Chemistry and Biochemistry

Aziz Boulesbaa

Photo of Aziz Boulesbaa
Associate Professor
Email:
Phone:
(818) 677-4833
Office location:
LL 104
Website:

Biography

EDUCATION

PhD (Physical-Chemistry), Emory University & Temple University
MSc (Physics), Université Sorbonne Paris Cité (Paris 13)
BSc (Physics), Université des Sciences & de la Technologie Houari-Boumediane of Algiers

POSTDOCTORAL APPOINTMENT

Oak Ridge National Laboratory

COURSES TAUGHT

CHEM 101 - General Chemistry I
CHEM 101L - General Chemistry I Laboratory
CHEM 351 - Physical Chemistry I
CHEM 351L - Physical Chemistry I Laboratory
CHEM 352 - Physical Chemistry II
CHEM 352L - Physical Chemistry II Laboratory
CHEM 552 - Quantum Chemistry

RESEARCH INTERESTS

Materials Chemistry

Ultrafast Sciences: Nanomaterials for photovoltaic and biomedical applications

Our group synthesizes nanomaterials and uses various optical techniques to investigate ultrafast phenomena that take place in nanomaterials, biomolecules and their interfaces during brief times on the order of femtosecond time-scales (one millionth of one billionth of a second).  We incorporate a 5 W Ti:Sa femtosecond laser amplifier system to investigate ultrafast dynamics of electronic structures of nanomaterials and vibrational energy & coherence within chemical bonds.

  • Nanomaterials for photovoltaic applicationsDue to their strong interaction with light, nanomaterials are good platform candidates for photovoltaic devices such as solar-cells and photodetectors.  The conversion efficiency of light into electricity in these devices relies on how efficiently excitons (bound electron-hole pairs) in the nanomaterial are photogenerated and then dissociated through charge transfer to an acceptor. Sometimes, the light absorbed by the nanomaterial is not fully consumed for the generation of “useful” excitons, but an important portion of energy is consumed as dissipated heat.  To understand this mechanism, we incorporate ultrafast spectroscopy to examine different nanomaterials, with a goal of overcoming this “problem” through designing and tailoring the chemical and physical structure of the nanomaterial. Alternatively, we make the “photoinduced heat” useful in other applications.  To address the inefficiency of exciton dissociation (charge transfer), based on ultrafast spectroscopy investigations, we design hybrid nanomaterials (donor-acceptor composites) with the highest possible efficiency of charge transfer process.
  • Nanomaterials for biomedical applications: In the past, the employment of nanomaterials in the biomedical field was almost limited to drug delivery and bio labeling.  In recent years however, noble metal nanoparticles, such as gold, are used for photothermal therapy in cancer treatment.  This is due to their unique way of interacting with light that distinguishes them from other materials.  When the frequency of light matches that of the collective motion of electrons at the surface of a metal nanoparticle, the so-called localized surface plasmons resonance (LSPR) takes place, and consequently, the nanoparticle strongly absorbs photons with that frequency, which increases its temperature.  Clinically, the tumor area is injected with gold nanoparticles, followed by shining a laser with LSPR frequency to heat the nanoparticles, which burns and destroys the cancer cells.  In our Lab, we use ultrafast spectroscopy to track down the energy deposited through laser from absorption by the nanoparticle until its transfer to the biomolecule and the breaking of its chemical bonds.
  • Interfacial vibrational spectroscopy and dynamics: Many applications require an interaction between solid-state and liquid compounds.  Molecules at the interface have special properties and they are first in line for the interaction.  Within the electric dipole approximation, non-linear second order optical processes, such as sum-frequency generation (SFG) and second harmonic generation (SHG) are forbidden in a medium possessing inversion symmetry.  At the interface, this symmetry is broken, which makes SFG and SHG techniques specifically suitable for studying the mechanisms and dynamics that take place at the interface.  We use vibrational SFG and SHG spectroscopy techniques to study interfacial water-based photovoltaic applications.

 

