Tuning Nanoparticle Structure and Surface Strain for Catalysis Optimization

Sen Zhang,† Xu Zhang,‡ Guangming Jiang,† Huiyuan Zhu,† Shaojun Guo,† Dong Su,§ Gang Lu,‡ and Shouheng Sun§†

†Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
‡Department of Physics and Astronomy, California State University—Northridge, Northridge, California 91330, United States
§Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States

ABSTRACT: Controlling nanoparticle (NP) surface strain, i.e. compression (or stretch) of surface atoms, is an important approach to tune NP surface chemistry and to optimize NP catalysis for chemical reactions. Here we show that surface Pt strain in the core/shell FePt/Pt NPs with Pt in three atomic layers can be rationally tuned via core structural transition from cubic solid solution [denoted as face centered cubic (fcc)] structure to tetragonal intermetallic [denoted as face centered tetragonal (fct)] structure. The high activity observed from the fct-FePt/Pt NPs for oxygen reduction reaction (ORR) is due to the release of the overcompressed Pt strain by the fct-FePt as suggested by quantum mechanics–molecular mechanics (QM–MM) simulations. The Pt strain effect on ORR can be further optimized when Fe in FePt is partially replaced by Cu. As a result, the fct-FeCuPt/Pt NPs become the most efficient catalyst for ORR and are nearly 10 times more active in specific activity than the commercial Pt catalyst. This structure-induced surface strain control opens up a new path to tune and optimize NP catalysis for ORR and many other chemical reactions.

1. INTRODUCTION

In the search for highly efficient nanoparticle (NP) catalysts for chemical conversions, one often explores NPs’ sizes, shapes, and compositions as important parameters to tune NPs’ catalytic properties.1–5 It has become increasingly important to rationalize NP parameters with catalysis in order to provide predictable models for catalyst design and optimization.6–10 NPs based on platinum (Pt) have constantly been the subject of the studies due to their unique properties shown in catalyzing many chemical reactions, including the oxygen reduction reaction (ORR), an important cathodic reaction used in low-temperature polymer electrolyte membrane fuel cells and metal–air batteries.11–20 Recent studies on ORR have indicated that Pt–Pt bond compression, and the resultant d-band down-shift, weakens the bonding between Pt and oxygenated species (O) and increases catalytic activity for ORR.21–27 Density functional theory (DFT) calculations further suggest that Pt–O binding energy (E_O), a key “descriptor” to measure the adsorption/desorption of oxygenated species, should be 0.2 eV higher ($\Delta E_O = 0.2$ eV) than the corresponding value on the Pt(111) surface in order for a Pt catalyst to achieve optimal ORR activity.28–31 An unanswered, yet extremely important, question related to Pt-based ORR catalysis is if indeed there exists a form of Pt NP catalyst whose oxygen binding energy coincides with the optimal ΔE_O value for which ORR catalytic efficiency is maximized.

Here we report a strategy to tune and optimize ORR catalysis of multimetallic core/shell NPs by controlling the crystal structure of the core and surface strain of the shell. In previous studies on ORR catalysis, Pt alloy NPs are the universal choice of the catalyst and are often in chemically disordered solid solution structure. Chemically ordered intermetallic structure is rarely considered as a factor due to the difficulty in obtaining such a structure without sacrificing other NP parameters, such as size, shape, and composition,32–35 making it impossible to identify the true nature of the catalytic enhancement. We have synthesized monodisperse FePt alloy NPs with controlled sizes and compositions.36–38 We noticed that when these alloy NPs were deposited on the carbon support, they could withstand high-temperature treatment without showing any sign of aggregation or sintering, and their solid solution structure [often denoted as face centered cubic (fcc) structure] could be converted to tetragonal intermetallic structure [often denoted as face centered tetragonal (fct) structure]. More importantly, electro-anodization of these FePt NPs in 0.1 M HClO4 led to stable core/shell FePt/Pt NPs with Pt only in about three atomic layers. The fct-core/shell catalyst showed much enhanced catalytic efficiency for ORR, and this enhancement was attributed to more favored release of Pt strain in the fct-FePt/Pt than in the fcc-FePt/Pt, as calculated by the quantum mechanics–molecular mechanics (QM-MM) simulations. The
2. EXPERIMENTAL SECTION

