Chemistry and Biochemistry

Joseph Teprovich

Teprovich photo
Assistant Professor
(818) 677-4239
Office location:
EH 2305



Ph.D Chemistry, Lehigh University, 2008
B.S. Chemistry, DeSales University, 2003
B.S. Environmental Science, DeSales University, 2003


Savannah River National Laboratory, 2009-2011
Lehigh University, 2008-2009


Savannah River National Laboratory, Principal Scientist, 2011-2017


University of South Carolina – Aiken, Department of Chemistry and Physics, Adjunct Professor, 2014-2017
DeSales University, Chemistry Department, Adjunct Professor, 2008-2009


CHEM 101, General Chemistry I


Material development for energy storage and conversion devices

Students will gain hands-on experience with a variety of analytical instrumentation and techniques related to energy storage and conversion including: UV-vis, fluorometer, potentiostat/electrochemistry, inert atmosphere glovebox operation, battery cell assembly and testing, and maintaining an electronic notebook.

 1.  Fluorescent carbon nanomaterials – Due to the unique nature of carbon it can adopt many different structural allotropes:  3-D (diamond, graphite), 2-D (graphene), 1-D (nanotube), or 0-D (fullerene).  Each of these allotropes have unique photophysical properties allowing them to interact with various wavelengths of light. This has led to their utilization in various applications from biological imaging to fluorescent polymers.  The research from this lab will develop novel carbon based nanocomposite materials that can be utilized as multimodal imaging agents in biological systems and for energy down conversion devices such as LEDs.

 2.   Solid state electrolytes Current lithium ion batteries are a ubiquitous part of our daily lives, however, there is an inherent safety risk associated with their use.  This is due to the poor stability of the flammable organic electrolyte solution utilized to shuttle the lithium ions between the anode and the cathode during charging and discharging.  The goal of this project is to replace the liquid electrolyte with a solid one that eliminates the fire risk.  Additionally, the use of solid electrolytes will also allow for the use of high capacity and higher voltage anodes and cathodes that can increase the energy density of the battery.

 3.  High capacity nano-carbon composite anodes– In commercially available lithium ion batteries, the anode material is typically graphite.  While graphite has an acceptable capacity and good cycle stability, a much more stable and higher capacity anode material is needed for the next generation of lithium ion batteries to meet mobile and transportation requirements.  This has led to the development of various high surface area carbon composite materials that have a much higher stability and capacity than graphite.  Additionally, these materials can also reversibly store other alkali (Na+, K+) and alkaline earth (Ca2+, Mg2+) metals.  These metals are an less expensive and more abundant than lithium.  This project will focus on the understanding the fundamental interaction(s) of these metals with the carbon nanostructure which will aid development of nano-carbon composite anodes that can reversibly interact with these metal ions for new battery chemistries.


