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INTRODUCTION

The problem of reconstructing a shape from its sample appears in many scientific
and engineering applications. Because of the variety in shapes and applications,
many algorithms have been proposed over the last three decades, some of which ex-
ploit application-specific information and some of which are more general. We focus
on techniques that apply to the general setting and have geometric and topological
guarantees on the quality of reconstruction.

GLOSSARY

Simplex: A k-simplex in R
m, 0 ≤ k ≤ m, is the convex hull of k + 1 affinely

independent points in R
m where 0 ≤ k ≤ m. The 0-, 1-, 2-, and 3-simplices are

also called vertices, edges, triangles, and tetrahedra respectively.

Simplicial complex: A simplicial complex K is a collection of simplices with
the conditions that, (i) all sub-simplices spanned by the vertices of a simplex in
K are also in K, and (ii) if σ1, σ2 ∈ K intersect, then σ1 ∩ σ2 is a sub-simplex of
both. The underlying space |K| of K is the set of all points in its simplices. (Cf.
Chapter 15.)

Distance: Given two subsets X,Y ⊆ R
m, the Euclidean distance between them

is given by d(X,Y ) = infx∈X,y∈Y ‖x − y‖2. Additionally, d(x, y) denotes the
Euclidean distance between two points x and y in R

m.

k-manifold: A k-manifold is a topological space where each point has a neigh-
borhood homeomorphic to R

k or the halfspace H
k. The points with H

k neigh-
borhood constitute the boundary of the manifold.

Voronoi diagram: Given a point set P ∈ R
m, a Voronoi cell Vp for each point

p ∈ P is defined as

Vp = {x ∈ R
m | d(x, p) ≤ d(x, q), ∀q ∈ P} .

The Voronoi diagram VorP of P is the collection of all such Voronoi cells and
their faces.

Delaunay triangulation: The Delaunay triangulation of a point set P ∈ R
m

is a simplicial complex DelP such that a simplex with vertices {p0, .., pk} is in
DelP if and only if

⋂
i=0,k Vpi

6= ∅. (Cf. Chapter 27.)

Shape: A shape Σ is a subset of an Euclidean space.

Sample: A sample P of a shape Σ is a finite set of points from Σ.

Medial axis: The medial axis of a shape Σ ∈ R
m is the closure of the set of

points in R
m that have more than one closest point in Σ. See Figure 35.1.1(a)

for an illustration.
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Local feature size: The local feature size for a shape Σ ⊆ R
m is a continuous

function f : Σ → R where f(x) is the distance of x ∈ Σ to the medial axis of Σ.
See Figure 35.1.1(a).

ǫ-sample: A sample P of a shape Σ is an ǫ-sample if for each x ∈ Σ there is a
sample point p ∈ P so that d(p, x) ≤ ǫf(x).

ǫ-local sample: A sample P of a shape Σ is ǫ-local if it is an ǫ-sample and for
every pair of points p, q ∈ P × P , d(p, q) ≥ ǫ

c
for some fixed constant c ≥ 1.

ǫ-uniform sample: A sample P of a shape Σ is ǫ-uniform if for each x ∈ Σ there
is a sample point p ∈ P so that d(p, x) ≤ ǫfmin where fmin = min{f(x), x ∈ Σ}
and ǫ > 0 is a constant.

35.1 CURVE RECONSTRUCTION

In its simplest form the reconstruction problem appeared in applications such as
pattern recognition (Chapter 54), computer vision, and cluster analysis, where
a curve in two dimensions is to be approximated from a set of sample points.
In the 1980s several geometric graph constructions over a set of points in plane
were discovered which reveal a pattern among the points. The influence graph of
Toussaint [AH85], the β-skeleton of Kirkpatrick and Radke [KR85], the α-shapes
of Edelsbrunner, Kirkpatrick, and Seidel [EKS83] are such graph constructions.
Since then several algorithms have been proposed that reconstruct a curve from its
sample with guarantees under some sampling assumption.

f(x)
x

(a) (b) (c)

FIGURE 35.1.1

A smooth curve (solid), its medial axis (dashed) (a), sample (b), reconstruction (c).

GLOSSARY

Curve: A curve C in plane is the image of a function p : [0, 1] → R
2 where p(t) =

(x(t), y(t)) for t ∈ [0, 1] and p[t] 6= p[t′] for any t 6= t′ except possibly t, t′ ∈ {0, 1}.

It is smooth if p is differentiable and the derivative d
dt
p(t) = (dx(t)

dt
,
dy(t)
dt

) does
not vanish.
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Boundary: A curve C is said to have no boundary if p[0] = p[1]; otherwise, it is
a curve with boundary.

Reconstruction: The reconstruction of C from its sample P is a geometric graph
G = (P,E) where an edge pq belongs to E if and only if p and q are adjacent
sample points on C. See Figure 35.1.1.

Semiregular curve: One for which the left tangent and right tangent exist at
each point of the curve, though they may be different.

