hashing. We
describe both approaches next.

TABLE 43.1.1 Approximate Near Neighbors under the Hamming distance.

APPROX. QUERY TIME SPACE UPDATE TIME

Very low query Source: [KOR00] (see also [HIM12])

time c = 1 + ε d logn/min(ε2, 1) nO(1/ε2+log c/c) nO(1/ε2+log c/c)

Low query Source: [Pan06, Kap15, Laa15, ALRW17]

time c dno(1) n
(
c
c−1

)2
n
(
c
c−1

)2

Balanced Source: [HIM12, AINR14, AR15]

c dn
1

2c−1
+o(1)

n
1+

1
2c−1

+o(1)
+ dn dn

1
2c−1

+o(1)

Low space Source: [Ind01a, Pan06, AI06, Kap15, Laa15, ALRW17]

c n
2c−1
c2 dn1+o(1) dno(1)

Algorithms via dimensionality reduction. We first focus on the case where
all input and query points are binary vectors from {0, 1}d, and D is the Hamming
distance. Dimensionality reduction is a randomized procedure that reduces the
dimension of Hamming space from d to k = O(log n/ε2), while preserving a certain
range of distances between the input points and the query up to a factor of 1 + ε.
This notion has been introduced earlier in Chapter 8 in the context of Euclidean
space. In the case of the Hamming space, the following holds.

THEOREM 43.1.1 [KOR00] (see also [HIM12])

For any given r ∈ {1 . . . d}, ε ∈ (0, 1] and δ ∈ (0, 1), one can construct a distribution
over mappings A : {0, 1}d → {0, 1}k, k = O(log(1/δ)/ε2), and a “scaling factor”
S, so that for any p, q ∈ {0, 1}d, if D(p, q) ∈ [r, 10r], then D(A(p), A(q)) = S ·
D(p, q)(1± ε) with probability at least 1− δ.

The factor 10 can be replaced by any constant. As in the case of Euclidean
norm, the mapping A is linear (over the field GF (2)). The k × n matrix A is
obtained by choosing each entry of A independently at random from the set {0, 1}.
The probability that an entry is equal to 1 is roughly r/d.

The first algorithm in Table 43.1.1 is an immediate consequence of Theo-
rem 43.1.1. Specifically, it allows us to reduce the (r, c + ε)-NN problem in d-
dimensional space to (r, c)-NN problem in k-dimensional space. Since the exact

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1138 A. Andoni and P. Indyk

nearest neighbor problem in k-dimensional space can be solved by storing the an-
swers to all 2k queries q, the bound follows.

This resulting algorithm is randomized and has a Monte Carlo guarantee of
correctness. One can also obtain stronger guarantees of correctness: Las Vegas
guarantee with similar performance and a deterministic algorithm with 3 + ε ap-
proximation are described in [Ind00].

We note that one can apply the same approach to solve the near-neighbor prob-
lem in the Euclidean space. In particular, it is fairly easy to solve the (r, 1 + ε)-NN
problem in ld2 using n(1/ε)O(d) space [HIM12]. Applying the Johnson-Lindenstrauss
lemma leads to an algorithm with storage bound similar to (although slightly worse
than) the bound of algorithm (1a) [HIM12].

Algorithms via Locality-Sensitive Hashing. The storage bound for the first
algorithm in Table 43.1.1 is high and, oftentimes, one needs space to be much
closer to the linear in the dataset size. The next two algorithms in the table obtain
a better trade-off between space and the query time.

These algorithms are based on the concept of Locality-Sensitive Hashing, or
LSH [HIM12] (see also [KWZ95, Bro98]). A family of hash functions h : {0, 1}d → U
is called (r, cr, P1, P2)-sensitive (for c > 1 and P1 > P2) if for any q, p ∈ {0, 1}d

if D(p, q) ≤ r, then Pr[h(q) = h(p)] ≥ P1, and

if D(p, q) > cr, then Pr[h(q) = h(p)] ≤ P2,

where Pr[·] is defined over the random choice of h. We note that the notion of
locality-sensitive hashing can be defined for any metric space M in a natural way
(see [Cha02b] for sufficient and necessary conditions for existence of LSH for M).

For Hamming space, there are particularly simple LSH families: it is sufficient
to take all functions hi, i = 1 . . . d, such that hi(p) = pi for p ∈ {0, 1}d. The
resulting family is sensitive due to the fact that Pr[h(p) = h(q)] = 1−D(p, q)/d.

TABLE 43.1.2 Approximate Near Neighbors via LSH and data-dependent hashing approaches.

METRIC TYPE QUERY TIME EXPONENT ρ FOR c = 2 REFERENCE

`1

LSH nρd
ρ = 1/c ρ = 1/2 [HIM12]

ρ ≥ 1/c− o(1) ρ ≥ 1/2 [MNP07, OWZ14]

Data dependent

hashing
nρd

ρ = 1
2c−1

+ o(1) ρ = 1/3 [AINR14, AR15]

ρ ≥ 1
2c−1

− o(1) ρ ≥ 1/3 [AR16]

`2

LSH nρd

ρ ≤ 1/c ρ ≤ 1/2 [HIM12, DIIM04]

ρ = 1/c2 + o(1) ρ = 1/4 [AI06]

ρ ≥ 1/c2 − o(1) ρ ≥ 1/4 [MNP07, OWZ14]

Data dependent

hashing
nρd

ρ = 1
2c2−1

+ o(1) ρ = 1/7 [AINR14, AR15]

ρ ≥ 1
2c2−1

− o(1) ρ ≥ 1/7 [AR16]

An LSH family with a “large” gap between P1 and P2 immediately yields a
solution to the (c, r)-NN problem. During preprocessing, all input points p are
hashed to the bucket h(p). In order to answer the query q, the algorithm retrieves
the points in the bucket h(q) and checks if any one of them is close to q. If the

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 43: Nearest neighbors in high-dimensional spaces 1139

gap between P1 and P2 is sufficiently large, this approach can be shown to result in
sublinear query time. Unfortunately, the P1/P2 gap guaranteed by the above LSH
family is not large enough. However, the gap can be amplified by concatenating
several independently chosen hash functions h1 . . . hl (i.e., hashing the points using
functions h′ such that h′(p) = (h1(p), . . . , hl(p)). This decreases the probability
of finding a near neighbor in one hash tables, and therefore we build a few hash
tables, and, at query time, look-up one bucket of each of the hash tables. Details
can be found in [HIM12].

The overall LSH algorithm uses O(nρ) hash tables, where ρ = logP1

logP2
∈ (0, 1)

turns out to be the key measure of quality of the hash function (equivalently, the
space partition). In particular, the query time becomes O(nρd), and the space
becomes O(n1+ρ +nd). For the above LSH family for the Hamming space, one can
prove that ρ = 1/c, resulting in the [HIM12] algorithm with O(n1/cd) time and
O(n1+1/c + nd) space.

A somewhat similar hashing-based algorithm (for the closest-pair problem)
was earlier proposed in [KWZ95], and also in [Bro98]. Due to different problem
formulation and analysis, comparing their performance with the guarantees of the
LSH approach seems difficult.

Time-space trade-offs. While the LSH approach achieves sub-quadratic space,
one may hope to obtain even better guarantee: a near-linear space, Õ(nd). Indeed,
such near-linear space algorithms have been proposed in [Ind01a, Pan06, AI06,
Kap15, Laa15]. For the smallest possible space of O(nd), [Kap15] obtains query
time O(n4/(c+1)d). For other algorithms, see the “low space” regime in Table 43.1.1,
as well as the “(very) low query time” regime for the opposite extreme, of the lowest
possible query time.

