
In questions 1 through 3 write the letter from (a) to (d) in the space provided. No partial credit
will be awarded

1. The series 1− π2

2!
+

π4

4!
− π6

6!
· · ·+ (−1)n π2n

(2n)!
+ · · · converges. What is its sum?

(a) −1.2113528
(b) −3/π
(c) cos(3)

(d) −1

Answer:D

2. Suppose that the function f(x) is approximated near x = 0 by a sixth degree Taylor Polyno-
mial

P6(x) = 1− 2x+ 8x3 − 1

24
x6

Which of the following is the only correct statement?

(a) f 0(0) = 0, f 00(0) = 8, and f (6)(0) = −1/24.
(b) f 0(0) = −2, f 00(0) = 8, and f (6)(0) = −30.
(c) f 0(0) = 0, f 00(0) = 0, and f (6)(0) = −1/24.
(d) f 0(0) = −2, f 00(0) = 0, and f (6)(0) = −30.

Answer:D

3. Suppose that the power series
∞X
n=0

Cn (x+ 5)
n diverges when x = 2 and converges when

x = −8. Which of the following is the only correct statement?

(a) The power series converges for x = −3 and diverges for x = −6.
(b) The power series converges for x = −3 and diverges for x = 6.
(c) The power series converges for x = 3 and diverges for x = −6.
(d) The power series converges for x = 3 and diverges for x = 6.

Answer:B
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4. Determine if the series
∞X
n=2

1

n (ln(n))2
converges or not. (Hint: you may want to use the

integral test)

Notice that Z ∞

2

1

x (lnx)2
dx = lim

b→∞

Z b

2

1

x (lnx)2
dx.

Let u = lnx, then du = 1
xdx andZ ∞

2

1

x (lnx)2
dx = lim

b→∞

Z x=b

x=2

du

u2
= lim

b→∞

Z x=b

x=2
u−2du

= lim
b→∞

µ
−1
u

¶¯̄̄̄x=b
x=2

= lim
b→∞

µ
− 1

lnx

¶¯̄̄̄x=b
x=2

= lim
b→∞

µ
− 1

ln b
+

1

ln 2

¶
=

1

ln 2
.

Since ln b → ∞ when b → ∞. Thus the integral converges and as a consequence the series
converges as well by the integral test.

5. Determine if the following series are convergent or divergent. Make sure you indicate which
test you are using.

(a)
∞X
n=1

n+ 7

3n− 1

lim
n→∞

n+ 7

3n− 1 = lim
n→∞

1 + 7
n

3− 1
n

=
1

3
6= 0

So the series diverges by the divergence test.

(b)
∞X
n=1

n2

n4 + 1

Since n2

n4+1
∼ n2

n4
= 1

n2
then we will compare to

P∞
n=1

1
n2
. This series is convergent since

it is a p-series with p = 2 > 1. Now observe that

n2

n4 + 1
<

1

n2
⇔

n4 < n4 + 1

and this last inequality is clearly true. Thus by comparison test the series converges.
Also, we can use the limit comparison test. In this case

lim
n→∞

n2

n4 + 1
· n

2

1
= lim

n→∞
n4

n4 + 1

= lim
n→∞

1

1 + 1
n4
= 1 6= 0,∞.

So the two series behave the same and then the required series converges.
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(c)
∞X
n=1

2n

n!
Apply the ratio test:

lim
n→∞

|an+1|
|an| = lim

n→∞
2n+1

(n+ 1)!
· n!
2n

= lim
n→∞

2

(n+ 1)
= 0 < 1

So by the ratio test, the series converges.

6. Consider the power series
∞X
n=0

(x− 2)n
3n (n+ 1)

(a) Find the radius of convergence
Apply the ratio test:

lim
n→∞

|an+1|
|an| = lim

n→∞
|x− 2|n+1
3n+1 (n+ 2)

· 3
n (n+ 1)

|x− 2|n

= |x− 2| lim
n→∞

(n+ 1)

3 (n+ 2)
= |x− 2| lim

n→∞

¡
1 + 1

n

¢
3
¡
1 + 2

n

¢
=

|x− 2|
3


< 1 convergent
= 1 inconclusive
> 1 divergent

.