UNIFORM SAMPLE

α-shapes: Edelsbrunner, Kirkpatrick, and Seidel [EKS83] introduced the concept
of α-shape of a finite point set P ⊂ R

2. It is the underlying space of a simplicial
complex called the α-complex. The α-complex of P is defined by all simplices with
vertices in P that have an empty circumscribing disk of radius α. Bernardini and
Bajaj [BB97] show that the α-shapes reconstruct curves from ǫ-uniform samples if
ǫ is sufficiently small and α is chosen appropriately.

r-regular shapes: Attali considered r-regular shapes that are constructed using
certain morphological operations with r as a parameter [Att98]. It turns out that
these shapes are characterized by requiring that any circle passing through the
points on the boundary has radius greater than r. A sample P from the boundary
curve C ⊂ R

2 of such a shape is called γ-dense if each point x ∈ C has a sample
point within γr distance. Let ηpq be the sum of the angles opposite to pq in the
two incident Delaunay triangles at a Delaunay edge pq ∈ DelP . The main result
in [Att98] is that if γ < sin π

8 , Delaunay edges with ηpq < π reconstruct C.

EMST: Figueiredo and Gomes [FG95] show that the Euclidean minimum spanning
tree (EMST) reconstructs curves with boundaries when the sample is sufficiently
dense. The sampling density condition that is used to prove this result is equivalent
to that of ǫ-uniform sampling for an appropriate ǫ > 0. Of course, EMST cannot
reconstruct curves without boundaries and/or multiple components.

NONUNIFORM SAMPLE

Crust: Amenta, Bern, and Eppstein [ABE98] proposed the first algorithm called
Crust to reconstruct a curve with guarantee from a sample that is not necessarily
uniform. The algorithm operates in two phases. The first phase computes the
Voronoi diagram of the sample points in P . Let V be the set of Voronoi vertices in
this diagram. The second phase computes the Delaunay triangulation of the larger
set P ∪V . The Delaunay edges that connect only sample points in this triangulation
constitute the crust; see Figure 35.1.2.

The theoretical guarantee of the Crust algorithm is based on the notion of
dense sampling that respects features of the sampled curve. The important con-
cepts of local feature size and ǫ-sample were introduced by Amenta, Bern, and
Eppstein [ABE98]. They prove:

THEOREM 35.1.1

For ǫ < 1
5 , given an ǫ-sample P of a smooth curve C ⊂ R

2 without boundary, the
Crust reconstructs C from P .
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FIGURE 35.1.2

Crust edges (solid) among the Delaunay triangulation of a sample and their Voronoi ver-
tices.

The two Voronoi diagram computations of the Crust are reduced to one by
Gold and Snoeyink [GS01].

Nearest neighbor: After the introduction of the Crust, Dey and Kumar [DK99]
proposed a curve reconstruction algorithm called NN-Crust based on nearest neigh-
bors. They showed that all nearest neighbor edges that connect a point to its Eu-
clidean nearest neighbor must be in the reconstruction if the input is 1

3 -sample.
However, not all edges of the reconstruction are necessarily nearest neighbor edges.
The remaining edges are characterized as follows. Let p be a sample point with
only one nearest neighbor edge pq incident to it. Consider the halfplane with pq

being an outward normal to its bounding line through p, and let r be the nearest
to p among all sample points lying in this halfplane. Call pr the half-neighbor
edge of p. Dey and Kumar show that all half-neighbor edges must also be in the
reconstruction for a 1

3 -sample.
The algorithm first computes all nearest neighbor edges and then computes

the half-neighbor edges to complete the reconstruction. Since all edges in the
reconstruction must be a subset of Delaunay edges if the sample is sufficiently dense,
all nearest neighbor and half-neighbor edges can be computed from the Delaunay
triangulation. Thus, as Crust, this algorithm runs in O(n log n) time for a sample
of n points.

THEOREM 35.1.2

For ǫ ≤ 1
3 , given an ǫ-sample P of a smooth curve C ⊂ R

2 without boundary,
NN-Crust reconstructs C from P .

NONSMOOTHNESS, BOUNDARIES

The crust and nearest neighbor algorithms assume that the sampled curve is smooth
and has no boundary. Nonsmoothness and boundaries make reconstruction harder.

Traveling Salesman Path: Giesen [Gie00] considered a fairly large class of nons-
mooth curves and showed that the Traveling Salesman Path (or Tour) reconstructs
them from sufficiently dense samples. A semiregular curve C is benign if the angle
between the two tangents at each point is less than π. Giesen proved the following:

Preliminary version (July 19, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



Chapter 35: Curve and surface reconstruction 919

THEOREM 35.1.3

For a benign curve C ⊂ R
2, there exists an ǫ > 0 so that if P is an ǫ-uniform

sample of C, then C is reconstructed by the Traveling Salesman Path (or Tour) in
case C has boundary (or no boundary).