Algorithms for l2 and other `p norms. To solve the problem under the
`1 norm, we can reduce it to the Hamming case. If we assume that all points
of interest p have coordinates in the range {1, . . . ,M}, we can define U(p) =
(U(p1), . . . , U(pd)) where U(x) is a string of x ones followed by M − x zeros. Then
we get ‖p − q‖1 = D(U(p), U(q)). In general, M could be quite large, but can be
reduced to dO(1) in the context of approximate near neighbor [HIM12]. Thus we
can reduce (r, c)-NN under l1 to (r, c)-NN in the Hamming space.

For the Euclidean space `2, one can design more efficient algorithms. Specifi-
cally, [AI06] obtain ρ = 1/c2 +o(1), improving over the (optimal) ρ = 1/c exponent
for the Hamming space. For `p’s, for p ∈ [1, 2), one can then reduce the problem
to the `2 case by embedding the (p/2)-th root of `p into `2 [Kal08, Theorem 4.1]
(see also a quantitative version in [Ngu14]).

For `p with p < 1, [DIIM04] obtain an LSH exponent ρ = 1/cp + o(1).

Las Vegas algorithms. The standard LSH scheme guarantees 90% success
probability of recovering an (approximate) near neighbor (Monte Carlo random-
ness). There are algorithms that guarantee to return an (approximate) near neigh-
bor, albeit the runtime is in expectation only (Las Vegas randomness) [GPY94,
Ind00, AGK06, Pag16]. Such algorithms proceed by constructing a number of
space partitions, such that any pair of close points will collide in at least on of
the space partitions. The query time of such algorithms is usually (polynomially)
higher than the query time of the Monte Carlo ones.

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1140 A. Andoni and P. Indyk

Lower bounds. For algorithms based on the LSH concept, we can prove tight
lower bounds, ruling out better exponents ρ [MNP07, OWZ14]. In particular, for
p ∈ (0, 2], the tight exponent is ρ = 1/cp ± o(1). Such lower bounds assume that
P1 is not too small, namely inversely exponential in dΩ(1). LSH schemes with P1

exponentially small in d is not useful for the high dimensional spaces with d� log n
— in this situation, 1/P1 � 1/n. We note however that in the “moderate dimension
regime,” when d = Θ(log n), it may be tolerable to have P1 = 2−Θ(d) and indeed,
[BDGL16, Laa15] obtain somewhat better exponents ρ in this case.)

For p > 2, it is natural to conjecture that any LSH scheme must incur either a
super-constant factor approximation, or must have P1 exponentially small in dΩ(1);
see [AN11] for partial progress towards the conjecture.

DATA-DEPENDENT APPROACH

The data-independent techniques from the previous section have natural limita-
tions. It turns out that sometimes vastly better algorithms are possible using data-
dependent approaches. In particular, these are the methods where the hash function
h itself depends on the entire dataset P . Note that an important requirement for a
data-dependent hashing function is to have efficient evaluation procedure on a new
(query) point q. Without such condition, the obvious best data-dependent parti-
tion would be the Voronoi diagram—i.e., h(q) returns the identity of the closest
point from the dataset—which is obviously useless (computing the hash function
is as hard as the original problem!). Indeed, the space partitions mentioned below
are (provably) better than the data-independent variants while being efficient to
compute as well.

As before, the resulting algorithms give an improvement for worst-case datasets.

Algorithm for the `∞ norm. The first algorithm from this category is for
near-neighbor problem under the `∞ norm, where data-independent methods are
otherwise powerless. In particular, [Ind01b] solves (r, c)-NN under the ld∞ norm
with the following guarantees, for any ρ > 0:

Approximation factor: c = O(blog1+ρ log 4dc); if ρ = log d then c = 3.

Space: dn1+ρ.

Query time: O(d log n) for the static, or (d+ log n)O(1) for the dynamic case.

Update time: dO(1)nρ (described in [Ind01a]).

The basic idea of the algorithm is to use a divide and conquer approach. In
particular, consider hyperplanes H consisting of all points with one (say the ith)
coordinate equal to the same value. The algorithm tries to find a hyperplane H
having the property that the set of points PL ⊂ P that are on the left side of H
and at distance ≥ r from H, is not “much smaller” than the set PM of points
at distance r from H. Moreover, a similar condition has to be satisfied for an
analogously defined set PR of points on the right side of H. If such H exists, we
divide P into PLM = PL ∪PM and set PRM = P \PL and build the data structure
recursively on PLM and PRM . It is easy to see that while processing a query q, it
suffices to recurse on either PLM or PRM , depending on the side of H the query q
lies on. Also, one can prove that the increase in storage caused by duplicating PM
is moderate. On the other hand, if H does not exist, one can prove that a large

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 43: Nearest neighbors in high-dimensional spaces 1141

subset P ′ ⊂ P has O(cr) diameter. In such a case we can pick any point from P ′

as its representative, and apply the algorithm recursively on P \ P ′.

Algorithms for the `p norms. Later work defined data-dependent hashing
more formally and showed that one can obtain better runtime exponents ρ than
LSH, for the exponent ρ defined similarly to the one from LSH. In particular, data-
dependent hashing gives the following performance: for the Hamming space, the
exponent is ρ = 1

2c−1 , and for the Euclidean space, the exponent is ρ = 1
2c2−1 . See

Table 43.2.1 for a comparison with LSH and lower bounds.
The data-dependent hashing algorithms in [AINR14, AR15] have two major

components. First, if the given dataset has a certain “canonical geometric con-
figuration,” then one can design a data-independent hashing (LSH) scheme with
better parameters than for datasets in a general position. This canonical setting
essentially corresponds to a dataset which is distributed (pseudo-)randomly on a
sphere (i.e., points are at ≈ π/2 angle with respect to the origin), and the query
is planted to be at θ < π/2 angle from some point in the dataset. Second, there
is a procedure to decompose any worst-case dataset and reduce it to this canonical
case.

For `p, where 0 < p < 2, all algorithms for `2 apply as well (with c2 replaced
by cp in the exponent ρ); see [Ngu14].

For `p, where p > 2, efficient algorithms are possible via data-dependent hash-
ing, however optimal bounds are not presently known. [And09] shows how to obtain
O(log log d) approximation, and [BG15, NR06] obtain approximation 2O(p).2

Lower Bounds. One can prove that, for p ≤ 2 and p =∞, the above exponents
ρ are optimal within the class of data-dependent hashing schemes. To prove such
lower bounds, one has to formalize the class of data-dependent hashing schemes
(which in particular would rule out the aforementioned Voronoi diagram solution).
For `∞, matching lower bounds were shown in [ACP08, KP12], and for `p in [AR16].
Both type of results formalize the class by assuming that the hash function has
description complexity of n1−Ω(1), as well as that d = log1+Ω(1) n and P1 is not
too small. These lower bounds also have implication for (unconditional) cell probe
lower bounds; see Section 43.3.

Time-space trade-offs. As for LSH, one can obtain other time-space trade-offs
with the data-dependent approach as well. In particular, [Laa15, ALRW17] obtain
trade-offs for the `2 space. One can obtain an algorithm with query time nρq+o(1)d
and space n1+ρs+o(1) +O(nd) for any ρs, ρq > 0 that satisfy the following equality:

c2
√
ρq + (c2 − 1)

√
ρs =

√
2c2 − 1.

This trade-off is also optimal (in the right formalization) [ALRW17, Chr16]. For
ρq = 0, there are also cell-probe lower bounds; see Section 43.3.

