1.2: 3-6, 15-16, 17-24, 25-28, 29-34

- 1) Find all (x_0, y_0) such that the initial value problem with $y(x_0) = y_0$ has a unique solution y(x) on a region with x near x_0 . Do not solve.
 - (a) $y \frac{dy}{dx} + y^2 = \tan(x)$ (b) $(x^2 - 1) \frac{dy}{dx} = (y - 2)^{\frac{2}{3}}$.

2.1: 1-4, 19-20, 21-27, 29-30, 38-40

- 2) The direction field to $y' = y^2 2x$ is plotted above. Sketch the solutions to the initial value problems.
 - (a) $y' = y^2 2x, y(0) = -2.$
 - (b) $y' = y^2 2x, y(0) = 0.$
 - (c) $y' = y^2 2x, y(0) = 1.$
- 3) Sketch the general solutions to the Autonomous ODE's by finding the critical points and identifying where the solutions are increasing/decreasing. Do not solve.
 - (a) $\frac{dy}{dx} = 5y^2 y^3$ (b) $\frac{dy}{dx} = \frac{y^2 - y - 2}{y^2 + 1}$
- 4) Sketch the solutions to the initial value problems. Do not solve. (Hint: It may help to sketch the general solution first.)

(a)
$$\frac{dy}{dx} = y^2 - 6y + 5$$
, $y(0) = 4$.
(b) $\frac{dy}{dx} = (y - 2)^2$, $y(1) = 0$.

(2.2: 1-11, 15-18, 21-22, 23-26, 29-30, 31-33, 36, 43)

- 5) (a) Find an explicit solution to the IVP. x^{dy}/_{dx} y² = 1, y(1) = -1.
 (b) Find an implicit solution to the IVP. (xy + x)^{dy}/_{dx} = y ln(x), y(e) = 1.
- 6) Find an explicit solution to the initial value problem. Then determine the maximum interval on which the solution is defined.
 - (a) $y' = y^2$, y(2) = 1.
 - (b) xy' = -2y, y(2) = 1.
- 7) Solve the initial value problem in terms of a definite integral.
 - (a) $xy' = e^{2x}, y(1) = 3.$
 - (b) $\frac{dy}{dx} = \frac{e^{x^2}}{y^2}, \ y(2) = 3.$

(2.3: 1-24, 25-36, 43-48)

- 8) Find the general solutions.
 - (a) $\frac{dy}{dx} 2xy = x$.

(b)
$$x\frac{dy}{dx} + (x-2)y = x^3$$
.

(c) $(x^2 + 1)\frac{dy}{dx} + xy = x.$

2.2, 2.3: Be able to recognize if an equation is linear or separable.

9) Find explicit solutions to the initial value problems.

(a)
$$e^x \frac{dy}{dx} + 2xy^2 = 0$$
, $y(0) = 1$.
(b) $\cos(x)\frac{dy}{dx} + \sin(x)y = 1$, $y(0) = 2$.

(2.5: 1-8, 11-12, 15-19, 21-22)

10) Solve the IVP's using the substitution y = xu.

(a)
$$\frac{dy}{dx} = 1 - \frac{y}{x} + \left(\frac{y}{x}\right)^2$$
, $y(1) = 3$.
(b) $\frac{dy}{dx} = \frac{2x^2 + y^2}{xy}$, $y(1) = 2$.

