FUNCTIONAL ANALYSIS SCREENING FOR MULTIPLE TOPOGRAPHIES OF PROBLEM BEHAVIOR

Tara A. Fahmie
California State University, Northridge

INTRODUCTION

A functional analysis (FA) is an experimental assessment procedure that is used to determine why a problem behavior (PB) occurs and to help develop a treatment that decreases PB.

Research suggests to assess one PB at a time to determine the most accurate results from an FA, but this could be time consuming if there are multiple topographies of PB.

A review of FA outcomes was conducted, and it was reported that approximately 15% of all published FA cases include subjects with multiple topographies of PB.

There have been several solutions proposed in the literature such as reinforcing aggregate responses in a single FA or conducting an extinction analysis for PB, but the proposed solutions still pose a problem with efficiency and accuracy of results.

Purpose:

To develop a method for assessing multiple topographies of PB during a single assessment and evaluate the predictive validity of the proposed method.

METHOD

Participants & Setting

School-aged children with developmental and intellectual disabilities

Safeguarded secluded area or assessment room

Dependent Variables

Target behaviors (i.e., behavior to be assessed in phase 1)

Non-target behavior (i.e., behaviors to be predicted in phase 1 and verified in phase 2)

Design

Single-subject multielement design

EXPERIMENTAL SEQUENCE

Phase 1: Prediction for Non-Target Behaviors

Indirect Assessment

Direct Assessment

Functional Analysis of Target Behavior

Consequences provided for the target behavior and data collection on non-target behaviors

Phase 2: Verification for Non-Target Behaviors

Verify Social

Verify Automatic

Verify Inconclusive

RESULTS

Target Behavior

Non-Target Behaviors

DISCUSSION

Previous research has begun to explore methods to reduce functional analysis time (e.g., screening for an automatic function in the beginning of an analysis), providing consequences for multiple topographies in a single analysis, using unique designs or measurement systems.

The current study expands previous research by screening the function of multiple topographies within a single analysis. Preliminary results suggest that our procedure produced efficient and accurate predictions for some, but not all, topographies. More importantly, the procedure has not yet produced any inaccurate predictions. Thus, our study may prove valuable to clinicians who are assessing multiple topographies. More importantly, the procedure has not yet produced any inaccurate predictions. Thus, our study may prove valuable to clinicians who are assessing multiple topographies.