GLOSSARY

Product metrics: An f -product of metrics X1, . . . , Xk with distance functions
D1, . . . , Dk is a metric over X1 × . . . × Xk with distance function D such that
D((p1, . . . , pk), (q1, . . . , qk)) = f(D1(p1, q1), . . . , Dk(pk, qk)).

2At the moment of writing of this document, [NR06] does not seem to be available but is referenced
in [Nao14, Remark 4.12].

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1142 A. Andoni and P. Indyk

Although the l∞ data structure seems to rely on the geometry of the l∞ norm,
it turns out that it can be used in a much more general setting. In particular,
assume that we are given k metrics M1 . . .Mk such that for each metric Mi we
have a data structure for (a variant of) (r, c)-NN in metric Mi, with Q(n) query
time and S(n) space. In this setting, it is possible to construct a data structure
solving (r,O(c log log n))-NN in the max-product metric M of M1, . . . ,Mk (i.e., an
f -product with f computing the maximum of its arguments) [Ind02]. The data
structure for M achieves query time roughly O(Q(n) log n + k log n) and space
O(kS(n)n1+δ), for any constant δ > 0. The data structure could be viewed as an
abstract version of the data structure for the l∞ norm (note that the ld∞ norm is
a max-product of l1p norms). For the particular case of the ld∞ norm, it is easy to
verify that the result of [Ind02] provides a O(log log n)-approximate algorithm using
space polynomial in n. At the same time, the algorithm of [Ind01b] has O(log log d)-
approximation guarantee when using the same amount of space. Interestingly, the
former data structure gives an approximation bound comparable to the latter one,
while being applicable in a much more general setting.

The above result can also be used for developing NNS under product spaces,
defined as follows. For a vector x ∈ Rd1·d2 , its `d1

p (`d2
q) norm is computed by taking

the `q norm of each of the d1 rows and then taking the `p norm of these d1 values.
For such product norms (in fact for any fixed iterated product norm), [AIK09,
And09] showed how to obtain efficient NNS with O(log log n)O(1) approximation.

EXTENSIONS VIA EMBEDDINGS

Most of the algorithms described so far work only for lp norms. However, they can
be used for other metric spaces M , by using low-distortion embeddings of M into
lp norms. See Chapter 8 for more information.

Similarly, one can use low-distortion embedding of M into a product space to
obtain efficient NNS under M . This has been used for the Ulam metric, which is the
edit (Levenshtein) distance on nonrepetitive strings. In particular, [AIK09] showed
a O(1)-distortion embedding of Ulam distance into an iterated product space, which
gives the currently best known NNS algorithms for Ulam.

43.2 REDUCTIONS TO APPROXIMATE NEAR NEIGHBOR

GLOSSARY

We define the following problems, for a given set of points P in a metric space
M = (X,D):

Approximate Closest Pair, or c-CP: Find a pair of points p′, q′ ∈ P such that
D(p′, q′) ≤ cminp,q∈P,p6=qD(p, q)

Approximate Close Pair, or (r, c)-CP: If there exists p, q ∈ P, p 6= q, such that
D(p, q) ≤ r, find a pair p′, q′ ∈ P, p′ 6= q′, such that D(q′, p′) ≤ cr.

Approximate Chromatic Closest Pair, or c-CCP: Assume that each point
p ∈ P is labeled with a color c(p). Find a pair of points p, q such that c(p) 6= c(q)
and D(p, q) is approximately minimal (as in the definition of c-CP).

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 43: Nearest neighbors in high-dimensional spaces 1143

Approximate Bichromatic Closest Pair, or c-BCP: As above, but c(p) as-
sumes only two values.

Approximate Chromatic/Bichromatic Close Pair, or (r, c)-CCP/(r, c)-
BCP: Decision versions of c-CCP or c-BCP (as in the definition of (r, c)-CP).

Approximate Farthest Pair, or Diameter, or c-FP: Find p, q ∈ P such that
D(p, q) ≥ maxp′,q′∈P D(p′, q′)/c. The decision problem, called Approximate
Far Pair, or (r, c)-FP, is defined in the natural way.

Approximate Farthest Neighbor, or c-FN: A maximization version of the
Approximate Near Neighbor. The decision problem, called Approximate Far
Neighbor or (r, c)-FN, is defined in a natural way.

Approximate Minimum Spanning Tree, or c-MST: Find a tree T spanning
all points in P whose weight w(T) =

∑
(p,q)∈T D(p, q) is at most c times larger

than the weight of any tree spanning P .

Approximate Bottleneck Matching, or c-BM: Assuming |P | is even, find a
set of |P |/2 nonadjacent edges E joining points in P (i.e., a matching), such that
the following function is minimized (up to factor of c)

max
{p,q}∈E

D(p, q)

Approximate Facility Location, or c-FL: Find a set F ⊂ P such that the
following function is minimized (up to factor of c), given the cost function c :
P → R+ ∑

p∈F
c(p) +

∑
p∈P

min
f∈F

D(p, f)

In general, we could have two sets: Pc of cities and Pf of facilities; in this case
we require that F ⊂ Pf and we are only interested in the cost of Pc.

Spread (of a point set): The ratio between the diameter of the set to the distance
between its closest pair of points.

In this section we show that the problems defined above can be efficiently re-
duced to the approximate near-neighbor problem discussed in the previous section.

First, we observe that any problem from the above list, say c(1 + δ)-P for some
δ > 0, can be easily reduced to its decision version (say (r, c)-P), if we assume that
the spread of P∪{q} is always bounded by some value, say ∆. For simplicity, assume
that the minimum distance between the points in P is 1. The reduction proceeds
by building (or maintaining) O(log1+δ ∆) data structures for (r, c)-P, where r takes
values (1 + δ)i/2 for i = 0, 1 It is not difficult to see that a query to c(1 + δ)-P
can be answered by O(log log1+δ ∆) calls to these structures for (r, c)-P, via binary
search.

In general, the spread of P could be unbounded. However, in many cases it is
easy to reduce it to nO(1). This can be accomplished, for example, by “discretizing”
the input to c-MST or c-FL. In those cases, the above reduction is very efficient.

Reductions from other problems are specified in the following table. The
bounds for the time and space used by the algorithm in the “To” column are
denoted by T (n) and S(n), respectively.

We mention that a few other reductions have been given in [KOR00, BOR04].
For the problems discussed in this section, they are less efficient than the reductions
in the above table. Additionally, [BOR04] reduces the problems of computing

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1144 A. Andoni and P. Indyk

TABLE 43.2.1 Reductions to Approximate Near Neighbors.

FROM TO TIME SPACE

1 Source: [HIM12].

c(1 + δ)-NN (r, c)-NN T (n) logO(1) n S(n) logO(1) n

2 Source: [Epp95]; amortized time.

c-DBCP c-DNN T (n) logO(1) n S(n) logO(1) n

(r, c)-DBCP (r, c)-DNN T (n) logO(1) n S(n) logO(1) n

3 Source: [HIM12]; via Kruskal alg.

c(1 + δ)-MST (r, c)-DBCP nT (n) logO(1) n

4 Source: [GIV01, Ind01a]; via Primal-Dual

3c3(1 + δ)-FL (r, c)-DBCP nT (n) logO(1) n

5 Source: [GIV01, Ind01a].

2c-BM c-DBCP nT (n) logO(1) n

approximate agglomerative clustering and sparse partitions to O(n logO(1) n) calls
to a dynamic approximate nearest neighbor data structure. See [BOR04] for the
definitions and algorithms.

