Chemistry and Biochemistry

Paula Fischhaber

Photo of Dr. Paula Fischhaber
(818) 677-4503
Office location:
3107 Citrus Hall



B.A. Biochemistry, University of Colorado, Boulder
Ph.D., University of Washington, Seattle


University of Texas Southwestern Medical Center at Dallas


CHEM 101, General Chemistry I
CHEM 101D, General Chemistry I Discussion
CHEM 365, Intro to Biochemistry
CHEM 464, Principles of Biochemistry
CHEM 464L, Principles of Biochemistry laboratory
CHEM 465, Topics in Biochemistry
CHEM 461, Biochemistry I
CHEM 461L, Biochemistry I Laboratory
CHEM 462, Biochemistry II
CHEM 462L, Biochemistry II Laboratory
CHEM 566, DNA-Protein Interactions
SCI 100, Science for Life
UNIV 100, Freshman Seminar


Dr. Fischhaber's group is investigating the protein biochemistry of DNA repair in S. cerevisiae (baker’s yeast). In human beings, failure to repair covalent modifications to DNA (DNA damage) by the biologic repair pathways results in genetic mutations and cancer, particularly skin cancer. DNA damage is ubiquitous in living cells and much of it is unavoidable, so DNA repair pathways are crucial for survival.

We use a variety of in vitro biochemical techniques as well as fluorescence microscopy to establish the temporal and spatial relationships among key proteins participating in DNA repair. The ultimate goal is to understand precisely how cells direct themselves toward the most appropriate DNA repair pathway to avoid burdensome levels of mutations that could otherwise give rise to cancer.


  • "Attempted Construction of a Yen1-RFP Yeast Strain and the Investigation of Rad1-Rad10 and Mus81-Mms4 at DNA Ultrafine Bridges", Hafridha Hadi (M.S. Biochemistry, May, 2022)
  • "Investigating Key Proteins Involved in Single-Strand Annealing", Jane Odango (M.S. Biochemistry, May, 2021)
  • "The Roles of Saw1, Rad1-Rad10, and Polymerase d in 3' Flap Removal during Single-strand Annealing in Saccharomyces cerevisiae”, Juan Camberos Felix (M.S. Biochemistry, May, 2019)
  • "The Interplay between the Roles of Saw1, Rad1-Rad10, and Polymerase d in Single-strand Annealing Repair in Saccharomyces cerevisiae”, Fred Fregoso (M.S. Biochemistry, May, 2019)
  • "Toward Determination of the Minimum Binding Domains for the Interaction of Rad52 and Saw1, George Darouj (M.S. Biochemistry, December, 2018)
  • “Polymerase Delta is Required for the Removal of Short Non-homologous DNA Flaps During Single-Strand Annealing Repair”, Aaron D. Miller (M.S. Biochemistry, December, 2017)
  • “Role of SAW1 and MSH2 in Single-Strand Annealing in Saccharomyces cerevisiae, Linette Nalbandyan (M.S. Biochemistry, December, 2016)
  • “Alternative roles for Rad7 in NER and Rad51 in SSA”, Joseph Benoun (M.S. Biochemistry, May 2013)
  • “Recruitment of the Rad1-Rad10 Protein Complex to sites of DNA Double Strand Break Repair and Nucleotide Excision Repair in Saccharomyces cerevisiae: Examination of Rad52, Rad51 and Mre11 in DNA Double Strand Break Repair and Rad1 genetic mutations in DNA Nucleotide Excision Repair by Fluorescence Microscopy”, Destaye Moore, (M.S. Biochemistry May 2011)
  • “Rad51 Strand Exchange Activity Mediates Rad1-Rad10 Recruitment to Synthesis-Dependent Strand Annealing Sites”, Justin Karlin, (M.S. Biochemistry May 2010)
  • “The Temporal Relationship of Nucleotide Excision Repair Factors Rad14 and Rad1-Rad10”, Armen Mardiros, (M.S. Biochemistry May 2009)