2.1. Chemicals and Materials. Oleylamine (>70%), oleic acid, 1-octadecene, Pt(acac)2 (acac = acetylacetonate), Cu(acac)2, iron pentacarbonyl (Fe(CO)5), hexane, 2-propanol, ethanol, and Nafion (5%) were all purchased from Sigma-Aldrich and used without further purification. The commercial Pt (20% mass loading on carbon with a diameter of 2.5–3.5 nm) catalyst was obtained from Fuel Cell Store.

2.2. Synthesis of FePt NPs. Under a gentle flow of N2, 1-octadecene (10 mL), oleic acid (1.28 mL, 4 mmol), oleylamine (1.36 mL, 4 mmol), and Pt(acac)2 (0.2 g, 0.5 mmol) were mixed in a four-necked flask. The mixture was magnetically stirred and heated to 120 °C to generate a light yellow solution. Under a N2 blanket, 0.16 mL (1.23 mmol) of Fe(CO)5 was added into the solution. The solution was heated to 220 °C at a rate of about 3 °C/min and kept at this temperature for 1 h before it was cooled to room temperature. The NPs were separated by adding 2-propanol (50 mL), followed by centrifugation (8500 rpm, 8 min). The NPs were further purified by dispersing into hexane (20 mL) and centrifugation (5000 rpm, 8 min) to remove any undispersed precipitates. The product was precipitated out by adding ethanol (50 mL), the mixture was centrifuged (8500 rpm, 8 min), and the product was redispersed in hexane. The synthesis yielded Fe51Pt49 NPs.

Under the same condition and when 1.07 mmol of Fe(CO)5 was used in the synthesis, Fe33Pt67 NPs were obtained. In the presence of 1.07 mmol of Fe(CO)5, and at 200 °C (or 180 °C), Fe51Pt49 (or Fe5P3P7) NPs were separated. Under the same condition and when 1.07 mmol of Fe(CO)5 was used in the synthesis, Fe9P3P5 NPs were obtained. In the presence of 1.07 mmol of Fe(CO)5, and at 200 °C (or 180 °C), Fe9P3P5 (or FeP3P7) NPs were separated.

2.3. Synthesis of FeCuPt NPs. FeCuPt NPs were prepared by a seed mediated growth of Cu over FePt NPs followed by Cu diffusion into FePt. In a typical synthesis, 1-octadecene (15 mL), oleylamine (2 mL), and Cu(acac)2 (14 mg) were mixed in a four-necked flask. The mixture was magnetically stirred and heated to 80 °C to generate a bluish green solution under a gentle flow of N2. Then 40 mg of Fe2P3P5 NPs (hexane dispersion) was added into the solution. Upon the evaporation of hexane, the solution was heated to 240 °C at a rate of about 3 °C/min and kept at this temperature for 1 h before it was cooled to room temperature. The NPs were separated by adding 2-propanol (50 mL), followed by centrifugation (8500 rpm, 8 min). The NPs were further purified by dispersing into hexane (20 mL) and centrifugation (5000 rpm, 3 min) to remove any undispersed precipitates. The product was precipitated out by adding ethanol (50 mL), the mixture was centrifuged (8500 rpm, 8 min), and the product was redispersed in hexane. The synthesis yielded Fe2P3P5 NPs.