The uniform sampling condition for the Traveling Salesman approach was later
removed by Althaus and Mehlhorn [AM02], who also gave a polynomial-time algo-
rithm to compute the Traveling Salesman Path (or Tour) in this special case of curve
reconstruction. Obviously, the Traveling Salesman approach cannot handle curves
with multiple components. Also, the sample points representing the boundary need
to be known a priori to choose between path or tour.

Conservative Crust: In order to allow boundaries in curve reconstruction, it is es-
sential that the sample points representing boundaries are detected. Dey, Mehlhorn,
and Ramos presented such an algorithm, called the conservative crust [DMR00].

Any algorithm for handling curves with boundaries faces a dilemma when an
input point set samples a curve without boundary densely and simultaneously sam-
ples another curve with boundary densely. This dilemma is resolved in conservative
crust by a justification on the output. For any input point set P , the graph output
by the algorithm is guaranteed to be the reconstruction of a smooth curve C ⊂ R

2

possibly with boundary for which the input point set is a dense sample. The main
idea of the algorithm is that an edge pq is chosen in the output only if there is a
large enough ball centering the midpoint of pq which is empty of all Voronoi vertices
in the Voronoi diagram of P . The rationale behind this choice is that these edges
are small enough with respect to local feature size of C since the Voronoi vertices
approximate its medial axis.

With a certain sampling condition tailored to handle nonsmooth curves, Funke
and Ramos used conservative crust to reconstruct nonsmooth curves that may have
boundaries [FR01].

SUMMARIZED RESULTS

The strengths and deficiencies of the discussed algorithms are summarized in Table
35.1.1.

TABLE 35.1.1 Curve reconstruction algorithms.

ALGORITHM SAMPLE SMOOTHNESS BOUNDARY COMPONENTS

α-shape uniform required none multiple

r-regular shape uniform required none multiple

EMST uniform required exactly two single

Crust non-uniform required none multiple

Nearest neighbor non-uniform required none multiple

Traveling Salesman non-uniform not required must be known single

Conservative crust non-uniform required any number multiple
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OPEN PROBLEM

All algorithms described above assume that the sampled curve does not cross itself.
It is open to devise an algorithm that can reconstruct such curves under some
reasonable sampling condition.

35.2 SURFACE RECONSTRUCTION

A number of surface reconstruction algorithms have been designed in different ap-
plication fields. The problem appeared in medical imaging where a set of cross
sections obtained via CAT scan or MRI needs to be joined with a surface. The
points on the boundary of the cross sections are already joined by a polygonal
curve and the output surface needs to join these curves in consecutive cross sec-
tions. A dynamic programming based solution for two such consecutive curves
was first proposed by Fuchs, Kedem, and Uselton [FKU77]. A negative result by
Gitlin, O’Rourke, and Subramanian [GOS96] shows that, in general, two polygonal
curves cannot be joined by a nonself-intersecting surface with only those vertices;
even deciding its feasibility is NP-hard. Several solutions with the addition of
Steiner points have been proposed to overcome the problem, see [MSS92, BG93].
The most general version of the surface reconstruction problem does not assume
any information about the input points other than their 3D coordinates, and re-
quires a piecewise linear approximation of the sampled surface; see Figure 35.2.1.
In the context of computer graphics and vision, this problem has been inves-
tigated intensely with emphasis on the practical effectiveness of the algorithms
[BMR+99, Boi84, CL96, GCA13, GKS00, HDD+92]. In computational geome-
try, several algorithms have been designed based on Voronoi/Delaunay diagrams
that have guarantees on geometric proximity (Hausdorff closeness) and topological
equivalence (homeomorphism/isotopy). We focus mainly on them.

FIGURE 35.2.1

A point sample and the reconstructed surface.
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GLOSSARY

Surface: A surface S ⊂ R
3 is a 2-manifold embedded in R

3. Thus each point
p ∈ S has a neighborhood homeomorphic to R

2 or halfplane H
2. The points

with neighborhoods homeomorphic to H
2 constitute the boundary ∂S of S.

Smooth Surface: A surface S ⊂ R
3 is smooth if for each point p ∈ S there is a

neighborhood W ⊆ R
3 and a map π : U → W ∩ S of an open set U ⊂ R

2 onto
W ∩ S so that

(i) π is differentiable,

(ii) π is a homeomorphism,

(iii) for each q ∈ U the differential dπq is one-to-one.

A surface S ⊂ R
3 with boundary ∂S is smooth if its interior S \ ∂S is a smooth

surface and ∂S is a smooth curve.

Smooth Closed Surface: We call a smooth surface S ⊂ R
3 closed if it is compact

and has no boundary.

Restricted Voronoi: Given a subspace N ⊆ R
3 and a point set P ⊆ R

3, the
restricted Voronoi diagram of P w.r.t N is VorP |N = {F ∩ N | F ∈ VorP}.

Restricted Delaunay: The dual of VorP |N is called the restricted Delaunay
triangulation DelP |N defined as

DelP |N = {σ |σ = Conv {p0, ..., pk} ∈ DelP where (
⋂

i=0,k Vpi
) ∩N 6= ∅}.