  1. SAW1 is Increasingly Required to Recruit Rad10 as SSA Flap-Length Increases from 20-50 Base Pairs in Single-Strand Annealing in S. cerevisiae”, Odango, R.J., Camberos, J. F., Fregoso, F., and Fischhaber, P.L., Biochemistry and Biophysics Reports. (2021), 28, 101125-101131.
  2. “Saw1 localizes to repair sites but is not required for recruitment of Rad10 to repair intermediates bearing short non-homologous 3' flaps during single-strand annealing in S. cerevisiae”, Mardirosian, M., Nalbandyan, L., Miller, A. D., Phan, C., Kelson, E. P. and Fischhaber, P. L. Mol. Cell. Biochem. (2016) 412(1), 131-139.
  3. "Rad7 E3 ubiquitin ligase attenuates polyubiquitylation of Rpn10 and Dsk2 following DNA damage in Saccharomyces cerevisiae". Benoun, J.M., Cortez, D.L., Valencia, A., Moore, D.M., Granda, A., Kelson, E.P. and Fischhaber, P.L. Adv. Biol. Chem. (2015), 5, 239-254.
  4. “FANCD2 and REV1 cooperate in the protection of nascent DNA strands in response to replication stress”, Yang, Y., Liu, Z., Wang, F., Temviriyanukul, P., Ma, X., Tu, Y., Lv, L., Lin, Y.F., Huang, M., Zhang, T., Pei, H., Chen, B.P,. Jansen, J.G., de Wind, N., Fischhaber, P.L., Friedberg E.C., Tang, T.S., Guo, C. NAR (2015), 43(17), 8325-39.
  5. “Toward Therapeutic Targets for SCA3: Insight into the Role of Machado–Joseph Disease Protein Ataxin-3 in Misfolded Proteins Clearance” Li, X., Liu, H., Fischhaber, P. L., Tang, T.S. Progress in Neurobiology (2015), 132, 34-58.
  6. “Epigenetic Modifications as Novel Therapeutic Targets for Huntington’s Disease”, Wang, F., Fischhaber, P.L., Guo, C. and Tang, T. Epigenomics (2014), 6(3), 287-297.
  7. "SAW1 is Required for SDSA Double-Strand Break Repair in S. cerevisiae". Diamante, G., Phan, C., Celis, A.S., Krueger, J., Kelson, E.P. and Fischhaber, P.L. Biochem. Biophys. Res. Commun. (2014), 445, 602-607. 
  8. "Rad51 ATP binding but not hydrolysis is required to recruit Rad10 in synthesis-dependent strand annealing sites in S. cerevisiae". Karlin, J. and Fischhaber, P.L. Adv. Biol. Chem. (2013), 3, 295-303. 
  9. "Rad10-YFP focus induction in response to UV depends on RAD14 in yeast". Mardiros, A., Benoun, J.M., Haughton, R., Baxter, K., Kelson, E.P. and Fischhaber, P.L. Acta Histochem. (2011), 113, 409-415.
  10. "Rad10 exhibits lesion-dependent genetic requirements for recruitment to DNA double-strand breaks in Saccharomyces cerevisiae". Moore, D. M., Karlin, J., González-Barrera, S., Mardiros, A., Lisby, M., Doughty, A., Gilley, J., Rothstein, R., Friedberg, E.C. and Fischhaber, P.L. Nucleic Acids Res. (2009) 37(19), 6429-6438. 
  11. "DNA polymerases for translesion DNA synthesis: enzyme purification and mouse models for studying their function". Fischhaber, P. L., McDaniel, L. D. and Friedberg, E. C., Methods Enzymol. (2006) 408, pp. 355-378. 
  12. "How are specialized (low-fidelity) eukaryotic polymerases selected and switched with high-fidelity polymerases during translesion DNA synthesis?" Fischhaber, P. L. and Friedberg, E. C. DNA Repair (Amst). (2005) 4(2), 279-83. 
  13. "DNA repair in yeast". Friedberg, E. C., Fischhaber, P. L. Encyclopedia of Molecular Cell Biology and Molecular Medicine 2nd Ed. Meyers, R. A., Editor (2004) 3, 427-447. 
  14. "Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis". Guo, C., Fischhaber, P. L., Luk-Paszyc, M., Masuda, Y., Zhou, J., Kamiya, K., Kisker, C. and Friedberg, E. C. EMBO Journal (2003) 22(24), 6621-6630. 
  15. "TB or not TB: How Mycobacterium tuberculosis may evade drug treatment". Friedberg, E. C. and Fischhaber, P. L. Cell (2003) 113, 139-140. 
  16. "DNA replication fidelity". Friedberg, E. C. and Fischhaber, P. L. Nature Encyclopedia of the Human Genome (2003), 2, 167-171. 
  17. "Human polymerase kappa bypasses and extends beyond thymine glycols during translesion synthesis in vitro, preferentially incorporating correct nucleotides". Fischhaber, P. L., Gerlach, V. L., Feaver, W. J., Hatahet, Z., Wallace, S. S. and Friedberg, E. C. J. Biol. Chem. (2002), 277(40), 37604-37611. 
  18. "Error-prone DNA polymerases: novel structures and the benefits of infidelity". Friedberg, E. C., Fischhaber, P. L. and Kisker, C. L. Cell (2001) 107, 9-12. 
  19. "Purification and characterization of Pol kappa, a DNA polymerase encoded by the human DINB1 gene". Gerlach, V. L., Feaver, W. J., Fischhaber, P. L. and Friedberg, E. C. J. Biol. Chem. (2001) 276(1), 92-98.