Math 280: Final Study Guide, Fall 2019
1.2: 3-6, 15-16, 17-24, 25-28, 29-34

1) Find all $\left(x_{0}, y_{0}\right)$ such that the initial value problem with $y\left(x_{0}\right)=y_{0}$ has a unique solution $y(x)$ on a region with x near x_{0}. Do not solve.
(a) $y \frac{d y}{d x}+y^{2}=\tan (x)$
(b) $\left(x^{2}-1\right) \frac{d y}{d x}=(y-2)^{\frac{2}{3}}$.
2.1: 1-4, 19-20, 21-27, 29-30, 38-40

2) The direction field to $y^{\prime}=y^{2}-2 x$ is plotted above. Sketch the solutions to the initial value problems.
(a) $y^{\prime}=y^{2}-2 x, y(0)=-2$.
(b) $y^{\prime}=y^{2}-2 x, y(0)=0$.
(c) $y^{\prime}=y^{2}-2 x, y(0)=1$.
3) Sketch the general solutions to the Autonomous ODE's by finding the critical points and identifying where the solutions are increasing/decreasing. Do not solve.
(a) $\frac{d y}{d x}=5 y^{2}-y^{3}$
(b) $\frac{d y}{d x}=\frac{y^{2}-y-2}{y^{2}+1}$
4) Sketch the solutions to the initial value problems. Do not solve. (Hint: It may help to sketch the general solution first.)
(a) $\frac{d y}{d x}=y^{2}-6 y+5, \quad y(0)=4$.
(b) $\frac{d y}{d x}=(y-2)^{2}, \quad y(1)=0$.
2.2: 1-11, 15-18, 21-22, 23-26, 29-30, 31-33, 36, 43
5) (a) Find an explicit solution to the IVP. $x \frac{d y}{d x}-y^{2}=1, \quad y(1)=-1$.
(b) Find an implicit solution to the IVP. $(x y+x) \frac{d y}{d x}=y \ln (x), \quad y(e)=1$.
6) Find an explicit solution to the initial value problem. Then determine the maximum interval on which the solution is defined.
(a) $y^{\prime}=y^{2}, y(2)=1$.
(b) $x y^{\prime}=-2 y, y(2)=1$.
7) Solve the initial value problem in terms of a definite integral.
(a) $x y^{\prime}=e^{2 x}, y(1)=3$.
(b) $\frac{d y}{d x}=\frac{e^{x^{2}}}{y^{2}}, y(2)=3$.

2.3: 1-24, 25-36, 43-48

8) Find the general solutions.
(a) $\frac{d y}{d x}-2 x y=x$.
(b) $x \frac{d y}{d x}+(x-2) y=x^{3}$.
(c) $\left(x^{2}+1\right) \frac{d y}{d x}+x y=x$.
2.2, 2.3: Be able to recognize if an equation is linear or separable.
9) Find explicit solutions to the initial value problems.
(a) $e^{x} \frac{d y}{d x}+2 x y^{2}=0, \quad y(0)=1$.
(b) $\cos (x) \frac{d y}{d x}+\sin (x) y=1, \quad y(0)=2$.
2.5: 1-8, 11-12, 15-19, 21-22
10) Solve the IVP's using the substitution $y=x u$.
(a) $\frac{d y}{d x}=1-\frac{y}{x}+\left(\frac{y}{x}\right)^{2}, \quad y(1)=3$.
(b) $\frac{d y}{d x}=\frac{2 x^{2}+y^{2}}{x y}, \quad y(1)=2$.
3.1: 1-8, 11-12, 13-18, 21-25, 27-28, 29-30, 35-38
11) A frozen potato of temperature $25^{\circ} \mathrm{F}$ is placed in an oven of temperature $325^{\circ} \mathrm{F}$.
(a) Using Newton's Law of Cooling/Heating, solve for the temperature $T(t)$.
(b) Suppose you check that the temperature of the potato is 125° after 20 minutes. What is k for this potato? (Write an exact answer.)
(c) Sketch a graph of the temperature $T(t)$.
12) A tank contains 100 gallons of water and 20 pounds of salt. Water containing .1-lb/gal of salt enters the tank at a rate of $3 \mathrm{gal} / \mathrm{min}$, while water drains from the tank at the same rate.
(a) Solve for the amount of salt in the tank, $x(t)$.
(b) Sketch a graph of $x(t)$.
13) A tank contains 100 gallons of water and 20 pounds of salt. Water containing .1-lb/gal of salt enters the tank at a rate of $3 \mathrm{gal} / \mathrm{min}$, while water drains from the tank at a rate of $1 \mathrm{gal} / \mathrm{min}$. Solve for the amount of salt in the tank, $x(t)$.
14) A series $R L$-circuit has $L=2 H$ and $R=10 \Omega$
(a) Find the current $\mathbf{i}(t)$ through the circuit if $I(0)=1 A$ and the input voltage is $E(t)=100 t V$.
(b) Sketch the graph of $\mathbf{i}(t)$.
15) A package of mass $m=100 \mathrm{~kg}$ is dropped from an airplane. Suppose it is attached to a parachute, subject to air resistance, such that the downward velocity satisfies $m \frac{d v}{d t}=m g-k v$, where k is a positive constant and $g=9.8 m / s^{2}$.
(a) Suppose you designed the parachute such that the velocity would approach $10 \mathrm{~m} / \mathrm{s}$ if $t \rightarrow \infty$. What is k ?
(b) Solve for $v(t)$, assuming $v(0)=55 \mathrm{~m} / \mathrm{s}$.
(c) Sketch the solution that satisfies parts a) and b).