PUBLICATIONS

  1. "Synergizing Plasmonic Au Nanocages with 2D MoS2 Nanosheets for Significant Enhancement in Photocatalytic Hydrogen Evolution”. R. Peng, X. Ma, Z. D. Hood, A. Boulesbaa, A. Puretzky, J. Tong,andZ. Wu. J. Mater. Chem. A, 11(2023), 16714-16723
  2. "Fluorescence in Colloidal Solutions: Scattering vs Physicochemical Effects on Line Shape”, R. Ranganathan, L. M. D. Muñoz, M. Peric, and A. Boulesbaa, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 291 (2023), doi: 10.1016/j.saa.2023.122356 
  3. "Ultrafast electron transfer at the interface of gold nanoparticles and methylene blue molecular adsorbates”, D. Contreras, J. M. Yuson, Z. E. Eroglu, P. Bahrami, H. S. H. Zavareh, and A. Boulesbaa. Phys. Chem. Chem. Phys., 24 (2022), 17271-17278. 
  4. "Dynamics of exciton formation, recombination, and trapping in monolayers of 2D-TMD materials”, J. M. Yuson, D. Contreras, M. Achterman, E. Jung, and A. Boulesbaa. Proc. of SPIE, Vol. 11990, 1199005, (2022), doi: 10.1117/12.2630804
  5. “Prospects of Nanomaterials in Medicinal Photo-Physical-Chemistry”. P. Bahrami, D. Contreras, and A. Boulesbaa. Organic & Medicinal Chem IJ, 10 (5), (2021), OMCIJ.MS.ID.555797.
  6. “Filling exciton trap states in two-dimensional tungsten disulfide (WS2) and diselenide (WSe2) monolayers”. Z. Eroglu, Dillon Contreras, Pouya Bahrami, N. Azam, M. Mahjouri-Samani, A. Boulesbaa. Nanomaterials, 11 (2021), 3, 770.
  7. “Ultrafast dynamics of exciton formation and decay in two-dimensional tungsten disulfide (2D-WS2) monolayers”, Z. Eroglu, Olivia Comegys, L. Quintanar, N. Azam, S. Elafandi, M. Mahjouri-Samani, A. Boulesbaa. Phys. Chem.-Chem. Phys., 22 (2020), 17385-17393.
  8. “Accelerated synthesis of atomically-thin 2D quantum materials by a novel laser-assisted synthesis technique”. N. Azam, Z. Ahmadi, B. Yakupoglu, S. Elafandi, M. Tian, A. Boulesbaa, and M. Mahjouri-Samani. 2D Materials, 7 ( 2019), 1.
  9. Ultrafast Exciton Dissociation at the 2D-WS2 Monolayer/Perovskite Interface”. J. Bauer, L. Quintanar, K. Wang, A. Puretzky, K. Xiao, D. Geohegan, and A. Boulesbaa. J. Phys. Chem. C, 122 (2018), 28910-28917.
  10. “Ultrafast Spectral Dynamics of CsPb(BrxCl1–x)3 Mixed-Halide Nanocrystals”. N. Soetan, A. Puretzky, K. Reid, A. Boulesbaa, H. F. Zarick, A. Hunt, O. Rose, S. Rosenthal, D. B. Geohegan, and R. Bardhan. ACS Photonics, 5 (2018), 3575-3583.
  11. “Bromine Substitution Improves Excited-State Dynamics in Mesoporous Mixed Halide Perovskite Films”. E. M. Talbert, H. F. Zarick, A. Boulesbaa, N. Soetan, A. A. Puretzky, D. B. Geohegan, and R. Bardhan. Nanoscale, 9 (2017), 12005-12013.
  12. “Synthesis and Photoluminescence Properties of 2D Phenethylammonium Lead Bromide Perovskite Nanocrystals”. R. Guo, Z. Zhu, A. Boulesbaa, F. Hao, A. Puretzky, K. Xiao, J. Bao, Y. Yao, and W. Li. Small Methods, (2017), DOI: 10.1002/smtd.201700245
  13. “Ultrafast Excited-State Dynamics in Shape- and Composition- Controlled Gold-Silver Bimetallic Nanostructures”. H. F. Zarick, A. Boulesbaa, E. M. Talbert, A. Puretzky, D. Geohegan, and R. Bardhan. J. Phys. Chem. C, 121 (2017), 4540-4547.
  14. “Ultrafast Carrier Dynamics in Bimetallic Nanostructures-Enhanced Methylammonium Lead Bromide Perovskites”. H. F. Zarick, A. Boulesbaa, A. A. Puretzky, E. M. Talbert, D. B. Geohegan, R. Bardhan. Nanoscale, 9 (2017), 1475-1483.
  15. “Ultrafast Charge Transfer and Formation of Hybrid Excitons at 2D/0D Heterostructures”. A. Boulesbaa, K. Wang, M. Mahjouri-Samani, M. Tian, A. Puretzky, I. Ivanov, C. Rouleau, K. Xiao, B. Sumpter and D. Geohegan. J. Am. Chem. Soc., 138 (2016), 14713-14719.
  16. Capturing the Ultrafast Vibrational Decoherence of Hydrogen Bonding in Interfacial Water”. A. Boulesbaa, and E. Borguet. J. Phys. Chem. Lett., 7 (2016), 5080-5085.