Also, we mention that a reduction from (1 + ε)-approximate farthest neighbor
to (1 + ε)-approximate nearest neighbor (for the static case and under the l2 norm)
has been given in [GIV01]. However, a direct (and dynamic) algorithm for the
approximate farthest neighbor in ld2 , achieving a better query and update times of

dn1/(1+ε)2

, has been given in [Ind03]. The former paper also presents an algorithm
for computing a (

√
2 + ε)-approximate diameter (for any ε > 0) of a given pointset

in dn logO(1) n time.
We now describe briefly the main techniques used to achieve the above results.

Nearest neighbor. We start from the reduction of c-NN to (r, c)-NN. As we
have seen already, the reduction is easy if the spread of P is small. Otherwise, it is
shown that the data set can be clustered into n/2 clusters, in such a way that:

If the query point q is “close” to one of the clusters, it must be far away from a
constant fraction of points in P ; thus, we can ignore these points in the search
for an approximate nearest neighbor.

If the query point q is “far” from a cluster, then all points in the clusters are
equally good candidates for the approximate nearest neighbor; thus we can
replace the cluster by its representative point.

See the details of the construction in [HIM12].

Bichromatic closest pair. A very powerful reduction from various variants of
c-DBCP to c-DNN was given by Eppstein [Epp95]. His algorithm was originally
designed for the case c = 1, but it can be verified to work also for general c ≥
1 [Epp99]. Moreover, as mentioned in the original paper, the reduction does not
require the distance function D be a metric.

The basic idea of the algorithm is to try to maintain a graph that contains an
edge connecting the two closest bichromatic points. A natural candidate for such a
graph is the graph formed by connecting each point to its nearest neighbor. This,

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 43: Nearest neighbors in high-dimensional spaces 1145

however, does not work, because a vertex in such a graph can have very high degree,
leading to high update cost. Another option would be to maintain a single path,
such that the ith vertex points to its nearest neighbor of the opposite color, chosen
from points not yet included in the path. This graph has low degree, but its rigid
structure makes it difficult to update it at each step. So the actual data structure is
based on the path idea but allows its structure to degrade in a controlled way, and
only rebuilds it when it gets too far degraded, so that the rebuilding work is spread
over many updates. Then, however, one needs to keep track of the information
from the degraded parts of the path, which can be done using a second shorter
path, and so on. The constant factor reduction in the lengths of each successive
path means the total number of paths is only logarithmic.

We note that recent research [Val15, KKK16] showed an alternative approach to
the bichromatic closest pair problem, which, in certain settings, vastly outperforms
the approach via the NNS algorithms. This line of work is best described using
the following parameterization. Suppose the two color classes of points A,B ⊂ Rd
satisfy the following: 1) all points are of unit norm, and 2) for each a ∈ A, b ∈ B, we
have that 〈a, b〉 < α except for a single (close) pair that satisfies 〈a, b〉 ≥ β, for some

0 < α < β < 1. Then the algorithm of [Val15] obtains a runtime of n
5−ω
4−ω+ω

log β
logα ·

dO(1), where 2 ≤ ω < 2.373 is the exponent of the fast matrix multiplication
algorithm. An algorithm in [KKK16] runs in time n2ω/3+O(log β/ logα) · dO(1). The
most interesting case is where the point sets A and B are random, except for a
pair that has inner product ε (termed the light bulb problem [Val88]). In this case
the runtime of these algorithms is of the form n2−Ω(1)(d/ε)O(1), improving over
n2−O(ε) time obtainable via LSH methods. The algorithm of [Val15] also obtains
n2−Ω(

√
ε) · dO(1) time for the standard (1 + ε)-BCP.

Finally, there is recent work on exact BCP for medium dimensions, which
also relies on faster matrix multiplication. In particular, the algorithm of [AW15]

achieves a runtime of n2−1/O(c log2 c) for Hamming space of dimension d = c log n
for c > 1.

Minimum spanning tree. Many existing algorithms for computing MST (e.g.,
Kruskal’s algorithm) can be expressed as a sequence of operations on a CCP data
structure. For example, Kruskal’s algorithm repetitively seeks the lightest edge
whose endpoints belong to different components, and then merges the components.
These operations can be easily expressed as operations on a CCP data structure,
where each component has a different color. The contribution of [HIM12] was
to show that in case of Kruskal’s algorithm, using an approximate c-CCP data
structure enables one to compute an approximate c-MST. Also, note that c-CCP
can be implemented by log n c-BCP data structures [HIM12]. Other reductions
from c-MST to c-BCP are given in [BOR04, IST99].

Minimum bottleneck matching. The main observation here is that a match-
ing is also a spanning forest with the property that any connected component has
even cardinality (call it an even forest). At the same time, it is possible to convert
any even forest to a matching, in a way that increases the length of the longest
edge by at most a factor of 2. Thus, it suffices to find an even forest with minimum
edge length. This can be done by including longer and longer edges to the graph,
and stopping at the moment when all components have even cardinality. It is not
difficult to implement this procedure as a sequence of c-CCP (or c-BCP) calls.

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1146 A. Andoni and P. Indyk

Other algorithms. The algorithm for the remaining problem (c-FL) is obtained
by implementing the primal-dual approximation algorithm [JV01]. Intuitively, the
algorithm proceeds by maintaining a set of balls of increasing radii. The latter pro-
cess can be implemented by resorting to c-CCP. The approximation factor follows
from the analysis of the original algorithm.

43.3 LOWER BOUNDS

In the previous sections we presented many algorithms solving approximate ver-
sions of proximity problems. The main motivation for designing approximation
algorithms was the “curse of dimensionality” conjecture, i.e., the conjecture that
finding exact solutions to those problems requires either superpolynomial (in d)
query time, or superpolynomial (in n) space. In this section we state the conjec-
ture more rigorously, and describe the progress toward proving it. We also describe
the lower bounds for the approximation algorithms as well, which sometimes match
the algorithmic results presented earlier.

Curse of dimensionality. We start from the exact near-neighbor problem,
where the curse of dimensionality can be formalized as follows.

CONJECTURE 43.3.1

Assume that d = no(1) but d = ω(log n). Any data structure for (r, 1)-NN in
Hamming space over {0, 1}d, with dO(1) query time, must use nω(1) space.

The conjecture as stated above is probably the weakest version of the “curse
of dimensionality” phenomenon for the near-neighbor problem. It is plausible that
other (stronger) versions of the conjecture could hold. In particular, at present, we
do not know any data structure that simultaneously achieves o(dn) query time and
2o(d) space for the above range of d. At the same time, achieving O(dn) query time
with space dn, or O(d) query time with space 2d is quite simple (via linear scan or
using exhaustive storage).

Also note that if d = O(log n), achieving 2o(d) = o(n) space is impossible via a
simple incompressibility argument.

Below we describe the work toward proving the conjecture. The first results
addressed the complexity of a simpler problem, namely the partial match problem.
This problem is of importance in databases and other areas and has been long inves-
tigated (e.g., see [Riv74]). Thus, the lower bounds for this problem are interesting
in their own right.

GLOSSARY

Partial match: Given a set P of n vectors from {0, 1}d, design a data structure
that supports the following operation: For any query q ∈ {0, 1, ∗}d, check if there
exists p ∈ P such that for all i = 1 . . . d, if qi 6= ∗ then pi = qi.