4.1: 1-6, 9-10, 15-19, 21, 23-28

16) Determine whether the given set of functions is linearly dependent on $(-\infty, \infty)$.
(a) $\left\{e^{2 x} \cos (x), e^{2 x} \sin (x)\right\}$
(b) $\left\{x^{3}, x^{2}, x\right\}$.
(c) $\left\{1, \sin ^{2}(x), \cos (2 x)\right\}$
17) Verify that the given set of functions forms a fundamental solution set on the given interval.
(a) $x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0, \quad\left\{x^{3}, x^{3} \ln (x)\right\}, \quad$ on $(0, \infty)$.
(b) $(x-2) y^{\prime \prime}-x y^{\prime}+2 y=0, \quad\left\{e^{x}, x^{2}-2 x+2\right\}, \quad$ on $(-\infty, 2)$.

4.2: 1-4, 6, 9-12, 16

18) Verify that $y_{1}(x)$ solves the ODE. Then find the general solution by reduction of order.
(a)
(b) $x y^{\prime \prime}-y^{\prime}+(1-x) y=0, \quad y_{1}=e^{x}$.

4.3: 1-11, 15-24, 29-31, 35-36, 49-58

19) Find the general solution to the higher order constant coefficient ODE's.
(a) $y^{\prime \prime \prime}+4 y^{\prime \prime}+5 y^{\prime}=0$.
(b) $y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=0$. (Hint: $(m+1)^{3}$.)
(c) $y^{\prime \prime \prime \prime}+2 y^{\prime \prime}+y=0$. (Hint: $\left(m^{2}+1\right)^{2}$.)
20) Find a constant-coefficient homogeneous ODE with the given general solution.
(a) $y=c_{1} e^{-3 x} \cos (x)+c_{2} e^{-3 x} \sin (x)$.
(b) $y=c_{1} e^{2 x}+c_{2} x e^{2 x}+c_{3} x^{2} e^{2 x}$.
(c) $y=c_{1}+c_{2} x+c_{3} \cos (5 x)+c_{4} \sin (5 x)$.

4.4: $1-14,19,21,27-34 ; 4.5: 35-50,55-58$

21) Solve the initial value problems by undetermined coefficients.
(a) $y^{\prime \prime}-2 y^{\prime}=4 x+3 e^{-x}, \quad y(0)=1, y^{\prime}(0)=2$.
(b) $y^{\prime \prime}-2 y^{\prime}+y=2 e^{x}-e^{2 x}, \quad y(0)=0, y^{\prime}(0)=1$.
22) Solve the initial value problems.
(a) $y^{\prime \prime}+\omega^{2} y=\sin (\gamma x) \quad(\gamma \neq \omega), \quad y(0)=0, y^{\prime}(0)=0$.
(b) $y^{\prime \prime}+\omega^{2} y=\sin (\omega x), \quad y(0)=0, y^{\prime}(0)=0$.

4.6: 1-6, 9, 11-12, 15, 23-26, 27-28; 4.7: 19-24

23) Find a particular solution by variation of parameters. Show that you get the same answer that you would by undetermined coefficients. $y^{\prime \prime}-y^{\prime}-2 y=e^{3 x}$.
24) (a) Find a particular solution to $y^{\prime \prime}+y=\sec ^{3}(x)$.
(b) Find the general solution to $y^{\prime \prime}+y=\sec ^{3}(x)$.
(c) Solve the initial value problem $y^{\prime \prime}+y=\sec ^{3}(x), \quad y(\pi)=0, y^{\prime}(\pi)=1$.
25) $\left\{x, x^{3}\right\}$ is a fundamental solution set to $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0$. Use variation of parameters to find the general solution to $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=x^{5}$.
26) $\{x, x \ln (x)\}$ is a fundamental solution set to $x^{2} y^{\prime \prime}-x y^{\prime}+y=0$. Use variation of parameters to find a particular solution to $x^{2} y^{\prime \prime}-x y^{\prime}+y=x \ln (x)$.
27) Find a particular solution, using definite integrals. $y^{\prime \prime}-y=\frac{1}{x^{4}+1}$.
4.4, 4.6: Know when to use undetermined coefficients and when to use variation of parameters.
28) Find the general solutions.
(a) $y^{\prime \prime}+2 y^{\prime}+y=\frac{e^{-x}}{x^{3}}$
(b) $y^{\prime \prime}+2 y^{\prime}+2 y=x e^{-2 x}$