Watertight surface: A 2-complex K embedded in R
3 is called watertight if the

underlying space |K| of K is the boundary of the closure of some 3-manifold in
R

3.

Hausdorff ǫ-close: A subset X ⊂ R
3 is Hausdorff ǫ-close to a surface S ⊂ R

3 if
every point y ∈ S has a point x ∈ X with d(x, y) ≤ ǫf(y), and similarly every
point x ∈ X has a point y ∈ S with d(x, y) ≤ ǫf(y).

Homeomorphism: Two topological spaces (e.g., surfaces) are homeomorphic if
there is a continuous bijective map between them with continuous inverse.

Steiner points: The points used by an algorithm that are not part of the finite
input point set are called Steiner points.

α-SHAPES

Generalization of α-shapes to 3D by Edelsbrunner and Mücke [EM94] can be used
for surface reconstruction in case the sample is more or less uniform. An alternate
definition of α-shapes in terms of the restricted Delaunay triangulation is more
appropriate for surface reconstruction. Let N denote the space of all points covered
by open balls of radius α around each sample point p ∈ P . The α-shape for P is the
underlying space of the α-complex which is the restricted Delaunay triangulation
DelP |N; see Figure 35.2.2 below for an illustration in 2D. It is shown that the α-
shape is always homotopy equivalent to N. If P is a sample of a surface S ⊂ R

3,
the space N becomes homotopy equivalent to S if α is chosen appropriately and P
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is sufficiently dense [EM94]. Therefore, by transitivity of homotopy equivalence,
the α-shape is homotopy equivalent to S if α is appropriate and the sample P is
sufficiently dense.

FIGURE 35.2.2

Alpha shape of a set of points in R
2.

The major drawback of α-shapes is that they require a nearly uniform sample
and an appropriate parameter α for reconstruction.

CRUST

The Crust algorithm for curve reconstruction was generalized for surface recon-
struction by Amenta and Bern [AB99]. In case of curves in 2D, Voronoi vertices for
a dense sample lie close to the medial axis. That is why a second Voronoi diagram
with the input sample points together with the Voronoi vertices is used to separate
the Delaunay edges that reconstruct the curve. Unfortunately, Voronoi vertices in
3D can lie arbitrarily close to the sampled surface. One can place four arbitrarily
close points on a smooth surface which lie near the diametric plane of the sphere
defined by them. This sphere can be made empty of any other input point and
thus its center as a Voronoi vertex lies close to the surface. With this important
observation Amenta and Bern forsake the idea of putting all Voronoi vertices in the
second phase of crust and instead identify a subset of Voronoi vertices called poles
that lie far away from the surface, and in fact close to the medial axis.

Let P be an ǫ-sample of a smooth closed surface S ⊂ R
3. Let Vp be a Voronoi

cell in the Voronoi diagram VorP . The farthest Voronoi vertex of Vp from p is
called the positive pole of p. Call the vector from p to the positive pole the pole
vector for p; this vector approximates the surface normal np at p. The Voronoi
vertex of Vp that lies farthest from p in the opposite direction of the pole vector is
called its negative pole. The opposite direction is specified by the condition that
the vector from p to the negative pole must make an angle more than π

2 with the
pole vector. Figure 35.2.3(a) illustrates these definitions. If Vp is unbounded, the
positive pole is taken at infinity and the direction of the pole vector is taken as the
average of all directions of the unbounded Voronoi edges in Vp.

The Crust algorithm in 3D proceeds as follows. First, it computes VorP and
then identifies the set of poles, say L. The Delaunay triangulation of the point
set P ∪ L is computed and the set of Delaunay triangles, T , is filtered that have
all three vertices only from P . This set of triangles almost approximates S but
may not form a surface. Nevertheless, the set T includes all restricted Delaunay

Preliminary version (July 19, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



Chapter 35: Curve and surface reconstruction 923

triangles in DelP |S . According to a result by Edelsbrunner and Shah [ES97], the
underlying space |DelP |S | of DelP |S is homeomorphic to S if each Voronoi face
satisfies a topological condition called the “closed ball property.” Amenta and Bern
show that if P is an ǫ-sample for ǫ ≤ 0.06, each Voronoi face in VorP satisfies this
property. This means that, if the triangles in DelP |S could be extracted from T ,
we would have a surface homeomorphic to S. Unfortunately, it is impossible to
detect the restricted Delaunay triangles of DelP |S since S is unknown. However,
the fact that T contains them is used in a manifold extraction step that computes
a manifold out of T after a normal filtering step. This piecewise linear manifold
surface is output by Crust. The Crust guarantees that the output surface lies very
close to S.

THEOREM 35.2.1

For ǫ ≤ 0.06, given an ǫ-sample P of a smooth closed surface S ⊂ R
3, the Crust

algorithm produces a 2-complex that is Hausdorff ǫ-close to S.

Actually, the output of Crust is also homeomorphic to the sampled surface
under the stated condition of the theorem above, a fact which was proved later in
the context of the Cocone algorithm discussed next.

