Publications

  1. B. Kim, S. Maharjan, F. Pranto, B. Guidio, C. Schaal, and C. Jeong. Convolutional neural network and level-set spectral element method for ultrasonic imaging of delamination cavities in an anisotropic composite structure. Ultrasonics, 138: 107254, 2024. doi: 10.1016/j.ultras.2024.107254
  2. C. Schaal, R. Granados, M. Barrett, and K. Davis. Automated transducer deployment for Lamb wave-based nondestructive evaluation of plates. Health monitoring of structural and biological systems XVIII, 2024. doi: 10.1117/12.3009829
  3. F. Alsaffar, L. Wang, A. Mal, and C. Schaal. Guided Waves in Pipes Versus Lamb Waves in Plates - A Convergence Analysis. , 2022. 7. doi: 10.1115/QNDE2022-98270
  4. C. Schaal, C. Kühl, J. Vural, and P. Zinkewich. Automated nondestructive testing of composites using air-coupled guided ultrasound. Health monitoring of structural and biological systems XVII, 2023. doi: 10.1117/12.2658014
  5. C. Schaal, M. Chow, P. Logozzo, N. Shirajian, and S. Tai. On detecting regional inhomogeneity in composite plates using Lamb waves. Health monitoring of structural and biological systems XVII, 2023. doi: 10.1117/12.2657344
  6. S. Lloyd, C. Schaal, and C. Jeong. Inverse modeling and experimental validation for reconstructing wave sources on a 2D solid from surficial measurement. Ultrasonics, 128: 106880, 2023. doi: 10.1016/j.ultras.2022.106880
  7. F. Alsaffar, L. Wang, A. Mal, and C. Schaal. Guided Waves in Pipes Versus Lamb Waves in Plates - A Convergence Analysis. , 2022. 7. doi: 10.1115/QNDE2022-98270
  8. M. Costa, and C. Schaal. Guided ultrasound inspection of small features using a horn-type transducer design. Experimental Mechanics, 1-12, 2022. doi: 10.1007/s11340-022-00915-w
  9. L. Araque, L. Wang, A. Mal, and C. Schaal. Advanced fuzzy arithmetic for material characterization of composites using guided ultrasonic waves. Mechanical Systems and Signal Processing, 171: 108856, 2022. doi: 10.1016/j.ymssp.2022.108856
  10. C. Schaal, A. Miranda, K. Yanik, and R. Granados. Recent advancements on autonomous Lamb wave-based nondestructive inspection. Health monitoring of structural and biological systems XVI, 2022. doi: 10.1117/12.2613463
  11. C. Schaal, and D. Upadhyay. Visualization and analysis of the scattering of high-intensity focused ultrasound at bone phantoms. Health monitoring of structural and biological systems XVI, 2022. doi: 10.1117/12.2612964
  12. L. Wang, L. Araque, S. Tai, A. Mal, and C. Schaal. Features of Guided Waves Propagating in a Honeycomb Sandwich Structure. , 2021. 7. doi: 10.1115/QNDE2021-75053
  13. C. Gonzales, A. Balyan, M. Mallari, and C. Schaal. Lamb wave-based nondestructive inspection using a mobile robotic platform. Health monitoring of structural and biological systems XV, 2021. doi: 10.1117/12.2583865
  14. D. Upadhyay, and C. Schaal. Iterative learning control for high-intensity focused ultrasound treatments. Health monitoring of structural and biological systems XV, 2021. doi: 10.1117/12.2583539
  15. L. Araque, L. Wang, A. Mal, and C. Schaal. Inverse fuzzy arithmetic for material characterization of composites using guided waves. Health monitoring of structural and biological systems XV, 2021. doi: 10.1117/12.2583947
  16. A. Miranda, J. Hook, and C. Schaal. Lamb wave-based mapping of plate structures via frontier exploration. Ultrasonics, 110: 106282, 2021. doi: 10.1016/j.ultras.2020.106282
  17. E. Hong, and C. Schaal. Robotic platforms and robots for nondestructive testing applications, including their production and use. 2020.
  18. D. Sanford, and C. Schaal. High-intensity focused ultrasound scattering at mammal vertebrae. Proceedings of the ASME international mechanical engineering congress and exposition – IMECE 2020, 2020.
  19. M. Brown, M. Safisamghabadi, D. Sanford, and C. Schaal. Shadowgraph visualization of the scattering of focused ultrasonic waves at bone-like constructs. Experimental Mechanics, 60: 861-872, 2020. doi: 10.1007/s11340-020-00609-1
  20. S. Tai, F. Kotobuki, A. Mal, and C. Schaal. Numerical and experimental investigation of damage detection in stiffened composite panels using guided ultrasonic waves. Health monitoring of structural and biological systems IX, 2020. doi: 10.1117/12.2558845
  21. L. Araque, L. Wang, S. Tai, A. Mal, and C. Schaal. Uncertainty characterization of guided ultrasonic wave properties in composite materials. Health monitoring of structural and biological systems IX, 2020. doi: 10.1117/12.2558853
  22. D. Upadhyay, and C. Schaal. Optimizing the driving trajectories for guided ultrasonic wave excitation using iterative learning control. Mechanical Systems and Signal Processing, 144: 106876, 2020. doi: 10.1016/j.ymssp.2020.106876
  23. A. Miranda, C. Gonzales, A. Balyan, and C. Schaal. Mobile robotic platform for inspecting aircraft surfaces using lamb waves. Proceedings of the 12th international workshop on structural health monitoring – IWSHM, 2019.