So if |x− 2| < 3 the series converges, and if |x− 2| > 3 it diverges. Thus the radius of
convergence R = 3.

(b) Find the interval of convergence.
The center of the power series is a = 2, so the endpoints are x = −1 and x = 5.
If x = 5 then

∞X
n=0

(x− 2)n
3n (n+ 1)

=
∞X
n=0

(5− 2)n
3n (n+ 1)

=
∞X
n=0

3n

3n (n+ 1)

=
∞X
n=0

1

n+ 1
=

∞X
n=1

1

n

which is the harmonic series, so it diverges.
If x = −1 then

∞X
n=0

(x− 2)n
3n (n+ 1)

=
∞X
n=0

(−1− 2)n
3n (n+ 1)

=
∞X
n=0

(−3)n
3n (n+ 1)

=
∞X
n=0

(−1)n
n+ 1

.

Now we apply the alternating test. First, clearly

lim
n→∞

1

n+ 1
= 0
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and

an+1 < an ⇔
1

n+ 2
<

1

n+ 1
⇔

n+ 1 < n+ 2

where the last is clearly true. Since the series satisfies properties 1 and 2 in the alternating
test, then the series is convergent.
The interval of convergence is

[−1, 5) = {x : −1 ≤ x < 5} .

(a) Find the Taylor Polynomial of degree 4 for the function f(x) =
√
1 + 2x around a = 0.

We calculate the derivatives of f as well as plugging in x = 0:

functions x = 0

f(x) = (1 + 2x)1/2 1

f 0(x) = (1 + 2x)−1/2 1

f 00(x) = − (1 + 2x)−3/2 −1
f (3)(x) = 3 (1 + 2x)−5/2 3

f (4)(x) = −15 (1 + 2x)−7/2 −15
Thus

P4(x) = f(0) + f 0(0)x+
f 00(0)
2!

x2 +
f (3)(0)

3!
x3 +

f (4)(0)

4!
x4

= 1 + x− 1

2!
x2 +

3

3!
x3 − 15

4!
x4

= 1 + x− 1
2
x2 +

1

2
x3 − 5

8
x4.

(b) The function f(x) and the Tayor Polynomial P4(x) are very close to each other when x
is close to a = 0. Use P4(x) from part (a) to get an approximation for f(0.25) =

√
1.5

f(1) ≈ P4(1) = 1 + 1− 1
2
+
1

2
− 5
8
=
11

8
= 1.375

7. (Extra) Let an > 0. Prove that
P∞

n=1 an and
P∞

n=1 ln (1 + an) are either both convergent or
both divergent.

If limn→∞ an 6= 0 then limn→∞ ln (1 + an) 6= ln(1) = 0. In this case both series are divergent.
If limn→∞ an = 0 then for n large enough we have that an < 1. Then from the Taylor
expansion for ln (1 + x) we get that

ln (1 + an) = an − a2n
2
+

a3n
3
− a4n
4
+ · · ·+ (−1)k+1 a

k
n

k
+ · · · ,

then if we divide by an we get that

ln (1 + an)

an
= 1− an

2
+

a2n
3
− a3n
4
+ · · ·+ (−1)k+1 a

k−1
n

k
+ · · ·
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Then we take limits when n→∞ and we get

lim
n→∞

ln (1 + an)

an
= lim

n→∞

µ
1− an

2
+

a2n
3
− a3n
4
+ · · ·+ (−1)k+1 a

k−1
n

k
+ · · ·

¶
= lim

n→∞ 1− lim
n→∞

an
2
+ lim

n→∞
a2n
3
− lim

n→∞
a3n
4
+ · · ·+ lim

n→∞ (−1)
k+1 a

k−1
n

k
+ · · ·

= 1 (since lim
n→∞ an = 0).

Thus, since 1 6= 0,∞ then by Limit Comparison Test,
P∞

n=1 an and
P∞

n=1 ln (1 + an) behave
the same.
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