2.4. Catalyst Preparation and NP Structural Control. The as-synthesized NPs and Ketjen-300 J carbon at a weight ratio of 1:2 were mixed in 20 mL of hexane and sonicated for 1 h to deposit NPs on carbon (C–NPs). The product was separated by centrifugation (8500 rpm, 3 min). The C–NPs were dried under ambient conditions and annealed at different temperatures for 1 h in a gas flow of Ar + 5% H2 to control the NPs structures. The product was then resuspended in a mixture of deionized water, 2-propanol, and Nafion (v/v/v = 4/1/0.05). Twenty microliters of catalyst ink (2 mg/mL) was deposited on the working electrode (glassy carbon rotating disk electrode, GC-RDE) that was polished prior to catalyst deposition by 0.1 and 0.05 μm alumina powder and rinsed by sonication in ethanol and in deionized water. The catalyst was dried in ambient condition.

2.5. Characterizations. X-ray diffraction (XRD) patterns of the NPs were collected on a Bruker AXS D8-Advanced diffractometer with Cu Kα radiation (λ = 1.5418 Å). Transmission electron microscopy (TEM) images were acquired from a Philips CM 20 operating at 200 kV. Scanning transmission electron microscopy (STEM) analyses were carried out on a Hitachi HD2700C (200 kV) with a probe aberration corrector, at the Center for Functional Nanomaterials, Brookhaven National Lab. The electron energy loss spectroscopy (EELS) line-scan was obtained by a high-resolution Gatan-Enfina ER with a probe size of 1.3 Å. A power law function was used for EELS background subtraction. TEM and high-resolution TEM (HRTEM) samples were prepared by depositing a single drop of diluted NPs dispersion on amorphous carbon-coated copper grids. The inductively coupled plasma-atomic emission spectroscopy (ICP-AES) measurements were carried on a JY2000 Ultrac ECP atomic emission spectrometer equipped with a JY AS 421 autosampler and 2400gg/mm holographic grating. Electrochemical measurements were performed on an Autolab 302 potentiostat with glassy carbon rotating disk (5 mm in diameter) as a working electrode, Ag/AgCl (4 M KCl) as a reference electrode, and platinum wire as a counter electrode.

2.6. Electrochemical Measurements. The NPs were first subject to cyclic voltammetry (CV) scans between −0.2 and 1.0 V (vs Ag/AgCl) at 100 mV/s in N2-saturated 0.1 M HClO4 until a stable CV was obtained (150 scans for the fcc-FePt and 300 scans for the fct-FePt NPs). Once the core/shell FePt/Pt NPs were obtained, their CVs were recorded at a scan rate of 50 mV/s in N2-saturated 0.1 M HClO4, and were used to estimate electrochemically active surface area (ECASA). ORR polarization curves were recorded by linear-sweep voltammetry (LSV) at a scan rate of 10 mV/s in O2-saturated 0.1 M HClO4 with the GC-RDE rotating at 1600 rpm.

2.7. QM–MM Simulations. Core/shell NPs are modeled by 8 nm cuboctahedrons with eight (111) facets and six (100) facets. The NP consists of an fcc-Pt shell (with three atomic layers) and a FePt or FeCuPt core. ∆E0 relative to the flat Pt(111) surface is determined by placing an O atom at the hollow site on the (111) facet of fcc-Pt, following

$$\Delta E_0 = (E_{QM/MM}[NP + O] - E_{QM/MM}[NP])$$

where $E_{QM/MM}[NP+O]$ and $E_{QM/MM}[NP]$ are total energies of NPs with and without O adsorbate, respectively, from QM–MM calculations. $E_{QM}[Pt(111)+O]$ and $E_{QM}[Pt(111)]$ are the total energies of the flat Pt(111) surface with and without the absorbed O atom calculated by DFT. The QM–MM simulation details are provided in the Supporting Information (Text S1).

2.8. Equilibrium Lattice Constants of FePt and FeCuPt from DFT Calculations. A periodic supercell consisting of 108 atoms is used to determine the atomic structure of FePt or FeCuPt cores. For fcc-Fe(Cu)Pt/Pt and Pt and (Cu) atoms are randomly arranged in the supercell. For fct-Fe(Cu)Pt/Pt, alternating Pt and Fe(Cu) layers are arranged in the supercell. Fe and Cu atoms are randomly arranged in the Fe (Cu) atom layers. All atoms are fully relaxed under constant zero pressure by using the DFT calculations, and details are provided in the Supporting Information (Text S2).