  1. “High Temperature Thermal Energy Storage in CaAl2” P.A. Ward, J.A. Teprovich Jr., J. He, Y. Lu, R. Zidan, J. Alloys Compd., 2018, 735, 2611-2615.
  2. “Investigation of the Reversible Lithiation of an Oxide Free Aluminum Anode by a LiBH4 Solid State Electrolyte” J.A. Weeks, S.C. Tinkey, P.A. Ward, R. Lascola, R. Zidan, J.A. Teprovich Jr.,  Inorganics, 2017, 5, 83.
  3. "Fine-tuning the fluorescence of Li and Na intercalated C60 with hydrogen” J.A. Teprovich Jr., J.A. Weeks, P. Ward, A.L. Washington, R. Zidan, Int. J. Hydrogen Energy, 2017, 42, 22511-22517.
  4. “Investigation of Hydrogen Induced Fluorescence in C60 and its Potential use in Luminescent Down Shifting Applications   J. A. Teprovich, Jr., A. L. Washington, II, J. Dixon, P. A. Ward, J. H. Christian, B. Peters, J. Zhou, S. Giri, D. N. Sharp, J. A. Velten, R. N. Compton, P. Jena, R. Zidan, Nanoscale, 2016, 8, 18760-18770.
  5. “Developing radiation tolerant polymer nanocomposites using C60 as an additive” J. H. Christian, J. A. Teprovich Jr., J. Wilson, J. C. Nicholson, T.-T. Truong, M. R. Kesterson, J. A. Velten, I. Wiedenhover, L. T. Baby, M. Anastasiou, N. Rijalb, A. L. Washington II, RSC Advances, 2016, 6, 40785-40792
  6. “Technical Challenges of Thermal Energy Storage Using Hydrides” P.A. Ward, C. Corgnale, J.A.Teprovich Jr., T. Motyka, B. Hardy, D. Sheppard, C. Buckley, R. Zidan, Applied Physics A: Materials Science, 2016, 122, 462
  7. “Metal Hydrides for Concentrating Solar Thermal Power Energy Storage” D.A. Sheppard, M. Paskevicius, T.D. Humphries, M. Felderhoff, P.A. Ward, J.A. Teprovich Jr., C. Corgnale, R. Zidan, C.E. Buckley, Applied Physics A: Materials Science, 2016, 122, 395
  8. “High Performance Metal Hydride Based Thermal Energy Storage Systems for Concentrating Solar Power Applications” P.A. Ward, C. Corgnale, J.A. Teprovich Jr., T. Motyka, B. Hardy, B. Peters, R. Zidan, J. Alloys Compd., 2015, 645, S374-S378
  9. “Electrochemical and Photophysical Properties of Multifunctional Li2B12H12 for use in Energy Storage and Conversion Applications” J.A. Teprovich Jr, H. Colon-Mercado, A.L. Washington II, P.A. Ward, H. Hartman, S. Greenway, D.M. Missimer, J. Velten, J.H. Christian, R. Zidan, J. Mater. Chem. A, 2015, 3, 22853-22859.
  10. “Li-Driven Electrochemical Conversion Reaction of AlH3, LiAlH4, and NaAlH4” J.A. Teprovich, Jr. J. Zhang, H. Colón-Mercado, F. Cuevas, B. Peters, S. Greenway, R. Zidan, M. Latroche, J. Phys. Chem. C, 2015, 119, 4666-4674
  11. “Evaluation of the Physi- and Chemisorption of Hydrogen in Alkali (Na, Li) Doped Fullerenes” P. Ward, J.A. Teprovich Jr., R. Compton, V. Schwartz, G. Veith, R. Zidan, Int. J. Hydrogen Energy, 2015, 40, 2710-2716
  12. “Experimental and Theoretical Analysis of Fast Lithium Ion Conduction in a LiBH4-C60 Nanocomposite”  J.A. Teprovich Jr., H. Colon-Mercado, P. Ward, B. Peters, S. Greenway, S. Giri, J. Zhou, P. Jena, R. Zidan, J. Phys. Chem. C, 2014, 118, 21755-21761.
  13. “Screening Analysis of Metal Hydride Based Thermal Energy Storage Systems for Concentration Solar Power Plants” C. Corgnale, B. Hardy, T. Motyka, R. Zidan, J.A. Teprovich Jr., B. Peters, Renewable and Sustainable Energy Reviews, 2014, 38, 821-833
  14. “Reversible Hydrogen Storage in a LiBH4-C60 Nanocomposite” P. Ward, J.A. Teprovich Jr., B. Peters, J. Wheeler, R. Compton, R. Zidan, J. Phys Chem. C, 2013, 117, 22569-22575.
  15. “Comparative Study of Reversible Hydrogen Storage in Alkali-Doped Fulleranes” J.A. Teprovich Jr., D.A. Knight, B. Peters, R. Zidan, J. Alloys Compd. 2013, 580, S364-S367