3.1: 1-8, 11-12, 13-18, 21-25, 27-28, 29-30, 35-38

- 11) A frozen potato of temperature $25^{\circ} F$ is placed in an oven of temperature $325^{\circ} F$.
 - (a) Using Newton's Law of Cooling/Heating, solve for the temperature T(t).
 - (b) Suppose you check that the temperature of the potato is 125° after 20 minutes. What is k for this potato? (Write an exact answer.)
 - (c) Sketch a graph of the temperature T(t).
- 12) A tank contains 100 gallons of water and 20 pounds of salt. Water containing .1-lb/gal of salt enters the tank at a rate of 3 gal/min, while water drains from the tank at the same rate.
 - (a) Solve for the amount of salt in the tank, x(t).
 - (b) Sketch a graph of x(t).
- 13) A tank contains 100 gallons of water and 20 pounds of salt. Water containing .1-lb/gal of salt enters the tank at a rate of 3 gal/min, while water drains from the tank at a rate of 1 gal/min. Solve for the amount of salt in the tank, x(t).
- 14) A series *RL*-circuit has L = 2H and $R = 10\Omega$
 - (a) Find the current $\mathbf{i}(t)$ through the circuit if I(0) = 1 A and the input voltage is E(t) = 100t V.
 - (b) Sketch the graph of $\mathbf{i}(t)$.
- 15) A package of mass $m = 100 \, kg$ is dropped from an airplane. Suppose it is attached to a parachute, subject to air resistance, such that the downward velocity satisfies $m \frac{dv}{dt} = mg kv$, where k is a positive constant and $g = 9.8m/s^2$.
 - (a) Suppose you designed the parachute such that the velocity would approach 10 m/s if $t \to \infty$. What is k?
 - (b) Solve for v(t), assuming v(0) = 55 m/s.
 - (c) Sketch the solution that satisfies parts a) and b).

(4.1: 1-6, 9-10, 15-19, 21, 23-28)

- 16) Determine whether the given set of functions is linearly dependent on $(-\infty, \infty)$.
 - (a) $\{e^{2x}\cos(x), e^{2x}\sin(x)\}$
 - (b) $\{x^3, x^2, x\}$.
 - (c) $\{1, \sin^2(x), \cos(2x)\}$

17) Verify that the given set of functions forms a fundamental solution set on the given interval.

(a)
$$x^2y'' - 5xy' + 9y = 0$$
, $\{x^3, x^3 \ln(x)\}$, on $(0, \infty)$.
(b) $(x-2)y'' - xy' + 2y = 0$, $\{e^x, x^2 - 2x + 2\}$, on $(-\infty, 2)$
 $\overbrace{4.2: 1-4, 6, 9-12, 16}$

18) Verify that $y_1(x)$ solves the ODE. Then find the general solution by reduction of order.

(a)
(b)
$$xy'' - y' + (1 - x)y = 0$$
, $y_1 = e^x$.

(4.3: 1-11, 15-24, 29-31, 35-36, 49-58)

- 19) Find the general solution to the higher order constant coefficient ODE's.
 - (a) y''' + 4y'' + 5y' = 0.
 - (b) y''' + 3y'' + 3y' + y = 0. (Hint: $(m+1)^3$.)
 - (c) y'''' + 2y'' + y = 0. (Hint: $(m^2 + 1)^2$.)
- 20) Find a constant-coefficient homogeneous ODE with the given general solution.

(a)
$$y = c_1 e^{-3x} \cos(x) + c_2 e^{-3x} \sin(x)$$
.
(b) $y = c_1 e^{2x} + c_2 x e^{2x} + c_3 x^2 e^{2x}$.
(c) $y = c_1 + c_2 x + c_3 \cos(5x) + c_4 \sin(5x)$.

(4.4: 1-14, 19, 21, 27-34; 4.5: 35-50, 55-58)

21) Solve the initial value problems by undetermined coefficients.

(a)
$$y'' - 2y' = 4x + 3e^{-x}$$
, $y(0) = 1$, $y'(0) = 2$.
(b) $y'' - 2y' + y = 2e^x - e^{2x}$, $y(0) = 0$, $y'(0) = 1$.

- 22) Solve the initial value problems.
 - (a) $y'' + \omega^2 y = \sin(\gamma x)$ $(\gamma \neq \omega)$, y(0) = 0, y'(0) = 0. (b) $y'' + \omega^2 y = \sin(\omega x)$, y(0) = 0, y'(0) = 0.

4.6: 1-6, 9, 11-12, 15, 23-26, 27-28; 4.7: 19-24

- 23) Find a particular solution by variation of parameters. Show that you get the same answer that you would by undetermined coefficients. $y'' y' 2y = e^{3x}$.
- 24) (a) Find a particular solution to $y'' + y = \sec^3(x)$.
 - (b) Find the general solution to $y'' + y = \sec^3(x)$.
 - (c) Solve the initial value problem $y'' + y = \sec^3(x)$, $y(\pi) = 0$, $y'(\pi) = 1$.
- 25) $\{x, x^3\}$ is a fundamental solution set to $x^2y'' 3xy' + 3y = 0$. Use variation of parameters to find the general solution to $x^2y'' 3xy' + 3y = x^5$.
- 26) $\{x, x \ln(x)\}$ is a fundamental solution set to $x^2y'' xy' + y = 0$. Use variation of parameters to find a particular solution to $x^2y'' xy' + y = x \ln(x)$.
- 27) Find a particular solution, using **definite integrals**. $y'' y = \frac{1}{x^4+1}$.