3. RESULTS AND DISCUSSION

The fcc-FePt NPs were synthesized by the reduction of platinum acetylacetonate, Pt(acac)2, and thermal decomposition of iron pentacarbonyl, Fe(CO)5, in the presence of oleylamine and oleic acid as reported.20 This simple mixing and heating approach led to the formation of monodisperse FePt NPs with a high yield (≥97% based on Pt) and could be scaled-up for mass production. Fe/Pt compositions were controlled by Fe(CO)5/Pt(acac)2 molar ratios and reaction temperatures and were analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Transmission electron microscopy (TEM) images show that the as-synthesized fcc-Fe2P3P5 NPs
TEM images of the other Pt-rich FePt NPs of similar sizes are cubelike with lateral dimension of 8.5 ± 0.5 nm (Figure 1a; STEM and STEM-electron energy loss spectroscopy (STEM-EELS), as shown in Figures 1d,e and S3 (Supporting Information). Both the fcc- and fct-Fe51Pt49 NPs show a Pt shell of ~0.6 nm (ca. three atomic layers) with the FePt cores maintaining their structures. In addition, the alternate Pt and Fe layers in the fct-FePt core region are clearly indicated by their brighter (high Z contrast for Pt) and darker (low Z contrast for Fe) contrasts. In the core/shell NPs, the Fe/Pt composition is stabilized at 25/75 in the fcc-FePt/Pt and 26/74 in the fct-FePt/Pt, indicating that the core/shell NPs have the same Fe/Pt ratios. The electrochemically active surface area (ECASA) of the FePt/Pt, as well as the commercial Pt (2.5–3.5 nm Pt NPs; Figure S4, Supporting Information), were obtained by integrating the hydrogen underpotential desorption (Hupd) peaks of their cyclic voltammograms (CVs) (Figure S5, Supporting Information). Their ORR polarization curves are shown in Figure 1f with the half-wave potentials (E1/2) at 0.562 V (for the fct-FePt/Pt) and 0.533 V (for the fcc-FePt/Pt). As a comparison, the E1/2 of the commercial Pt is at 0.531 V, at which the core/shell NPs have a specific activity of 2.1 mA/cm² (for the fct-FePt/Pt) and 0.89 mA/cm² (for the fcc-FePt/Pt).

Since both fcc-FePt/Pt and fct-FePt/Pt are monodisperse NPs with the same size, shape, Fe/Pt ratio, and Pt thickness (ca. three atomic layers of Pt), their ORR catalysis difference must originate from structure-induced surface change. To understand this change, we performed QM–MM simulations to calculate Pt–O binding energies on the surface of the FePt/Pt NPs (Supporting Information). The QM–MM modeling combines both the quantum mechanical and classical descriptions, where the QM density functional theory (DFT) is applied to reactive sites to capture chemical reactions, while the long-range strain field of NPs is handled by the classical MM method. As a result, the QM–MM method can treat much larger particle sizes (e.g., 8 nm) than previously feasible (~1 nm). We built an 8 nm cuboctahedral core/shell NP model consisting of Fe50Pt50 alloy core (fcc- or fct-FePt) and fcc-Pt shell (three atomic layers) (Figure 2a,b). The core/shell FePt/Pt NPs have a theoretical composition of around Fe25Pt75, consistent with the FePt/Pt NPs studied experimentally. Figure 2c illustrates atomic configuration of a cuboctahedral NP, which is partitioned to the QM region and MM region. By using QM–MM and by placing an O atom at the center of the QM region, we calculated ΔE0 values of the fcc-FePt/Pt and fct-FePt/Pt to be 0.26 and 0.23 eV, respectively. Commercial Pt catalyst was also simulated to have a ΔE0 of 0.1 eV based on the QM–MM method and the 3 nm NP model, which was consistent with the previous reported value through DFT calculations. We can easily expect that a NP catalyst more active than commercial Pt NP should possess a ΔE0 in the range of 0.1–0.3 eV (0.2 eV is the optimal value). Our fcc-FePt/Pt and fct-FePt/Pt fall into this regime. As the ΔE0 value of the fct-FePt/Pt is closer to the optimal value of 0.20 eV, the fct-FePt/Pt shows higher ORR activity than the fcc-FePt/Pt.