It is not difficult to see that any data structure solving (r, 1)-NN in the Ham-
ming metric {0, 1}d, can be used to solve the partial match problem using essentially
the same space and query time. Thus, any lower bound for the partial match prob-

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 43: Nearest neighbors in high-dimensional spaces 1147

lem implies a corresponding lower bound for the near-neighbor problem. The best
currently known lower bound for the partial match has been established in [Pǎt10],
following earlier work of [JKKR04, BOR03, MNSW98]. Their lower bound holds
in the cell-probe model, a very general model of computation, capturing e.g., the
standard Random Access Machine model. The lower bound implies that any (pos-
sibly randomized) cell-probe algorithm for the partial match problem, in which the
algorithm is allowed to retrieve at most O(n1−ε) bits from any memory cell in one
step for ε > 0, must use space 2Ω(d/t) for t cell probes (memory accesses, and hence
query time).

Similar space lower bounds have been proven for exact (possibly random-
ized) near-neighbor [BR02], and for deterministic O(1)-approximate near neighbor
[Liu04]. Note that allowing both approximation and randomization allows for much
better upper bounds (see the “very low query time” regime in Table 43.1.1).

All the aforementioned lower bounds are proved in a very general model, using
the tools of asymmetric communication complexity. As a result, they cannot yield
lower bounds of ω(d/ log n) query time, for nO(1) space, as we now explain.

The communication complexity approach interprets the data structure as a
communication channel between Alice (holding the query point q) and Bob (hold-
ing the database P). The goal of the communication is to determine the nearest
neighbor of q. Since the data structure has polynomial size, each access to one of
its memory cell is equivalent to Alice sending O(log n) bits of information to Bob.
If we show that Alice needs to send at least a bits to Bob to solve the problem, we
obtain Ω(a/ log n) lower bound for the query time. However, b ≤ d, since Alice can
always choose to transmit the whole input vector q. Thus, Ω(d/ log n) lower bound
is the best result one can achieve using the communication complexity approach.

A partial step toward removing this obstacle was made in [BV02], employing
the branching programs model of computation. In particular, they focused on ran-
domized algorithms that have very small (inversely polynomial in n) probability
of error. They showed that any algorithm for the (r, 1)-NN problem in the Ham-
ming metric over {1 . . . d6}d has either Ω(d log(d log d/S)) query time or uses Ω(S)
space. This holds for n = Ω(d6). Thus, if the query time is o(d log d), then the data

structure must use 2d
Ω(1)

space.
Another such step was made in [PT09], who show higher lower bound for

near-linear space. In particular, they show that number of cell probes must be
t = Ω(d · log Sd

n) for space S.

Lower bounds for approximate randomized algorithms. More recent ef-
forts focused on lower bounds for approximate randomized problem, where most of
the improved algorithms were obtained. Even if it is harder to prove lower bounds
in this regime, researchers often managed to prove tight lower bounds, matching
the known algorithms.

First of all, if we consider the nearest neighbor problem (in contrast to the near
neighbor, which is considered in this chapter), [CR10, CCGL03] show that any
data structure for the O(1)-approximate nearest neighbor on {0, 1}d requires either
Ω(log log d/ log log log d) query time or nω(1) space. [CR10] also show a matching
upper bound.

For the near neighbor problem, the authors of [AIP06] show that a (1 + ε)-

approximation requires
(
nΩ(1/ε2)

)1/t

space lower bound for t cell-probe data struc-

tures for the Hamming space. This lower bound matches the upper bound of

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1148 A. Andoni and P. Indyk

[KOR00, HIM12] (the “very low query time” regime in Table 43.1.1), which uses
just 1 cell probe. We note that while the lower bound of [AIP06] is tight up to a
constant in the exponent, a tight constant was shown in [ALRW17], although the
matching upper bound uses no(1) cell probes.

Restricting the attention to near-linear space algorithms, higher lower bounds
were shown. In particular, the authors of [PTW08, PTW10] show how to obtain
the following lower bounds: any t cell probe data structure for (r, c)-NNS under
`1 requires space n1+Ω(1/c)/t. Note that this lower bound goes beyond the simple
communication complexity framework described above. The lower bounds from
[PTW10] were tightened in [ALRW17], which, when setting t ∈ {1, 2}, match the
space bound of the data structure of [Laa15, ALRW17] for no(1) query time.

Finally, for NNS under the `∞ metric, there are similar lower bounds, which are
also based on the tools of asymmetric communication complexity. The authors of
[ACP08] show that any deterministic decision tree for `∞ must incur an approxima-
tion of O(log1+ρ log n) if using space n1+ρ (unless the query time is polynomially
large). This matches the upper bound of [Ind01b] described above. This lower
bound was also extended to randomized decision trees in [PTW10, KP12].

REDUCTIONS

Despite the progress toward resolving the “curse of dimensionality” conjecture and
the widespread belief in its validity, proving it seems currently beyond reach. Nev-
ertheless, it is natural to assume the validity of the conjecture (or its variants), and
see what conclusions can be derived from this assumption. Below we survey a few
results of this type.

In order to describe the results, we need to state another conjecture.

CONJECTURE 43.3.2

Let d = no(1) but d = logω(1) n. Any data structure for the partial match problem

with parameters d and n that provides dO(1) query time must use 2d
Ω(1)

space.

Note that, for the same ranges3 of d, Conjecture 43.3.2 is analogous to Conjec-
ture 43.3.1, but much stronger: it considers an easier problem, and states stronger
bounds. However, since the partial match problem was extensively investigated on
its own, and no algorithm with bounds remotely resembling the above have been
discovered (cf. [CIP02] for a survey), Conjecture 43.3.2 is believed to be true.

Assuming Conjecture 43.3.2, it is possible to show lower bounds for some of the
approximate nearest neighbor problems discussed in Section 43.1. In particular, it
was shown [Ind01b] that any data structure for (r, c)-NN under ld∞ for c < 3 can be
used to solve the partial match problem with parameter d, using essentially the same
query time and storage (the number of points in the database is the same in both
cases). Thus, unless Conjecture 43.3.2 is false, the 3-approximation algorithm from
Section 43.1 is optimal, in the sense that it provides the smallest approximation
factor possible while preserving polynomial (in d) query time and subexponential
(in d) storage. Note that this result resembles the nonapproximability results based
on the P 6= NP conjecture.

On the other hand, it was shown [CIP02] that the exact near-neighbor prob-

3For d = logω(1) n, Conjecture 43.3.2 is true by a simple incompressibility argument. At the same
time, the status of Conjecture 43.3.1 for d ∈ [ω(logn), logO(1) n] is still unresolved.

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 43: Nearest neighbors in high-dimensional spaces 1149

lem under the lk∞ norm can be reduced to solving the partial match problem with
the parameter d = (k + log n)O(1); the number of points n is the same for both
problems. In fact, the same holds for a more general problem of orthogonal range
queries. Thus, Conjecture 43.3.2, and its variant for the (r, 1)-NN under ld∞ (or
for orthogonal range queries), are equivalent. This strengthens the belief in the
validity of Conjecture 43.3.2, since the exact nearest neighbor under l∞ norm and
the orthogonal range query problem have received additional attention in the Com-
putational Geometry community.

43.4 OTHER TOPICS

There are many other research directions on high-dimensional NNS; we briefly
mention some of them below.

Average-case algorithms. The approximate algorithms described so far are
designed to work for any (i.e., worst-case) input. However, researchers have also
investigated exact algorithms for the NN problem that achieve fast query times for
average input.

In fact, the first such average-case NNS solutions have been proposed for its
offline version (the bichromatic closest pair from above). In particular, [Val88]
introduced the light-bulb problem, defined as follows: the point set P is chosen at
random i.i.d. from {0, 1}d, and a point q is inserted at random within distance
r from some point p ∈ P ; the goal is to find q given P ∪ {q}. Some results were
obtained in [PRR95, GPY94] (with performance comparable to LSH [HIM12]), and
[Dub10] (with performance comparable to data-dependent LSH [AR15]), as well as
in [Val15, KKK16] which use fast matrix multiplication (see Section 43.2).