4.9: 1-7, 21-22

29) Solve the systems by substitution/elimination.
(a)

$$
\begin{array}{ll}
\frac{d x}{d t}=3 x-2 y+t & x(0)=1 \\
\frac{d y}{d t}=2 x-y+3 & y(0)=0
\end{array}
$$

(b)

$$
\begin{array}{ccc}
\frac{d x}{d t}=x-y & & x(0)=1 \\
\frac{d y}{d t}=x+y+2 e^{2 t} & & y(0)=2
\end{array}
$$

5.1: 1-6, 8, 21-24, 25-31, 33-37, 41-42, 49-53, 56-57

30) An object of mass $m=5 \mathrm{~kg}$ is attached to an unforced spring $(F(t)=0)$, with spring constant $k=25 \mathrm{~N} / \mathrm{m}$ and a damping force of 10 times the velocity. The object starts at 1 meter below equilibrium, and has an initial velocity $1 \mathrm{~m} / \mathrm{s}$ towards equilibrium (upwards).
(a) Solve for the position $x(t)$.
(b) Give a sketch of the solution.
(c) Is the spring overdamped, critically damped, or underdamped?
31) A ball of mass $m=1 \mathrm{~kg}$ is attached to an unforced spring $(F(t)=0)$, with spring constant $k=9 \mathrm{~N} / \mathrm{m}$ and a damping force of of 6 times the velocity. The object starts at equilibrium, with initial velocity $3 \mathrm{~m} / \mathrm{s}$ upwards.
(a) Solve for the position of the ball.
(b) Is the spring overdamped, critically damped, or underdamped?
(c) Show that the maximum displacement of the ball from equilibrium is $\approx \frac{1}{2.7}$ meters.
(d) Sketch the solution.
32) An object of mass $m=3 \mathrm{~kg}$ is attached to a forced spring, with spring constant $k=6 \mathrm{~N} / \mathrm{m}$ and a damping force of 9 times the velocity. The object starts at equilibrium with no initial velocity.
(a) Solve the position of the spring if the forcing function is $F(t)=30 \cos (t) N$.
(b) Identify the transient and steady state solutions.

7.1: 1-16, 19-36, 37-38

33) Find the Laplace transforms directly from the definition.
(a) $f(t)=t e^{2 t}$.
(b) $f(t)=\left\{\begin{array}{cc}e^{t} & 0 \leq t<3 \\ 0 & t \geq 3\end{array}\right.$
(c) $f(t)=\left\{\begin{array}{cc}t & 0 \leq t<2 \\ 2 & t \geq 2 .\end{array}\right.$

7.2: 1-30, 35-44, 45-46

34) Find $\mathcal{L}^{-1}\{F(s)\}$.
(a) $F(s)=\frac{6 s+4}{s^{3}(s+2)}$.
(b) $F(s)=\frac{8 s^{2}}{s^{4}-16}$.
(c) $F(s)=\frac{8 s-24}{\left(s^{2}+1\right)\left(s^{2}+9\right)}$.
35) Solve the initial value problems using Laplace transforms.
(a) $y^{\prime \prime}-9 y=18, y(0)=0, y^{\prime}(0)=0$.
(b) $y^{\prime \prime}+y=5 e^{2 t}, y(0)=0, y^{\prime}(0)=3$.
(c) $y^{\prime \prime}+2 y^{\prime}=5 \cos (t), y(0)=1, y^{\prime}(0)=0$.
7.3: 1-8, 11-18, 21-30, 37-48, 49-54, 55-57, 59, 61-62, 63-65
36) Solve the initial value problems by Laplace transforms.
(a) $y^{\prime}+2 y=5 e^{-t} \cos (2 t), \quad y(0)=-1$.
(b) $y^{\prime \prime}-y^{\prime}-2 y=4 t, \quad y(0)=2, y^{\prime}(0)=3$.
(c) $y^{\prime \prime}-y=2 e^{-t}, \quad y(0)=0, y^{\prime}(0)=3$.
(d) $y^{\prime \prime}+4 y=25 t e^{-t}, \quad y(0)=0, y^{\prime}(0)=0$.
37) Write in terms of unit step functions. Then find the Laplace transform.
(a) $f(t)=\left\{\begin{array}{cc}1 & 0 \leq t<2 \\ 2 & 2 \leq t<3 \\ 4 & t \geq 3\end{array}\right.$
(b) $f(t)=\left\{\begin{array}{lc}0 & 0 \leq t<3 \\ 1 & 3 \leq t<5 \\ 0 & t \geq 5 .\end{array}\right.$
(c) $f(t)=\left\{\begin{array}{cc}t & 0 \leq t<3 \\ 0 & t \geq 3\end{array}\right.$