ΔE0 is related to the compression (or stretch) of Pt (i.e., Pt strain) on the catalyst surface. In our FePt/Pt core/shell structure this strain is caused by the crystal lattice mismatch between the core and the shell. Using the supercell models (Figure 2d,e and Supporting Information) and DFT, we calculated the equilibrium crystalline lattice constants (Table S1, Supporting Information) and the surface Pt strain (ε) of the fcc- and fct-FePt/Pt and compared them with fcc-Pt (Table 1).
Both fcc- and fct-FePt have smaller lattice constants than Pt, and the corresponding surface Pt strains are 3%−5%, higher than the 2.3% required for the optimal ΔEo (0.20 eV).22 When the fcc-FePt serves as a core, the surface Pt is slightly overcompressed (ΔEo = 0.26 eV). But when fcc-FePt transforms to fct-FePt in the core, the interplanar distance of the core expands in the [100]/[010] directions and shrinks in the [001] direction. The overall effect is to relieve the overcompression on the Pt surface, resulting in a better ΔEo and higher activity for ORR.

To further improve ΔEo by releasing the overcompression on the Pt shell, the fct core structure should be expanded. Our DFT calculations show that when Fe atoms are substituted partially by Cu atoms, the lattice constant can be increased (Table S1, Supporting Information). With the similar core/shell structures, our theoretical models illustrated in Figure 2a,b can be readily extended to FeCuPt (Figure S6, Supporting Information) with the core composition of Fe25Cu25Pt50. The QM−MM simulations on FeCuPt/Pt demonstrated that the Cu substitution in FePt could further reduce the overcompression on the Pt shell (Table 1). As a result, ΔEo of the fct-FeCuPt/Pt was reduced to 0.22 eV, being the closest to the optimal value in our studied four core/shell NPs. This optimized ΔEo is predicted to give the fct-FeCuPt/Pt the balanced energetics for the adsorption and desorption of oxygenated intermediates, which could further enhance the ORR catalytic performance.

To prove experimentally the effect of Cu on Pt strain release and ORR catalysis enhancement, we synthesized fcc-FeCuPt NPs by reacting FePt NPs with Cu(acac)2 and oleylamine in 1-octadecene at 240 °C to facilitate Cu(acac)2 reduction and Cu diffusion into FePt NPs. The Cu content was controlled by FePt/Cu(acac)2 ratios and Fe25Cu5Pt40, Fe25Cu15Pt50, and Fe50Cu5Pt50 NPs were synthesized. TEM images show that the FeCuPt NPs have size (8.5 ± 0.5 nm for Fe25Cu5Pt50, 8.6 ± 0.5 nm for Fe25Cu15Pt50, and 8.8 ± 0.6 nm for Fe50Cu5Pt50) and morphology (cubelike) similar to those of the FePt NPs (Figure 3a−c). Once supported on C and annealed, these FeCuPt NPs were well-dispersed on C (Figure 3d) and showed a Cu-dependent fcc−fct transition (Figure 4). At 400 °C, all FeCuPt are still fcc NPs, showing the homogeneous trimetallic FeCuPt NPs were well-dispersed on C (Figure 3d) and showed a Cu-dependent fcc−fct transition (Figure 4). At 400 °C, all FeCuPt are still fcc NPs, showing the homogeneous trimetallic...
solid solution structures (Figure 5a). At 650 °C, both Fe38Cu15Pt47 and Fe25Cu23Pt52 NPs showed better fcc–fct transition than the Fe19Cu35Pt46 NPs, indicating that the presence of too much Cu prevents the formation of the fct structure, which is consistent with what has been reported in the thin film studies.46–49 The Fe25Cu23Pt52 NPs were found to show the best ORR activity in the current study and were chosen as a representative catalyst to study the effect of Cu on Pt strain and ORR catalysis.