  24. L. Wang, L. Araque, S. Tai, A. Mal, and C. Schaal. Feasibility analysis of various sensing methods for nondestructive testing of composites. Proceedings of the 12th international workshop on structural health monitoring – IWSHM, 2019.
  25. D. Upadhyay, and C. Schaal. Ringing suppression for ultrasonic nondestructive testing using iterative learning control and h-infinity synthesis. Proceedings of the 12th international workshop on structural health monitoring – IWSHM, 2019.
  26. S. Tai, L. Wang, L. Araque, A. Mal, and C. Schaal. Effects of homogenization and quasi-isotropy assumptions on guided wave-based nondestructive testing methods. Proceedings of the 12th international workshop on structural health monitoring – IWSHM, 2019.
  27. M. Brown, D. Sanford, and C. Schaal. Imaging of the scattering of high-intensity focused ultrasonic waves at artificial bone replicas. Mechanics of biological systems and materials & micro-and nanomechanics, volume 4, 2020. doi: 10.1007/978-3-030-30013-5
  28. C. Schaal, M. Brown, and K. Schulz. Experimental investigation of lamb wave-based edge detection methods. Proc. SPIE, 10972: 1097223-1097223-11, 2019. doi: 10.1117/12.2515452
  29. C. Schaal, and V. Durgesh. Investigation of the scattering of focused ultrasonic waves at bones. Proceedings of the ASME international mechanical engineering congress and exposition – IMECE 2018, 2018. doi: 10.1115/IMECE2018-87133
  30. E. Hong, and C. Schaal. Reverse engineering stiffened plates using guided wave-based nondestructive testing methods. Proc. SPIE, 10600: 10600-10600-9, 2018. doi: 10.1117/12.2296745
  31. M. Brown, M. Safisamghabadi, C. Schaal, and V. Durgesh. Visualization of the scattering of focused ultrasonic waves at solid-fluid interfaces. Proc. SPIE, 10600: 10600-10600-10, 2018. doi: 10.1117/12.2296744
  32. C. Schaal, R. M’Closkey, and A. Mal. Semi-analytical modeling of anchor loss in plate-mounted resonators. Ultrasonics, 82: 304-312, 2018. doi: 10.1016/j.ultras.2017.09.009
  33. C. Schaal, and A. Mal. Core-skin disbond detection in a composite sandwich panel using guided ultrasonic waves. Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, 1(1): 011006, 2017. doi: 10.1115/1.4037544
  34. C. Schaal, S. Tai, and A. Mal. On the assumption of transverse isotropy of a honeycomb sandwich panel for NDT applications. Proc. SPIE, 10170: 1017022-1017022-8, 2017. doi: 10.1117/12.2260092
  35. C. Schaal, R. M’Closkey, and A. Mal. Parametric studies for semi-analytical investigation of plate-mounted resonators. Proc. SPIE, 10170: 101700O-101700O-10, 2017. doi: 10.1117/12.2262002
  36. L. Maio, F. Ricci, V. Memmolo, N. Boffa, E. Monaco, A. Mal, and C. Schaal. Laser doppler velocimetry and PZT sensing for the study of guided waves in a stepped aluminum plate. Proc. SPIE, 10170: 101701S-101701S-15, 2017. doi: 10.1117/12.2260140
  37. C. Schaal, S. Zhang, H. Samajder, and A. Mal. An analytical study of the scattering of ultrasonic guided waves at a delamination-like discontinuity in a plate. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1-14, 2017. doi: 10.1177/0954406217700176
  38. C. Schaal, and A. Mal. Lamb wave propagation in a plate with step discontinuities. Wave Motion, 66: 177-189, 2016. doi: 10.1016/j.wavemoti.2016.06.012
  39. C. Schaal, S. Bischoff, and L. Gaul. Damage detection in multi-wire cables using guided ultrasonic waves. Structural Health Monitoring, 15(3): 279-288, 2016. doi: 10.1177/1475921716647249
  40. C. Schaal, and A. Mal. Guided waves in a plate with a delamination-like discontinuity. Proceedings of the ASME international mechanical engineering congress and exposition – IMECE 2016, 2016. doi: 10.1115/IMECE2016-68193
  41. C. Schaal, A. Mal, and R. M’Closkey. Semi-analytical modeling of substrate loss of miniature resonators. Proceedings of the 24th international congress of theoretical and applied mechanics – ICTAM 2016, 2016.