7.4: 1-8, 45, 49-50, 51-52

38) Find $\mathcal{L}\{f\}$
(a) $f(t)=t^{2} \sin (2 t)$.
(b) $f(t)=t e^{t} \cos (t)$.
39) Solve by Laplace transforms.
(a) $y+\int_{0}^{t} y(\tau) d \tau=5 \cos (2 t)$.
(b) $y^{\prime}+\int_{0}^{t} y(\tau) d \tau=t+2, \quad y(0)=4$.
7.5: 1-12
40) Solve the initial value problems.
(a) $y^{\prime \prime}+2 y^{\prime}+5 y=3 \delta(t) y(0)=1, y^{\prime}(0)=0$.
(b) $y^{\prime \prime}-y=2 \delta(t-3), y(0)=3, y^{\prime}(0)=-1$.
8.1: 1-6, 7-10, 11-16, 17-20, 21-23
41) Verify that the vectors are a fundamental solution set of the system.
(a) $\left[\begin{array}{l}x \\ y\end{array}\right]^{\prime}=\left[\begin{array}{cc}1 & 2 \\ -2 & -3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right] . \quad \vec{X}_{1}(t)=\left[\begin{array}{c}e^{-t} \\ -e^{-t}\end{array}\right], \vec{X}_{2}(t)=\left[\begin{array}{c}(2 t+1) e^{-t} \\ -2 t e^{-t}\end{array}\right]$.
(b) $\left[\begin{array}{l}x \\ y\end{array}\right]^{\prime}=\left[\begin{array}{ll}1 & -2 \\ 5 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right] . \quad \vec{X}_{1}(t)=\left[\begin{array}{c}2 \cos (3 x) \\ \cos (3 x)+3 \sin (3 x)\end{array}\right], \quad \vec{X}_{2}(t)=\left[\begin{array}{c}2 \sin (3 x) \\ \sin (3 x)-3 \cos (3 x)\end{array}\right]$.
8.2: 1-6, 13, 21-24, 31, 35-40, 48
42) $\frac{d x}{d t}=x-y$.
$\frac{d y}{d t}=4 x+5 y$.
(a) Write the system in matrix form.
(b) Find a vector solution by eigenvalues/eigenvectors.
(c) Using the vector solution, write the solutions $x(t)$ and $y(t)$.
43) Do the same as the previous question, for the initial value problem

$$
\begin{array}{lc}
\frac{d x}{d t}=8 x+6 y, & x(0)=-1 \\
\frac{d y}{d t}=-3 x-y, & y(0)=2
\end{array}
$$

41) Do the same as the previous question, for the initial value problem $\begin{array}{ll}\frac{d x}{d t}=x-2 y, & x(0)=1 . \\ \frac{d y}{d t}=5 x-y, & y(0)=2 .\end{array}$

Transforms and equations.

$f(t)$	$F(s)$
$\delta(t)$	1
1	$\frac{1}{s!}$
t^{n}	$\frac{n!}{s^{n+1}}$
$\sin (\omega t)$	$\frac{\omega}{s^{2}+\omega^{2}}$
$\cos (\omega t)$	$\frac{s}{s^{2}+\omega^{2}}$
$e^{a t}$	$\frac{1}{s-a}$
$t^{n} e^{a t}$	$\frac{n!}{(s-a)^{n+1}}$
$e^{a t} \sin (\omega t)$	$\frac{\omega}{(s-a)^{2}+\omega^{2}}$
$e^{a t} \cos (\omega t)$	$\frac{s-a}{(s-a)^{2}+\omega^{2}}$
$e^{a t} f(t)$	$F(s-a)$
$\delta(t-a)$	e^{-a}
$u(t-a)$	$\frac{1}{s} e^{-a s}$
$f(t-a) u(t-a)$	$F(s) e^{-a s}$
$f(t) u(t-a)$	$\mathcal{L}\{f(t+a)\} e^{-a s}$
$\frac{d^{n}}{d t^{n}} f(t)$	$s^{n} F(s)-s^{n-1} f(0)-\ldots-s f^{(n-2)}(0)-f^{(n-1)}(0)$

-

$$
\frac{d T}{d t}=k\left(T-T_{m}\right) .
$$

$$
L \frac{d \mathbf{i}}{d t}+R \mathbf{i}=E(t)
$$

$$
m \frac{d v}{d t}=m g-k v
$$

$$
m \frac{d^{2} x}{d t^{2}}+\beta \frac{d x}{d t}+k x=F(t)
$$