For `d∞, there also are average-case algorithms for the NNS problem. Consider
a point set where each point, including the query, is chosen randomly i.i.d. from
[0, 1]d. In this setting, it was shown [AHL01, HL01] that there is a nearest neighbor
data structure using O(dn) space, with query time O(n log d). Note that a naive
algorithm would suffer from O(nd) query time. The algorithm uses a clever pruning
approach to quickly eliminate points that cannot be nearest neighbors of the query
point.

Low-intrinsic dimension. Another way to depart from the worst-case analysis
is to assume further structure in the dataset P . A particularly lucrative approach
is to assume that the dataset has “low intrinsic dimension.” This is justified by
the fact that the high-dimensional data is often actually explained by a few free
parameters, and the coordinate values are functions of these parameters. One such
notion is the doubling dimension of a pointset P , defined as follows. Let λ be the
smallest number such that any ball of radius r in P can be covered by λ balls of
radius r/2 (with centers in P), for any r > 0. Then we say that the pointset P
has doubling dimension log λ. This definition was introduced in [Cla99, GKL03],
and is related to the Assouad constant [Ass83]. Note that it can be defined for any
metric space on P .

Algorithms for datasets P with intrinsic dimension k typically achieve per-
formance comparable to NNS algorithms for k-dimensional spaces. Some algo-
rithms designed for low doubling dimensional spaces include [KL04, BKL06, IN07].

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1150 A. Andoni and P. Indyk

There are now a few notions of “intrinsic dimension,” including KR-dimension
[KR02], smooth manifolds [BW09, Cla08], and others [CNBYM01, FK97, IN07,
Cla06, DF08, AAKK14].

NNS for higher dimensional flats. Finally, a further line of work investi-
gated NNS in a setting where the dataset points or the queries are in fact larger
objects, such as lines, or, more generally, k-dimensional flats. The new goal be-
comes to find, say, the dataset point closest to a given query line (up to some
approximation). For the case when the dataset is composed of points in Rd and
the queries are lines, the results of [AIKN09, MNSS15] provide efficient algorithms,
with polynomial space and sublinear query time. Such algorithms often use vanilla
approximate NNS algorithms as subroutines. For the dual case, where the dataset
is composed of lines and the queries are points, the work of [Mah15] provides an
efficient algorithm (improving over the work of [Mag07, BHZ07]). Some of the cited
results generalize lines to k-dimensional flats, with performance degrading (rapidly)
with the parameter k.

We note that the problem is intrinsically related to the partial match problem,
since a query with k “don’t care” symbols can be represented as a k-dimensional
flat query.

43.5 SOURCES AND RELATED MATERIAL

RELATED CHAPTERS

Chapter 8: Low-distortion embeddings of discrete metric spaces
Chapter 28: Arrangements
Chapter 32: Proximity algorithms
Chapter 40: Range searching

REFERENCES

[AAKK14] A. Abdullah, A. Andoni, R. Kannan, and R. Krauthgamer. Spectral approaches to

nearest neighbor search. In Proc. 55th IEEE Sympos. Found. Comp. Sci., pages 581–

590, 2014. Full version at arXiv:1408.0751.

[ACP08] A. Andoni, D. Croitoru, and M. Pǎtraşcu. Hardness of nearest neighbor under

L-infinity. In Proc. 49th IEEE Sympos. Found. Comp. Sci., pages 424–433, 2008.

[ADFM11] S. Arya, G.D. Da Fonseca, and D.M. Mount. Approximate polytope membership

queries. In Proc. 43rd ACM Sympos. Theory Comput., pages 579–586, 2011. Full

version at arXiv:1604.01183.

[AGK06] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins. In Proc.

32nd Conf. Very Large Data Bases, pages 918–929, 2006.

[AHL01] H. Alt and L. Heinrich-Litan. Exact l∞-nearest neighbor search in high dimensions.

Proc. 17th Sympos. Comput. Geom., pages 157–163, ACM Press, 2001.

[AI06] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

arXiv:1408.0751
arXiv:1604.01183

Chapter 43: Nearest neighbors in high-dimensional spaces 1151

neighbor in high dimensions. In Proc. 47th IEEE Sympos. Found. Comp. Sci., pages

459–468, 2006.

[AIK09] A. Andoni, P. Indyk, and R. Krauthgamer. Overcoming the `1 non-embeddability

barrier: Algorithms for product metrics. In Proc. 20th ACM-SIAM Sympos. Discrete

Algorithms, pages 865–874, 2009.

[AIKN09] A. Andoni, P. Indyk, R. Krauthgamer, and H.L. Nguyen. Approximate line nearest

neigbor in high dimensions. In Proc. 20th ACM-SIAM Sympos. Discrete Algorithms,

pages 293–301, 2009.

[AINR14] A. Andoni, P. Indyk, H.L. Nguyen, and I. Razenshteyn. Beyond locality-sensitive

hashing. In Proc. 25th ACM-SIAM Sympos. Discrete Algorithms, pages 1018–1028,

2014.

[AIP06] A. Andoni, P. Indyk, and M. Pǎtraşcu. On the optimality of the dimensionality

reduction method. In Proc. 47th IEEE Sympos. Found. Comp. Sci., pages 449–458,

2006.

[ALRW17] A. Andoni, T. Laarhoven, I.P. Razenshteyn, and E. Waingarten. Optimal hashing-

based time-space trade-offs for approximate near neighbors. In Proc. 28th ACM-

SIAM Sympos. Discrete Algorithms, pages, 47–66, 2017.

[AMM09] S. Arya, T. Malamatos, and D.M. Mount. Space-time tradeoffs for approximate

nearest neighbor searching. J. ACM, 57:1, 2009.

[AMN+98] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A.Y. Wu. An optimal

algorithm for approximate nearest neighbor searching. J. ACM, 6:891–923, 1998.

[AN11] A. Andoni and H. Nguyen. Lower bounds for locality sensitive hashing. Manuscript,

2011.

[And09] A. Andoni. Nearest Neighbor Search: the Old, the New, and the Impossible. PhD

thesis, MIT, Cambridge, 2009.

[AR15] A. Andoni and I. Razenshteyn. Optimal data-dependent hashing for approximate

near neighbors. In Proc. 47th ACM Sympos. Theory Comput., pages 793–801, 2015.

Full version available at arXiv:1501.01062.

[AR16] A. Andoni and I. Razenshteyn. Tight lower bounds for data-dependent locality-

sensitive hashing. In Proc. Sympos. Comput. Geom., vol 51 of LIPIcs, pages 9:1-9:11,

Schloss Dagstuhl, 2016.

[Ass83] P. Assouad. Plongements lipschitziens dans Rn. Bull. Soc. Math. France, 111:429–

448, 1983.

[AW15] J. Alman and R. Williams. Probabilistic polynomials and Hamming nearest neigh-

bors. In Proc. 56th IEEE Sympos. Found. Comp. Sci., pages 136–150, 2015.

[BDGL16] A. Becker, L. Ducas, N. Gama, and T. Laarhoven. New directions in nearest neighbor

searching with applications to lattice sieving. In Proc. 27th ACM-SIAM Sympos.

Discrete Algorithms, pages 10–24, 2016.