  17. “Ultrafast Dynamics of Metal Plasmons Induced by 2D Semiconductor Excitons in Hybrid Nanostructure Arrays”. A. Boulesbaa, V. Babicheva, K. Wang, I. Kravchenko, M. W. Lin, M. Mahjouri-Samani, C. Jacobs, A. Puretzky, K. Xiao, I. Ivanov, C. Rouleau, and D. Geohegan. ACS Photonics, 3 (2016), 2389-2395.
  18. “In-plane Heterojunctions Enable Multiphasic 2D MoS2 Nanosheets as Efficient Photocatalysts for Hydrogen Evolution from Water Reduction”. R. Peng, L. Liang, Z. Hood, A. Boulesbaa, A. Puretzky, A. Ievlev, J. Come, O. Ovchinnikova, C. Ma, M. Chi, B. Sumpter, Z.Wu. ACS Catal.(2016), 6723–6729.
  19. “Tailoring Vacancies Far Beyond Intrinsic Levels Changes the Carrier Type in Monolayer MoSe2-x Crystals”. M. Mahjouri-Samani, L. Liang,A. Oyedele, M. Tian, N. Cross, M. W. Lin, A. Boulesbaa,C. M. Rouleau, A. Puretzky, K. Xiao, G. Eres, G. Duscher, B. G. Sumpter, and D. B. Geohegan. Nano Letters, 16 (2016), 5213-5220.
  20. “Interlayer Coupling in Twisted WSe2/WS2Bilayer Heterostructures Revealed by Optical Spectroscopy”. Wang, B. Huang, M. Tian, F. Ceballos, M. W. Lin, M. Mahjouri-Samani, A. Boulesbaa, A. Puretzky, C. Rouleau, M. Yoon, H.  Zhao, K. Xiao, G. Duscher, D. Geohegan. ACS Nano, 10 (2016), 6612-6622.
  21. “Improving Light Harvesting in Dye Sensitized Solar Cells using Hybrid Bimetallic Nanostructures”. H. F. Zarick, O. Hurd, A. Boulesbaa, W. R. Erwin, J. A. Webb, A. Puretzky, D. Geohegan,and R. Bardhan. ACS Photonics, 3 (2016), 385-394.
  22. “Observation of Two Distinct Negative Trions in Tungsten Disulfide Monolayers”. A. Boulesbaa, B. Huang, K. Wang, M. W. Lin, M. Mahjouri-Samani, C. Rouleau, K. Xiao, M. Yoon, B. Sumpter, A. Puretzky, and D. Geohegan. Phys. Rev. B 92, 115443 (2015).
  23. “Patterned Arrays of Lateral Heterojunctions within Monolayer 2D Semiconductors”. M. Mahjouri-Samani, M. W. Lin, K. Wang, A. Lupini, J. Lee, L. Basile, A. Boulesbaa, C. Rouleau, A. Puretzky, I. Ivanov, K. Xiao, M. Yoon , D. Geohegan. Nature Communications, (2015), DOI: 10.1038/ncomms8749.
  24. “Nonlinear Fano-Resonant Dielectric Metasurface”. Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine. Nano Letters, 15 (2015), 7388-7393.
  25. “Nonlinear Conversion Using Fano-Resonant All-Dielectric Metasurfaces”. Y. Yang, A. Boulesbaa, I. Kravchenko, D. Briggs, A. Puretzky, D. Geohegan, J. G Valentine. Nonlinear Optics, NTu2B. 5 (2015).
  26. “Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation”. M. Mahjouri-Samani, M. Tian, K. Wang, A. Boulesbaa, C. M. Rouleau, A. A. Puretzky, M. A. McGuire, B. R. Srijanto, K. Xiao, G. Eres, G. Duscher, and D. B. Geohegan. ACS Nano, 8 (2014), 11567-1175.
  27. “Seeing Is Believing: Hot Electron Based Gold Nanoplasmonic Optical Hydrogen Sensor”. D. Sil, K. GilRoy, A. Niaux, A. Boulesbaa, S. Neretina, and E. Borguet. ACS Nano, 8 (2014), 7755-7762.
  28. “Vibrational Dynamics of Interfacial Water by Free Induction Decay Sum-Frequency Generation (FID-SFG) at the Al2O3(1120)/H2O Interface”. A. Boulesbaa and E. Borguet. J. Phys. Chem. Lett., 5 (2014), 528-533.
  29. “Generation of Sub-30 fs Microjoule Mid-infrared Pulses for Ultrafast Vibrational Dynamics at Solid/Liquid Interfaces”. A. Boulesbaa, O. Isaienko, A. Tuladhar, and E. Borguet. Optics Letters, 38 (2013), 5008-5011.
  30. “Competition between Energy and Electron Transfer from CdSe QDs to Adsorbed Rhodamine B”. A. Boulesbaa, Z. Huang, D. Wu, and T. Lian. J. Phys. Chem. C, 114 (2010), 962-969.
  31. “Comparison of Electron Injection Dynamics from Rhodamine B to In2O3, SnO2, and ZnO Nanocrystalline Thin Films”. J. Huang, D. Stockwell, A. Boulesbaa, J. Guo, and T. Lian. J. Phys. Chem. C, 112 (2008), 5203 -5212.
  32. “Ultrafast Charge Separation at CdS Quantum Dot/Rhodamine B Molecule Interface”. A. Boulesbaa, A. Issac, D. Stockwell, Z. Huang, J. Huang, J. Guo, and T. Lian. J. Am. Chem. Soc., 129 (2007), 15132 -15133.