COCONE

The Cocone algorithm was developed by Amenta, Choi, Dey, and Leekha [ACDL02].
It simplified the reconstruction by Crust and enhanced its proof of correctness.

A cocone Cp for a sample point p is defined as the complement of the double
cone with p as apex and the pole vector as axis and an opening angle of 3π

4 ; see
Figure 35.2.3(b). Because the pole vector at p approximates the surface normal np,
the cocone Cp (clipped within Vp) approximates a thin neighborhood around the
tangent plane at p. For each point p, the algorithm then determines all Voronoi
edges in Vp that are intersected by the cocone Cp. The dual Delaunay triangles of
these Voronoi edges constitute the set of candidate triangles T .

It can be shown that the circumscribing circles of all candidate triangles are
small [ACDL02]. Specifically, if pqr ∈ T has circumradius r, then

(i) r = O(ǫ)f(x) where f(x) = min{f(p), f(q), f(r)}.

It turns out that any triangle with such small circumradius must lie almost
parallel to the surface, i.e., if npqr is the normal to a candidate triangle pqr, then

(ii) ∠(npqr ,nx) = O(ǫ) up to orientation where x ∈ {p, q, r}.

Also, it is proved that

(iii) T includes all restricted Delaunay triangles in DelP |S .

These three properties of the candidate triangles ensure that a manifold extrac-
tion step, as in the Crust algorithm, extracts a piecewise-linear surface which is
homeomorphic to the original surface S.

Cocone uses a single Voronoi diagram as opposed to two in the Crust algorithm
and also eliminates the normal filtering step. It provides the following guarantees.
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FIGURE 35.2.3

A long thin Voronoi cell Vp, the positive pole p+, the pole vector vp and the negative pole
p− (a), the cocone (b).

THEOREM 35.2.2

For ǫ ≤ 0.06, given a sample P of a smooth closed surface S ⊂ R
3, the Cocone

algorithm computes a Delaunay subcomplex N ⊆ DelP where |N | is Hausdorff
ǫ-close and is homeomorphic to S.

Actually, the homeomorphism property can be strengthened to isotopy, a stron-
ger topological equivalence condition. Because of the Voronoi diagram computation,
the Cocone runs in O(n2) time and space. Funke and Ramos [FR02] improved its
complexity to O(n logn) though the resulting algorithm seems impractical. Cheng,
Jin, and Lau [CJL17] simplified this approach making it more practical.

NATURAL NEIGHBOR

Boissonnat and Cazals [BC02] revisited the approach of Hoppe et al. [HDD+92]
by approximating the sampled surface as the zero set of a signed distance func-
tion. They used natural neighbors and an ǫ-sampling condition to provide output
guarantees.

Given an input point set P ⊂ R
3, the natural neighbors Nx,P of a point

x ∈ R
3 are the Delaunay neighbors of x in Del (P ∪ x). Letting V (x) denote the

Voronoi cell of x in Vor (P ∪ x), this means

Nx,P = {p ∈ P |V (x) ∩ Vp 6= ∅}.

Let A(x, p) denote the volume stolen by x from Vp, i.e.,

A(x, p) = Vol (V (x) ∩ Vp).

The natural coordinate associated with a point p is a continuous function λp : R3 →
R where

λp(x) =
A(x, p)

Σq∈PA(x, q)
.
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Some of the interesting properties of λp are that it is continuously differentiable
except at p, and any point x ∈ R

3 is a convex combination of its natural neighbors:
Σp∈Nx,P

λp(x)p = x. Boissonnat and Cazals assume that each point p is equipped
with a unit normal np which can either be computed via pole vectors, or is part of
the input. A distance function hp : R3 → R for each point p is defined as hp(x) =
(p−x) ·np. A global distance function h : R3 → R is defined by interpolating these
local distance functions with natural coordinates. Specifically,

h(x) = Σp∈Pλ
1+δ
p (x)hp(x).

The δ term in the exponent is added to make h continuously differentiable. By
definition, h(x) locally approximates the signed distance from the tangent plane at
each point p ∈ P and, in particular, h(p) = 0.

Since h is continuously differentiable, Ŝ = h−1(0) is a smooth surface unless 0 is

a critical value. A discrete approximation of Ŝ can be computed from the Delaunay
triangulation of P as follows. All Voronoi edges that intersect Ŝ are computed via
the sign of h at their two endpoints. The dual Delaunay triangles of these Voronoi
edges constitute a piecewise linear approximation of Ŝ. If the input sample P is an
ǫ-sample for sufficiently small ǫ, then a theorem similar to that for Cocone holds.

MORSE FLOW

Morse theory is concerned with the study of critical points of real-valued functions
on manifolds. Although the original theory was developed for smooth manifolds,
various extensions have been made to incorporate more general settings. The theory
builds upon a notion of gradient of the Morse function involved. The critical points
where the gradient vanishes are mainly of three types, local minima, local maxima,
and saddles. The gradient vector field usually defines a flow that can be thought
of as a mechanism for moving points along the steepest ascent. Some surface
reconstruction algorithms build upon this concept of Morse flow.