4.4, 4.6: Know when to use undetermined coefficients and when to use variation of parameters.

- 28) Find the general solutions.
 - (a) $y'' + 2y' + y = \frac{e^{-x}}{x^3}$ (b) $y'' + 2y' + 2y = xe^{-2x}$

(4.9: 1-7, 21-22)

29) Solve the systems by substitution/elimination.

(a)

$$\begin{array}{rcl} \frac{dx}{dt} &=& 3x - 2y + t & x(0) = 1 \\ \frac{dy}{dt} &=& 2x - y + 3 & y(0) = 0 \end{array}$$

(b) $\frac{dx}{dt} = x - y \qquad x(0) = 1$ $\frac{dy}{dt} = x + y + 2e^{2t} \qquad y(0) = 2$

5.1: 1-6, 8, 21-24, 25-31, 33-37, 41-42, 49-53, 56-57

30) An object of mass m = 5 kg is attached to an unforced spring (F(t) = 0), with spring constant k = 25 N/m and a damping force of 10 times the velocity. The object starts at 1 meter below equilibrium, and has an initial velocity 1 m/s towards equilibrium (upwards).

- (a) Solve for the position x(t).
- (b) Give a sketch of the solution.
- (c) Is the spring overdamped, critically damped, or underdamped?
- 31) A ball of mass m = 1 kg is attached to an unforced spring (F(t) = 0), with spring constant k = 9 N/m and a damping force of 6 times the velocity. The object starts at equilibrium, with initial velocity 3 m/s upwards.
 - (a) Solve for the position of the ball.
 - (b) Is the spring overdamped, critically damped, or underdamped?
 - (c) Show that the maximum displacement of the ball from equilibrium is $\approx \frac{1}{2.7}$ meters.
 - (d) Sketch the solution.
- 32) An object of mass m = 3 kg is attached to a forced spring, with spring constant k = 6 N/m and a damping force of 9 times the velocity. The object starts at equilibrium with no initial velocity.
 - (a) Solve the position of the spring if the forcing function is $F(t) = 30 \cos(t) N$.
 - (b) Identify the transient and steady state solutions.

7.1: 1-16, 19-36, 37-38

33) Find the Laplace transforms directly from the definition.

(a)
$$f(t) = te^{2t}$$
.
(b) $f(t) = \begin{cases} e^t & 0 \le t < 3\\ 0 & t \ge 3 \end{cases}$.
(c) $f(t) = \begin{cases} t & 0 \le t < 2\\ 2 & t \ge 2 \end{cases}$.

7.2: 1-30, 35-44, 45-46

34) Find $\mathcal{L}^{-1}\{F(s)\}.$

(a)
$$F(s) = \frac{6s+4}{s^3(s+2)}$$
.
(b) $F(s) = \frac{8s^2}{s^4-16}$.
(c) $F(s) = \frac{8s-24}{(s^2+1)(s^2+9)}$

35) Solve the initial value problems using Laplace transforms.

(a)
$$y'' - 9y = 18$$
, $y(0) = 0$, $y'(0) = 0$.
(b) $y'' + y = 5e^{2t}$, $y(0) = 0$, $y'(0) = 3$.

(c)
$$y'' + 2y' = 5\cos(t), y(0) = 1, y'(0) = 0.$$

7.3: 1-8, 11-18, 21-30, 37-48, 49-54, 55-57, 59, 61-62, 63-65

36) Solve the initial value problems by Laplace transforms.

(a)
$$y' + 2y = 5e^{-t}\cos(2t), \quad y(0) = -1.$$

(b) $y'' - y' - 2y = 4t, \quad y(0) = 2, \ y'(0) = 3.$
(c) $y'' - y = 2e^{-t}, \quad y(0) = 0, \ y'(0) = 3.$
(d) $y'' + 4y = 25te^{-t}, \quad y(0) = 0, \ y'(0) = 0.$

37) Write in terms of unit step functions. Then find the Laplace transform.