[BG15] Y. Bartal and L.-A. Gottlieb. Approximate nearest neighbor search for `p-spaces

(2 < p < ∞) via embeddings. Preprint, arXiv:1512.01775, 2015.

[BHZ07] R. Basri, T. Hassner, and L. Zelnik-Manor. Approximate nearest subspace search

with applications to pattern recognition. In Proc. IEEE Conf. Computer Vision

Pattern Recogn., pages 1–8, 2007.

[BKL06] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In

Proc. 23rd Internat. Conf. Machine Learning, pages 97–104, ACM Press, 2006.

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

arXiv:1501.01062
arXiv:1512.01775

1152 A. Andoni and P. Indyk

[BOR03] A. Borodin, R. Ostrovsky, and Y. Rabani. Lower bounds for high dimensional nearest

neighbor search and related problems. In Discrete and Computational Geometry:

The Goodman-Pollack Festschrift, pages 253–274, Springer, Berlin, 2003.

[BOR04] A. Borodin, R. Ostrovsky, and Y. Rabani. Subquadratic approximation algorithms

for clustering problems in high dimensional spaces. Mach. Learn., 56:153–167, 2004.

[BR02] O. Barkol and Y. Rabani. Tighter bounds for nearest neighbor search and related

problems in the cell probe model. J. Comput. Syst. Sci., 64:873–896, 2002.

[Bro98] A. Broder. Filtering near-duplicate documents. Proc. Fun with Algorithms, Carleton

University, 1998.

[BV02] P. Beame and E. Vee. Time-space tradeoffs, multiparty communication complexity,

and nearest-neighbor problems. Proc. 34th ACM Sympos. Theory Comput., pages

688–697, 2002.

[BW09] R.G. Baraniuk and M.B. Wakin. Random projections of smooth manifolds. Found.

Comput. Math., 9:51–77, 2009.

[CCGL03] A. Chakrabarti, B. Chazelle, B. Gum, and A. Lvov. A lower bound on the complex-

ity of approximate nearest-neighbor searching on the Hamming cube. In Discrete

and Computational Geometry: The Goodman-Pollack Festschrift, pages 313–328,

Springer, Berlin, 2003.

[Cha02a] T.M. Chan. Closest-point problems simplified on the RAM. In Proc. 13th ACM-

SIAM Sympos. Discrete Algorithms, pages 472–473, 2002.

[Cha02b] M.S. Charikar. Similarity estimation techniques from rounding. In Proc. 34th ACM

Sympos. Theory Comput., pages 380–388, 2002.

[Chr17] T. Christiani. A framework for similarity search with space-time tradeoffs using

locality-sensitive filtering. In Proc. 20th ACM-SIAM Sympos. Discrete Algorithms,

pages 31–46, 2017.

[CIP02] M. Charikar, P. Indyk, and R. Panigrahy. New algorithms for subset query, par-

tial match, orthogonal range searching and related problems. Proc. Internat. Coll.

Automata, Languages, Progr., vol. 2380 of LNCS, pages 451–462, Springer, Berlin,

2002.

[Cla88] K.L. Clarkson. A randomized algorithm for closest-point queries. SIAM J. Comput.,

17:830–847, 1988.

[Cla94] K.L. Clarkson. An algorithm for approximate closest-point queries. Proc. 10th

Sympos. Comput. Geom., pages 160–164, ACM Press, 1994.

[Cla99] K.L. Clarkson. Nearest neighbor queries in metric spaces. Discrete Comput. Geom.,

22:63–93, 1999.

[Cla06] K.L. Clarkson. Nearest-neighbor searching and metric space dimensions. In

G. Shakhnarovich, T. Darrell, and P. Indyk, editors, Nearest-Neighbor Methods for

Learning and Vision: Theory and Practice, pages 15–59, MIT Press, Cambridge,

2006.

[Cla08] K.L. Clarkson. Tighter bounds for random projections of manifolds. In Proc. 24th

Sympos. Comput. Geom., pages 39–48, ACM Press, 2008.

[CNBYM01] E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marroquin. Searching in metric

spaces. ACM Comput. Surv, 33:273–321, 2001.

[CR10] A. Chakrabarti and O. Regev. An optimal randomised cell probe lower bound for

approximate nearest neighbor searching. SIAM J. Comput., 39:1919–1940, 2010.

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 43: Nearest neighbors in high-dimensional spaces 1153

[DF08] S. Dasgupta and Y. Freund. Random projection trees and low dimensional manifolds.

In Proc. 40th ACM Sympos. Theory Comput., pages 537–546, 2008.

[DGK01] C.A. Duncan, M.T. Goodrich, and S. Kobourov. Balanced aspect ratio trees: Com-

bining the advantages of k-d trees and octrees. J. Algorithms, 38:303–333, 2001.

[DIIM04] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-sensitive hashing

scheme based on p-stable distributions. In Proc. 20th Sympos. Comput. Geom.,

pages 253–262, ACM Press, 2004.

[Dub10] M. Dubiner. Bucketing coding and information theory for the statistical high di-

mensional nearest neighbor problem. IEEE Trans. Inform. Theory, 56:4166–4179,

2010.

[DW82] L. Devroye and T. Wagner. Nearest neighbor methods in discrimination. P.R.

Krishnaiah and L.N. Kanal, editors, Handbook of Statistics, vol. 2, North-Holland,

Amsterdam, 1982.

[Epp95] D. Eppstein. Dynamic Euclidean minimum spanning trees and extrema of binary

functions. Discrete Comput. Geom., 13:111–122, 1995.

[Epp99] D. Eppstein. Personal communication. 1999.

[FK97] C. Faloutsos and I. Kamel. Relaxing the uniformity and independence assumptions

using the concept of fractal dimension. J. Comput. System Sci., 55:229–240, 1997.

[GG91] A. Gersho and R. Gray. Vector Quantization and Data Compression. Kluwer, Nor-

well, 1991.

[GIV01] A. Goel, P. Indyk, and K. Varadarajan. Reductions among high-dimensional geomet-

ric problems. Proc. 12th ACM-SIAM Sympos. Discrete Algorithms, pages 769–778,

2001.

[GKL03] A. Gupta, R. Krauthgamer, and J.R. Lee. Bounded geometries, fractals, and low-

distortion embeddings. In Proc. 44th IEEE Sympos. Found. Comp. Sci., pages 534–

543, 2003.

[GPY94] D. Greene, M. Parnas, and F. Yao. Multi-index hashing for information retrieval.

In Proc. 35th IEEE Sympos. Found. Comp. Sci., pages 722–731, 1994.

[HIM12] S. Har-Peled, P. Indyk, and R. Motwani. Approximate nearest neighbor: Towards

removing the curse of dimensionality. Theory Comput., 8:321–350, 2012.

[HL01] L. Heinrich-Litan. Exact l∞-nearest neighbor search in high dimensions. Personal

communication, 2001.

[HP01] S. Har-Peled. A replacement for Voronoi diagrams of near linear size. In Proc. 42nd

IEEE Sympos. Found. Comp. Sci., pages 94–103, 2001.

[IN07] P. Indyk and A. Naor. Nearest neighbor preserving embeddings. ACM Trans.

Algorithms, 3:31, 2007.

[Ind00] P. Indyk. Dimensionality reduction techniques for proximity problems. Proc. 11th

ACM-SIAM Sympos. Discrete Algorithms, pages 371–378, 2000.

[Ind01a] P. Indyk. High-Dimensional Computational Geometry. Ph.D. Thesis. Department

of Computer Science, Stanford University, 2001.

[Ind01b] P. Indyk. On approximate nearest neighbors in `∞ norm. J. Comput. System Sci.,

63:627–638, 2001.