Given a point sample P of a smooth closed surface S ⊆ R
3, consider the

distance function d : R3 → R where d(x) := d(x, P ) is the distance of x to the
nearest sample point in P . This function is not differentiable everywhere. Still, one
can define a flow for d. For every point x ∈ R

3, let A(x) ⊆ P be the set of sample
points closest to x. The driver r(x) for x is the closest point in the convex hull of
A(x). In the case where r(x) = x, we say x is critical and regular otherwise. The
normalized gradient of d at a regular point x is defined as the unit vector in the
direction x − r(x). Notice that the gradient vanishes at a critical point x where
x = r(x). The flow induced by this vector field is a map φ : R3 × R

+ → R
3 such

that the right derivative of φ(x, t) at every point x with respect to time t equals the
gradient vector. This flow defines flow curves (integral lines) along which points
move toward the steepest ascent of d and arrive at critical points in the limit. See
Figure 35.2.4 for an illustration in R

2.
It follows from the definition that the critical points of d occur at the points

where a Delaunay simplex in DelP intersects its dual Voronoi face in VorP . Given
a critical point c of d, the set of all points that flow into c constitute the stable
manifold of c. The set of all stable manifolds partitions R

3 into cells that form a
cell complex together. Giesen and John [GJ08] named it as flow complex and
studied its properties. The dimension of each stable manifold is the index of its
associated critical point. Index-0 critical points are minima which are the Delaunay
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vertices, or equivalently the points in P . Index-1 critical points, also called the
1-saddles, are the intersections of Delaunay edges and their dual Voronoi facets.
Index-2 critical points, also called the 2-saddles, are the intersections of Delaunay
triangles and their dual Voronoi edges. Index-3 critical points are maxima which
are a subset of Voronoi vertices.

y

w
vu

FIGURE 35.2.4

On left: Point sample from a curve, sets A(x) are shown with hollow circles, driver for w

is the smaller black circle, driver of y is the hollow circle, u and v are critical; On right:
some flow curves for a point set in R

2.

A surface reconstruction algorithm based on the flow complex was proposed by
Dey, Giesen, Ramos, and Sadri [DGRS08]. They observe that the critical points of
d separate into two groups, one near the surface S, called the surface critical points,
and the other near the medial axis M , called the medial axis critical points. Let
Sη = {x ∈ R

3 | d(x, S) ≤ η} and Mη = {x ∈ R
3 | d(x,M) = η} denote the η-offset

of S and M respectively. For any point c ∈ R
3, let c̃ be its orthogonal projection on

S, and č be the point where the ray c̃c intersects M first time. Let ρ(c̃) = d(c̃, č).
An important result proved in [DGRS08] is:

THEOREM 35.2.3

For ǫ < 1
3 , let P be an ǫ-sample of a smooth closed surface S ⊂ R

3. Let c be any
critical point of the distance function d. Then, either c ∈ Sǫ2f(c̃), or in M2ǫρ(c̃).

The algorithm in [DGRS08] first separates the medial axis critical points from
the surface ones using an angle criterion. The union of the stable manifolds for the
medial axis critical points separates further into two connected components, one for
the outer medial axis critical points and the other for the inner medial axis critical
points. These two connected components can be computed using a union-find data
structure. The boundary of any one of these connected components is output as
the reconstructed surface.

The main disadvantage of the flow complex based surface reconstruction is that
the stable manifolds constituting this complex are not necessarily subcomplexes of
the Delaunay complex. Consequently, its construction is more complicated. A
Morse theory based reconstruction that sidesteps this difficulty is the Wrap algo-
rithm of Edelsbrunner [Ede03]. A different distance function is used in Wrap. A
Delaunay circumball B(c, r) that circumscribes a Delaunay simplex can be treated
as a weighted point ĉ = (c, r). For any point x ∈ R

3, one can define the weighted
distance which is also called the power distance as π(x, ĉ) = d(x, c)2 − r2. For a
point set P , let C denote the centers of the Delaunay balls for simplices in DelP
and Ĉ denote the corresponding weighted points. These Delaunay balls also include
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those of the infinite tetrahedra formed by the convex hull triangles and a point at
infinity. Their centers are at infinity and their radii are infinite.