  42. C. Schaal, A. Mal, and R. M’Closkey. A semi-analytical method for calculating resonator energy loss into plate substrates. 2016 IEEE international symposium on inertial sensors and systems, 2016. 2. doi: 10.1109/ISISS.2016.7435534
  43. H. Baid, C. Schaal, H. Samajder, and A. Mal. Dispersion of lamb waves in a honeycomb composite sandwich panel. Ultrasonics, 56(0): 409-416, 2015. doi: 10.1016/j.ultras.2014.09.007
  44. C. Schaal, S. Bischoff, and L. Gaul. Energy-based models for guided ultrasonic wave propagation in multi-wire cables. International Journal of Solids and Structures, 64-65: 22-29, 2015. doi: 10.1016/j.ijsolstr.2015.03.010
  45. C. Schaal, H. Samajder, H. Baid, and A. Mal. Rayleigh to lamb wave conversion at a delamination-like crack. Journal of Sound and Vibration, 353(0): 150-163, 2015. doi: 10.1016/j.jsv.2015.05.016
  46. L. Gaul, C. Schaal, and S. Bischoff. Crack detection in overhead transmission lines by ultrasonic waves. Proceedings of international conference on structural engineering dynamics – ICEDyn, 2015.
  47. C. Schaal, S. Zhang, H. Samajder, and A. Mal. Analytical investigation of the interaction of rayleigh and lamb waves at a delamination-like discontinuity in a thick plate. Proceedings of the 10th international workshop on structural health monitoring – IWSHM, 2015. doi: 10.12783/SHM2015/225
  48. C. Schaal, X. Cao, and A. Mal. The influence of stiffeners on the propagation of guided ultrasonic waves. Proceedings of the 10th international workshop on structural health monitoring – IWSHM, 2015. doi: 10.12783/SHM2015/248
  49. C. Schaal, and A. Mal. Dispersion of guided waves in composite laminates and sandwich panels. Proc. SPIE, 9438: 94380L-1-94380L-12, 2015. doi: 10.1117/12.2083870
  50. C. Schaal. Fuzzy arithmetical assessment of health monitoring for multi-wire cables using ultrasonic waves. Der Andere Verlag, 2014.
  51. S. Bischoff, C. Schaal, and L. Gaul. Efficient wave scattering analysis for damaged cylindrical waveguides. Journal of Sound and Vibration, 333(18): 4203-4213, 2014. doi: 10.1016/j.jsv.2014.04.013
  52. C. Schaal, and M. Hanss. Uncertainty analysis for crack detection in cylindrical waveguides. PAMM, 14(1): 695-696, 2014. doi: 10.1002/pamm.201410330
  53. C. Schaal, and L. Gaul. Crack detection in multi-wire cables using guided ultrasonic waves. EWSHM - 7th european workshop on structural health monitoring, 2014.
  54. C. Schaal, S. Bischoff, and L. Gaul. Analysis of wave propagation in periodic 3D waveguides. Mechanical Systems and Signal Processing, 40(2): 691-700, 2013. doi: 10.1016/j.ymssp.2013.06.021
  55. C. Schaal, and M. Hanss. Uncertainty analysis for damaged multi-wire cables. Safety, reliability, risk and life-cycle performance of structures and infrastructures: Proceedings of ICOSSAR 2013, 1601-1607. 2014.
  56. C. Schaal, and M. Hanss. Fuzzy arithmetical assessment of wave propagation models for multi-wire cables. Special topics in structural dynamics, volume 6, 177-185. 2013. doi: 10.1007/978-1-4614-6546-1 18
  57. L. Gaul, H. Sprenger, C. Schaal, and S. Bischoff. Structural health monitoring of cylindrical structures using guided ultrasonic waves. Acta Mechanica, 223: 1669-1680, 2012. doi: 10.1007/s00707-012-0634-z
  58. C. Schaal, M. Krautter, and M. Hanss. Dispersion in cylindrical waveguides with uncertain parameters. PAMM, 12(1): 537-538, 2012. doi: 10.1002/pamm.201210257
  59. N. Higgins, and C. Schaal. Inter-wire coupling model development for health monitoring of cable structures. PAMM, 12(1): 543-544, 2012. doi: 10.1002/pamm.201210260
  60. C. Schaal, and M. Hanss. Modeling wave propagation in coupled waveguides with uncertain parameters. Proceedings of ISMA2012–USD2012, 2012.
  61. C. Schaal, and M. Hanss. Qualitätsbewertung von modellen mittels unsicherheitsanalysen für die wellengestützte strukturüberwachung. Fortschritte der akustik, 2011.
  62. S. Engelke, C. Schaal, and L. Gaul. Model identification for a modal state estimator from output-only data. Structural dynamics, volume 3: Proceedings of the 28th IMAC, a conference on structural dynamics, 2010, 1305-1312. 2011.
  63. S. Engelke, C. Schaal, and L. Gaul. Beobachterentwurf zur schätzung von strukturschwingungen auf der basis einer output-only modalanalyse. Schwingungsanalyse & identifikation, 363-371. 2010.