[Ind02] P. Indyk. Approximate nearest neighbor algorithms for Frechet metric via product

metrics. Proc. 18th Sympos. Comput. Geom., pages 102–106, ACM Press, 2002.

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1154 A. Andoni and P. Indyk

[Ind03] P. Indyk. Better algorithms for high-dimensional proximity problems via asymmetric

embeddings. Proc. 14th ACM-SIAM Sympos. Discrete Algorithms, pages 539–545,

2003.

[IST99] P. Indyk, S.E. Schmidt, and M. Thorup. On reducing approximate MST to closest

pair problems in high dimensions. Manuscript, 1999.

[JKKR04] T.S. Jayram, S. Khot, R. Kumar, and Y. Rabani. Cell-probe lower bounds for the

partial match problem. J. Comput. Syst. Sci., 69:435–447, 2004.

[JV01] K. Jain and V.V. Vazirani. Primal-dual approximation algorithms for metric facility

location and k-median problems. J. ACM, 48:274–296, 2001.

[Kal08] N.J. Kalton. The nonlinear geometry of Banach spaces. Rev. Mat. Complut., 21:7–

60, 2008.

[Kap15] M. Kapralov. Smooth tradeoffs between insert and query complexity in nearest

neighbor search. In Proc. 34th ACM Sympos. Principles Database Syst., pages 329–

342, 2015.

[KKK16] M. Karppa, P. Kaski, and J. Kohonen. A faster subquadratic algorithm for finding

outlier correlations. In Proc. 27th ACM-SIAM Sympos. Discrete Algorithms, pages

1288–1305, 2016.

[KL04] R. Krauthgamer and J.R. Lee. Navigating nets: Simple algorithms for proximity

search. Proc. 15th ACM-SIAM Sympos. Discrete Algorithms, pages 798–807, 2004.

[Kle97] J. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions. Proc.

29th ACM Sympos. Theory Comput., pages 599–608, 1997.

[KOR00] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest

neighbor in high dimensional spaces. SIAM J. Comput., 30:457–474, 2000.

[KP12] M. Kapralov and R. Panigrahy. NNS lower bounds via metric expansion for `∞ and

EMD. In Proc. Internat. Coll. Automata, Languages and Progr., vol. 7391 of LNCS,

pages 545–556, Springer, Berlin, 2012.

[KR02] D. Karger and M. Ruhl. Finding nearest neighbors in growth-restricted metrics.

Proc. 34th ACM Sympos. Theory Comput., pages 741–750, 2002.

[KWZ95] R. Karp, O. Waarts, and G. Zweig. The bit vector intersection problem. In Proc.

36th IEEE Sympos. Found. Comp. Sci., pages 621–630, 1995.

[Laa15] T. Laarhoven. Tradeoffs for nearest neighbors on the sphere. Preprint, arXiv:

1511.07527, 2015.

[Liu04] D. Liu. A strong lower bound for approximate nearest neighbor searching in the cell

probe model. Inform. Process. Lett, 92:23–29, 2004.

[LT80] R.J. Lipton and R.E. Tarjan. Applications of a planar separator theorem. SIAM J.

Comput., 9:615–627, 1980.

[Mag07] A. Magen. Dimensionality reductions in `2 that preserve volumes and distance to

affine spaces. Discrete Comput. Geom., 38:139–153, 2007.

[Mah15] S. Mahabadi. Approximate nearest line search in high dimensions. In Proc. 26th

ACM-SIAM Sympos. Discrete Algorithms, pages 337–354, 2015.

[Mei93] S. Meiser. Point location in arrangements of hyperplanes. Inform. and Comput.,

106:286–303, 1993.

[MNP07] R. Motwani, A. Naor, and R. Panigrahy. Lower bounds on locality sensitive hashing.

SIAM J. Discrete Math., 21:930–935, 2007.

[MNSS15] W. Mulzer, H.L. Nguyên, P. Seiferth, and Y. Stein. Approximate k-flat nearest

neighbor search. In Proc. 47th ACM Sympos. Theory Comput., pages 783–792, 2015.

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

arXiv:1511.07527
arXiv:1511.07527

Chapter 43: Nearest neighbors in high-dimensional spaces 1155

[MNSW98] P. Miltersen, N. Nisan, S. Safra, and A. Wigderson. Data structures and asymmetric

communication complexity. J. Comput. Syst. Sci., 57:37–49, 1998.

[MP69] M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, 1969.

[Nao14] A. Naor. Comparison of metric spectral gaps. Anal. Geom. Metr. Spaces, 2(1), 2014.

[Ngu14] H.L. Nguyen. Algorithms for High Dimensional Data. PhD thesis, Princeton Uni-

versity, 2014.

[NR06] A. Naor and Y. Rabani. On approximate nearest neighbor search in `p, p > 2.

Manuscript, 2006.

[OWZ14] R. O’Donnell, Y. Wu, and Y. Zhou. Optimal lower bounds for locality sensitive

hashing (except when q is tiny). ACM Trans. Comput. Theory, 6:5, 2014.

[Pag16] R. Pagh. Locality-sensitive hashing without false negatives. In Proc. 27th ACM-

SIAM Sympos. Discrete Algorithms, pages 1–9, 2016.

[Pan06] R. Panigrahy. Entropy-based nearest neighbor algorithm in high dimensions. In

Proc. 17th ACM-SIAM Sympos. Discrete Algorithms, pages 1186–1195, 2006.

[Pǎt10] M. Pǎtraşcu. Unifying the landscape of cell-probe lower bounds. In SIAM J. Com-

put., 40:827–847, 2010.

[PRR95] R. Paturi, S. Rajasekaran, and J. Reif. The light bulb problem. Inform. and Comput.,

117:187–192, 1995.

[PT09] M. Pǎtraşcu and M. Thorup. Higher lower bounds for near-neighbor and further

rich problems. SIAM J. Comput., 39:730–741, 2009.

[PTW08] R. Panigrahy, K. Talwar, and U. Wieder. A geometric approach to lower bounds for

approximate near-neighbor search and partial match. In Proc. 49th IEEE Sympos.

Found. Comp. Sci., pages 414–423, 2008.

[PTW10] R. Panigrahy, K. Talwar, and U. Wieder. Lower bounds on near neighbor search via

metric expansion. In Proc. 51st IEEE Sympos. Found. Comp. Sci., pages 805–814,

2010.

[Riv74] R.L. Rivest. Analysis of Associative Retrieval Algorithms. Ph.D. thesis, Stanford

University, 1974.

[SH75] M.I. Shamos and D. Hoey. Closest point problems. Proc. 16th IEEE Sympos. Found.

Comp. Sci., pages 152–162, 1975.

[SSS06] Y. Sabharwal, N. Sharma, and S. Sen. Nearest neighbors search using point location

in balls with applications to approximate Voronoi decompositions. J. Comput. Syst.

Sci., 72:955–977, 2006.

[Val88] L.G. Valiant. Functionality in neural nets. In Proc. 1st Workshop Comput. Learning

Theory, pages 28–39, Morgan Kaufmann, San Francisco, 1988.

[Val15] G. Valiant. Finding correlations in subquadratic time, with applications to learning

parities and the closest pair problem. J. ACM, 62:13, 2015.

[WSB98] R. Weber, H.J. Schek, and S. Blott. A quantitative analysis and performance study

for similarity-search methods in high-dimensional spaces. Proc. 24th Conf. Very

Large Data Bases, pages 194 205, Morgan Kaufman, San Francisco, 1998.

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