  16. “A Spectroscopic Investigation of Hydrogenated Li Doped Fullerane” A. Paolone, O. Palumbo, F. Leardini, R. Cantelli, D.A. Knight, J.A. Teprovich Jr., R. Zidan, J. Alloys Compd. 2013, 580, S67-S69
  17. “Synthesis, Characterization, and Reversible Hydrogen Sorption Study of a Sodium-doped Fullerene” D.A. Knight, J.A. Teprovich Jr., B. Peters, A. Summers, P. Ward, R. Compton, R. Zidan, Nanotechnology, 2013, 24, 455601.
  18. “Synthesis and Calorimetric, Spectroscopic, and Structural Characterization of Isocyanide Complexes of Trialkylaluminum and Tri-tert-butylgallium” N.B. Kingsley, K. Kirschbaum, J.A. Teprovich Jr., R.A. Flowers II, M.R. Mason. Inorg. Chem., 2012, 51, 2494-2502.
  19. “Hydrogen System Using Novel Additives to Catalyze Hydrogen Release from the Hydrolysis of Alane and Activated Aluminum” J.A. Teprovich Jr, T. Motyka, R. Zidan. Int. J. Hydrogen Energy, 2012, 37, 1594-1603
  20. “Advances in the Electrochemical Regeneration of Aluminum Hydride” M.J. Martínez-Rodríguez, B.L. García-Díaz, J.A. Teprovich, Jr, D.A. Knight, R. Zidan. Applied Physics A: Materials Science, 2012, 106, 545-550.
  21. “Relaxation Processes and Structural Changes in Li and Na Doped Fulleranes for Hydrogen Storage” A. Paolone, F. Vico, F. Teocoli, S. Sanna, O. Palumbo, R. Cantelli, D. Knight, J.A. Teprovich Jr., R. Zidan. J. Phys. Chem C, 2012, 116, 16365-16370.
  22. “Synthesis and Characterization of a Lithium Doped Fullerane (Lix-C60-Hy) for Reversible Hydrogen Storage” J.A. Teprovich Jr., M. S. Wellons, R. Lascola, S. Hwang, P. Ward, R. Compton, R. Zidan. Nano Lett., 2012, 12, 582-589.
  23. “Catalytic Carbon Nanostructures and Novel Nanocomposites for Hydrogen Storage” A.C. Stowe, J.A. Teprovich Jr., D.A. Knight, M.S. Wellons, R. Zidan. J. SC Acad. Science, 2011, 9, 13-19.
  24. “Catalytic Effect of Fullerene and Formation of Nanocomposites with Complex Hydrides: NaAlH4 and LiAlH4” J.A. Teprovich Jr., D. Knight, M.S. Wellons, R. Zidan, J. Alloys Compd., 2011, 509, S562-S566
  25. “NMR Study of LiBH4 with C60” D.T. Shane, R. Corey, L. Rayhel, M. Wellons, J.A. Teprovich Jr., R. Zidan, S. Hwang, R. Bowman, Jr.,  M.S. Conradi. J. Phys. Chem. C., 2010, 114, 19862-79866.
  26. “Dynamic Ligand Exchange in Reactions of Samarium Diiodide” D.V. Sadasivam, J.A. Teprovich Jr., D. Proctor, R. A. Flowers, II. Organic Lett., 2010, 12, 4140-4143
  27. “Selective Monovalent Cation Association and Exchange around Keplerate Polyoxometalate Macroanions in Dilute Aqueous Solutions” J. Pigga, J.A. Teprovich Jr., R.A. Flowers II, M. Antonio, T. Liu. Langmuir, 2010, 26, 9449-9456.
  28.  "Generation of Sm (II) Reductants Using High-Intensity Ultrasound" J.A. Teprovich Jr., P.K.S. Antharjanam, E.N. Pesciotta, E. Prasad, R.A.  Flowers II.  Eur. J. Inorg. Chem., 2008, 32, 5015-5019. (Cover of this issue)
  29. “Mechanistic Studies of Proton Donor Coordination to Samarium Diiodide" J.A. Teprovich Jr., M.N. Balili, T. Pintauer, R.A. Flowers, II.  Angewandte Chemie Int. Ed., 2007, 46, 8160-8163.
  30. "Solvation-Controlled Luminescence of Sm (II) Complexes" J.A. Teprovich Jr., E. Prasad, R.A. Flowers, II. Angewandte Chemie Int. Ed., 2007, 46, 1145-1148.   


  1. R. Zidan, J. A. Teprovich, T. Motyka, “Two Step Novel Hydrogen System Using Additives to Enhance Hydrogen Release from the Hydrolysis of Alane and Activated Aluminum”, Patent No.:  US 9,199,844 B2; issued December 1, 2015.
  2. A. L. Washington II, J. A. Teprovich Jr., R. Zidan “Enhanced Superconductivity of Fullerenes”, Patent No.: US 9685600; issued June 20, 2017.