Define a distance function g : R3 → R as g(x) = min
ĉ∈Ĉ

π(x, ĉ). Consider

the Voronoi diagram of Ĉ with the power distance metric. This diagram, also
called the power diagram of Ĉ, denoted as Pow Ĉ, coincides with the Delaunay
triangulation DelP extended with the infinite tetrahedra. A point x ∈ R

3 contained
in a Delaunay tetrahedron σ ∈ DelP has distance g(x) = π(x, ĉ) where c is the
Delaunay ball of σ. Analogous to d, one can define a flow for the distance function g

whose critical points coincide with those of d. Edelsbrunner defined a flow relation
among the Delaunay simplices using the flow for g. Let σ be a proper face of two
simplices τ and ζ. We say τ < σ < ζ if there is a point x in the interior of σ such
that the flow curve through x proceeds from the interior of τ into the interior of
ζ. The Wrap algorithm, starting from the infinite tetrahedra, collapses simplices
according to the flow relation. It finds a simplex σ with a coface ζ where σ < ζ and
ζ is the only coface adjacent to σ. The collapse modifies the current complex K to
K \ {σ, ζ}, which is known to maintain a homotopy equivalence between the two
complexes. The algorithm stops when it can no longer find a simplex to collapse.
The output is a subcomplex of DelP and is necessarily homotopy equivalent to a 3-
ball. The algorithm can be modified to create an output complex of higher genus by
starting the collapse from other source tetrahedra. The boundary of this complex
can be taken as the output approximating S. There is no guarantee for topological
equivalence between the output complex and the surface S for the original Wrap
algorithm. Ramos and Sadri [RS07] proposed a version of the Wrap algorithm that
ensures this topological equivalence under a dense ǫ-sampling assumption.

WATERTIGHT SURFACES

Most of the surface reconstruction algorithms face a difficulty while dealing with
undersampled surfaces and noise. While some heuristics such as in [DG03] can de-
tect undersampling, it leaves holes in the surface near the vicinity of undersampling.
Although this may be desirable for reconstructing surfaces with boundaries, many
applications such as CAD designs require that the output surface be watertight,
i.e., a surface that bounds a solid.

The natural neighbor algorithm of [BC02] can be adapted to guarantee a wa-

tertight surface. Recall that this algorithm approximates a surface Ŝ implicitly
defined by the zero set of a smooth map h : R3 → R. This surface is a smooth
2-manifold without boundary in R

3. However, if the input sample P is not dense
for this surface, the reconstructed output may not be watertight. Boissonnat and
Cazals suggest to sample more points on Ŝ to obtain a dense sample for Ŝ and then
reconstruct it from the new sample.

Amenta, Choi, and Kolluri [ACK01] use the crust approach to design the Power
Crust algorithm to produce watertight surfaces. This algorithm first distinguishes
the inner poles that lie inside the solid bounded by the sampled surface S from
the outer poles that lie outside. A consistent orientation of the pole vectors is
used to decide between inner and outer poles. To prevent outer poles at infinity,
eight corners of a large box containing the sample are added. Let BO and BI

denote the Delaunay balls centered at the outer and inner poles respectively. The
union of Delaunay balls in BI approximate the solid bounded by S. The union of
Delaunay balls in BO do not approximate the entire exterior of S although one of
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its boundary components approximates S. The implication is that the cells in the
power diagram Pow (BO ∪ BI) can be partitioned into two sets, with the boundary
between approximating S. The facets in the power diagram Pow (BO ∪ BI) that
separate cells generated by inner and outer poles form this boundary which is output
by Power Crust.

Dey and Goswami [DG03] announced a watertight surface reconstructor called
Tight Cocone. This algorithm first computes the surface with Cocone, which may
leave some holes in the surface due to anomalies in sampling. A subsequent sculpt-
ing [Boi84] in the Delaunay triangulation of the input points recover triangles that
fill the holes. Unlike Power Crust, Tight Cocone does not add Steiner points.

BOUNDARY

The algorithms described so far work on the assumption that the sampled surface
has no boundary. The reconstruction of smooth surfaces with boundary is more
difficult because the algorithm has to reconstruct the boundary from the sample
as well. The algorithms such as Crust and Cocone cannot be extended to surfaces
with boundary because they employ a manifold extraction step which iteratively
prunes triangles with edges adjacent to a single triangle. Surfaces with non-empty
boundaries necessarily contain such triangles in their reconstruction, and thus can-
not withstand such a pruning step. Another difficulty arises on the theoretical
front because the restricted Delaunay triangulation DelP |S of a sample P for a
surface S with boundary may not be homeomorphic to S no matter how dense P

is [DLRW09]. This property is a crucial ingredient for proving the correctness of the
Crust and Cocone algorithms. Specifically, the manifold extraction step draws upon
this property. Dey, Li, Ramos, and Wenger [DLRW09] sidestepped this difficulty
by replacing the prune-and-walk step with a peeling step.

FIGURE 35.2.5

Reconstruction of a non-orientable surface with boundary (Möbius band) with Peel algo-
rithm.

The Peel algorithm in [DLRW09] works as follows. It takes a point sample P

and a positive real α as input. First, it computes the α-complex of P with the
input parameter α > 0. If P is dense, the Delaunay tetrahedra retained in this
complex is proven to be “flat” meaning that they all have two non-adjacent edges,
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called flat edges, that subtend an internal angle close to π. A flat tetrahedron t

is peelable if one of its flat edges, say e, is not adjacent to any tetrahedron other
than t. A peeling of t means that the two triangles adjacent to e are removed along
with e and t from the current complex. The algorithm successively finds peelable
tetrahedra and peels them. It stops when there is no peelable tetrahedron and
outputs the current complex. It is shown that the algorithm can always find a
peelable tetrahedron as long as there is any tetrahedron at all. This means that
the output is a set of triangles that are not adjacent to any tetrahedra. Dey et
al. prove that the underlying space of this set of triangles is isotopic to S if P is
sufficiently dense. Figure 35.2.5 shows an output surface computed by Peel.