(a)
$$f(t) = \begin{cases} 1 & 0 \le t < 2 \\ 2 & 2 \le t < 3 \\ 4 & t \ge 3. \end{cases}$$

(b)
$$f(t) = \begin{cases} 0 & 0 \le t < 3 \\ 1 & 3 \le t < 5 \\ 0 & t \ge 5. \end{cases}$$

(c)
$$f(t) = \begin{cases} t & 0 \le t < 3 \\ 0 & t \ge 3 \end{cases}$$

(7.4: 1-8, 45, 49-50, 51-52)

38) Find $\mathcal{L}{f}$

- (a) $f(t) = t^2 \sin(2t)$.
- (b) $f(t) = te^t \cos(t)$.

39) Solve by Laplace transforms.

(a)
$$y + \int_0^t y(\tau) d\tau = 5\cos(2t).$$

(b) $y' + \int_0^t y(\tau) d\tau = t + 2, \quad y(0) = 4.$

(7.5: 1-12)

40) Solve the initial value problems.

(a)
$$y'' + 2y' + 5y = 3\delta(t) y(0) = 1, y'(0) = 0.$$

(b) $y'' - y = 2\delta(t - 3), y(0) = 3, y'(0) = -1.$
8.1: 1-6, 7-10, 11-16, 17-20, 21-23

41) Verify that the vectors are a fundamental solution set of the system.

(a)
$$\begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} 1 & 2 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
. $\vec{X}_1(t) = \begin{bmatrix} e^{-t} \\ -e^{-t} \end{bmatrix}$, $\vec{X}_2(t) = \begin{bmatrix} (2t+1)e^{-t} \\ -2te^{-t} \end{bmatrix}$.
(b) $\begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} 1 & -2 \\ 5 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$. $\vec{X}_1(t) = \begin{bmatrix} 2\cos(3x) \\ \cos(3x) + 3\sin(3x) \end{bmatrix}$, $\vec{X}_2(t) = \begin{bmatrix} 2\sin(3x) \\ \sin(3x) - 3\cos(3x) \end{bmatrix}$

8.2: 1-6, 13, 21-24, 31, 35-40, 48

- $\begin{array}{l} 42) \quad \frac{dx}{dt} = x y.\\ \frac{dy}{dt} = 4x + 5y. \end{array}$
 - (a) Write the system in matrix form.
 - (b) Find a vector solution by eigenvalues/eigenvectors.
 - (c) Using the vector solution, write the solutions x(t) and y(t).
- 43) Do the same as the previous question, for the initial value problem $\frac{dx}{dt} = 8x + 6y, \quad x(0) = -1.$ $\frac{dy}{dt} = -3x y, \quad y(0) = 2.$
- 41) Do the same as the previous question, for the initial value problem $\frac{dx}{dt} = x 2y, \quad x(0) = 1.$ $\frac{dy}{dt} = 5x - y, \quad y(0) = 2.$

Transforms and equations.

•

•

•

•

f(t)	F(s)
$\delta(t)$	1
1	$\frac{1}{s}$
t^n	$\frac{\vec{n!}}{a^{n+1}}$
$\sin(\omega t)$	$\frac{\omega}{s^2+\omega^2}$
$\cos(\omega t)$	$\frac{s}{s^2 \pm \omega^2}$
e^{at}	$\frac{1}{s-a}$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$
$e^{at}\sin(\omega t)$	$rac{\omega}{(s-a)^2+\omega^2}$
$e^{at}\cos(\omega t)$	$\frac{s-a}{(s-a)^2+\omega^2}$
$e^{at}f(t)$	F(s-a)
$\delta(t-a)$	e^{-a}
u(t-a)	$\frac{1}{s}e^{-as}$
$\int f(t-a)u(t-a)$	$F'(s)e^{-as}$
f(t)u(t-a)	$\mathcal{L}{f(t+a)}e^{-as}$
$\frac{d^n}{dt^n}f(t)$	$s^{n}F(s) - s^{n-1}f(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}(0)$

$$\frac{dT}{dt} = k(T - T_m).$$
$$L\frac{d\mathbf{i}}{dt} + R\mathbf{i} = E(t).$$
$$m\frac{dv}{dt} = mg - kv.$$
$$m\frac{d^2x}{dt^2} + \beta\frac{dx}{dt} + kx = F(t)$$