Similar to the Fe31Pt49 NPs, the fcc- and fct-Fe25Cu23Pt52 NPs could also be converted into the core/shell FeCuPt/Pt with the Pt shell being ~0.6 nm (ca. three atomic layers) thick, as indicated by STEM-EELS line scans of the FeCuPt/Pt structure (Figures 5b and S7, Supporting Information). The intermetallic structure, represented by the periodic contrast change in the core region of the fct-FeCuPt/Pt, is clearly visible in the HAADF-STEM image (Figure 5c). HAADF-STEM line scans normalized with Z contrast of different atoms in two different regions on the fct-FeCuPt/Pt NP show the characteristic single-component Pt shell and intermetallic fct-FeCuPt core (Figure 5d).

Upon comparing the CVs and ORR polarization curves of the FePt/Pt with those of the FeCuPt/Pt NPs obtained under the same detection conditions (Figures 6a and S8, Supporting Information), we can see that the ORR curves of the FeCuPt NPs are more positively shifted than those of the FePt NPs. The E1/2 of the fct-FeCuPt/Pt NPs is at 0.574 V, higher than that of the fct-FePt/Pt NPs at 0.562 V (Figure 6b). ORR polarization curves of the fct-FeCuPt/Pt NPs before and after 10 000 potential scans between 0.4 and 0.7 V (d) TEM image of the fct-FeCuPt/Pt NPs after 10 000 potential scans.

4. CONCLUSION

The new strategy presented here in tuning Pt shell strain by controlling the FePt structure is a highly efficient way to enhance core/shell FePt/Pt NP catalysis. The FePt/Pt NPs are synthesized by electro-anodization of the FePt alloy NPs. The core FePt structure is controlled to be fcc or fct and the Pt shell is in ca. three atomic layers. The fct-FePt/Pt NPs show much higher activity for ORR than the fcc ones, and the QM–MM simulations reveal that this activity enhancement is due to the release of overcompressed Pt strain and to the improvement of Pt–O binding energy. Our simulations also suggest that the overcompressed strain observed in FePt/Pt can be further released when Fe in the FePt structure is partially replaced by Cu, and the ΔE0 of fct-FeCuPt/Pt can reach 0.22 eV, which is the closest to the optimal 0.20 eV predicted on a Pt surface. Experimentally, fct-FeCuPt/Pt NPs are indeed the most efficient ORR catalyst, showing nearly 10 times higher specific activity than the benchmark Pt catalyst. Our report offers concrete evidence that surface strain in a core/shell NP can be readily tuned by the core structure to achieve catalytic optimization. The strategy presented here is not limited to FePt/Pt NPs but can be extended to other core/shell NPs as well, providing a novel approach to rational tuning of NP catalytic efficiency for many chemical reactions.

ASSOCIATED CONTENT

Supporting Information

Texts S1 and S2, giving the details of QM-MM simulations and DFT calculations; Table S1, providing the DFT-calculated crystalline lattice constants of all FePt and FeCuPt cores;
Figure S1–S8, giving additional TEM images, HAADF-STEM images, STEM-EELS line scans, CVs, and theoretic models; and Reference S1–S10 for Texts S1 and S2. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

ssun@brown.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the U.S. Army Research Laboratory and the U.S. Army Research Office under the Multi University Research Initiative (MURI, grant number W911NF-11-1-0353) on “Stress-Controlled Catalysis via Engineered Nanostructures”. Electron microscopy work carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

REFERENCES