The correctness of the Peel algorithm depends on the assumption that the input
P is a globally uniform, that is, ǫ-uniform sample of S. A precise statement of the
guarantee is given in the following theorem.

THEOREM 35.2.4

Let S be a smooth closed surface with boundary. For a sufficiently small ǫ > 0
and 6ǫ < α ≤ 6ǫ + O(ǫ), if P is an ǫ-uniform sample of S, Peel(P, α) produces a
Delaunay sub-complex isotopic and Hausdorff ǫ-close to S.

NOISE

The input points are assumed to lie on the surface for all of the surface recon-
struction algorithms discussed so far. In reality, the points can be a little off from
the sampled surface. The noise introduced by these perturbations is often referred
to as the Hausdorff noise because of the assumption that the Hausdorff distance
between the surface S and its sample P is small. In the context of surface recon-
struction, Dey and Goswami [DG06] first modeled this type of noise and presented
an algorithm with provable guarantees.

A point set P ⊂ R
3 is called an ǫ-noisy sample of a smooth closed surface

S ⊂ R
3 if conditions 1 and 2 below are satisfied. It is called an (ǫ, κ)-sample if

additionally condition 3 is satisfied.

1. The orthogonal projection P̃ of P on S is an ǫ-sample of S.

2. d(p, p̃) ≤ ǫ2f(p̃).

3. For every point p ∈ P , its distance to its κ-th nearest point is at least ǫf(p̃).

The first two conditions say that the point sample is dense and sufficiently close
to S. The third condition imposes some kind of relaxed version of local uniformity
by considering the κ-th nearest neighbor instead of the nearest neighbor. Dey
and Goswami [DG06] observe that, under the (ǫ, κ)-sampling condition, some of
the Delaunay balls of tetrahedra in DelP remain almost as large as the Delaunay
balls centering the poles in the noise-free case. The small Delaunay balls cluster
near the sample points. See Figure 35.2.6. With this observation, they propose
to separate out the ‘big’ Delaunay balls from the small ones by thresholding. Let
B(c, r) be a Delaunay ball of a tetrahedron pqrs ∈ DelP and let ℓ be the smallest
among the distances of p, q, r, and s to their respective κ-th nearest neighbors.
If r > kℓ for a suitably chosen fixed constant k, the ball B(c, r) is marked as
big. After marking all such big Delaunay balls, the algorithm starts from any of
the infinite tetrahedra and continues collecting any big Delaunay ball that has a
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positive power distance (intersects deeply) to any of the balls collected so far. As
in the power crust algorithm, this process separates the inner big Delaunay balls
from the outer ones. It is proved that, if the thresholds are chosen right and an
appropriate sampling condition holds, the boundary ∂D of the union D of outer (or
inner) big Delaunay balls is homeomorphic to S. To make the output a Delaunay
subcomplex, the authors [DG06] suggest to collect the points P ′ ⊆ P contained in
the boundary of the big outer Delaunay balls and compute the restricted Delaunay
triangulation of P ′ with respect to a smooth skin surface [Ede99] approximating
∂D. An even easier option which seems to work in practice is to take the restricted
Delaunay triangulation DelP ′|∂D which coincides with the boundary of the union
of tetrahedra circumscribed by the big outer Delaunay balls.
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FIGURE 35.2.6

On left: Noisy point sample from a curve; on right: big and small Delaunay balls.

Mederos, Amenta, Vehlo, and Figueiredo [MAVF05] adapted the idea in [DG06]
to the framework of power crust. They do not require the third uniformity condi-
tion, but instead rely on an input parameter c that needs to be chosen appropriately.
Their algorithm starts by identifying the polar balls. A subset of the polar balls
whose radii are larger than the chosen parameter c is selected. These “big” polar
balls are further marked as inner and outer using the technique described before.
Let BO and BI denote the set of these inner and outer polar balls respectively.
Considering the polar balls as weighted points, the algorithm computes the power
crust, that is, the facets in the power diagram of Pow (BO ∪ BI) that separate a
Voronoi cell corresponding to a ball in BO from a cell corresponding to a ball in
BI .

THEOREM 35.2.5

There exist c > 0, ǫ > 0 so that if P ⊂ R
3 is an ǫ-noisy sample of a smooth closed

surface S ⊂ R
3, the above algorithm with parameter c returns the power crust in

Pow (BO ∪ BI) which is homeomorphic to S.

SUMMARIZED RESULTS

The properties of the above discussed surface reconstruction algorithms are sum-
marized in Table 35.2.1.
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