

Bernoulli Equation

Larry Caretto
Mechanical Engineering 390
Fluid Mechanics

February 12–19, 2008

California State University
Northridge

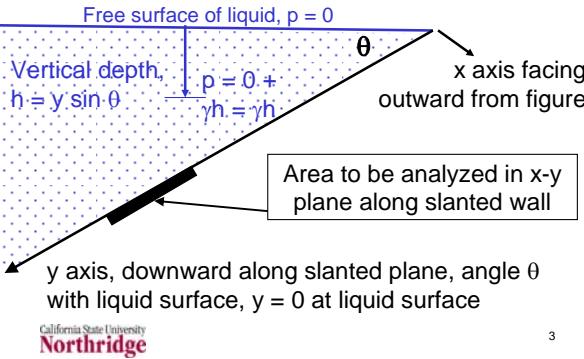
Outline

- Review forces on submerged surfaces
- Streamlines
- Bernoulli equation derivation
- Constant density flows
- Bernoulli equation for ideal gas flows
- Continuity equation
- Cavitation
- Flow measurement

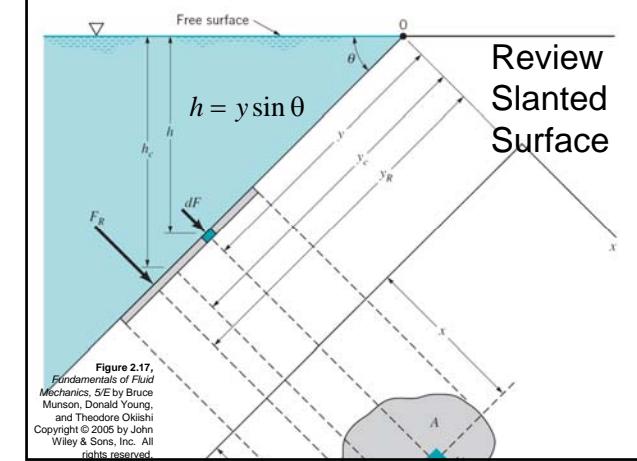
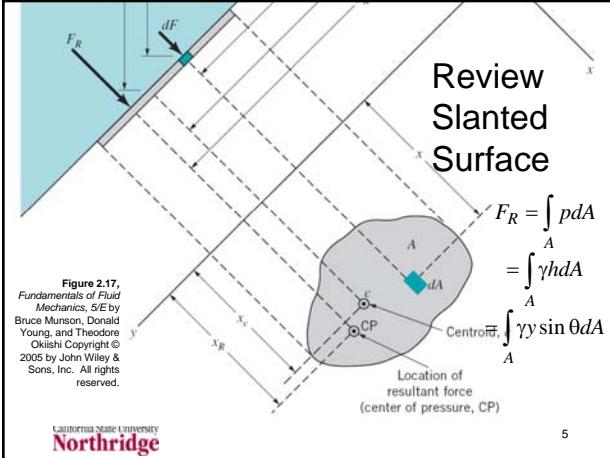
California State University
Northridge

2

Review Slanted Surface



3



5

Review Resultant Force

$$F_R = \gamma \sin \theta \int y dA = \gamma y_c A \sin \theta$$

- Center of pressure, **not y_c** , is **location** of resultant force (in diagram $y_c = y_{\text{start}} + a/2$)

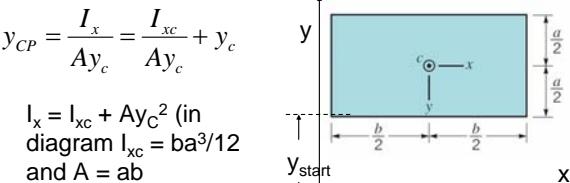
$$y_{CP} = \frac{I_x}{Ay_c} = \frac{I_{xc}}{Ay_c} + y_c$$

$$I_x = I_{xc} + Ay_c^2 \quad (\text{in diagram } I_{xc} = ba^3/12 \text{ and } A = ab)$$

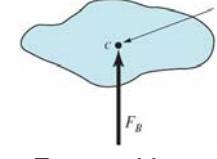
California State University
Northridge

Figure 2.18(a), Fundamentals of Fluid Mechanics, 5/E by Bruce Munson, Donald Young, and Theodore Okiishi Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

6

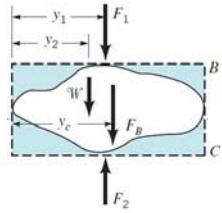


Review Buoyancy



- Buoyant force, F_B , due to difference in pressure between top and bottom

- $F_B = \gamma_{\text{fluid}} V_b$
- Passes through the centroid of the submerged body

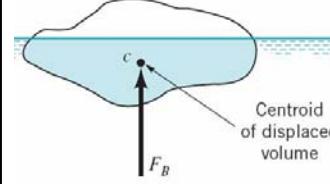


7

California State University
Northridge

Figure 2.24(b,c), Fundamentals of Fluid Mechanics, 5/E by Bruce Munson, Donald Young, and Theodore Okiishi Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

Review Buoyancy II



- If the object is light enough, it will float on the top of the liquid

- This analysis ignores the weight of the top layer of fluid assumed to be air
 - Can consider buoyancy of an object between two fluid layers with different densities

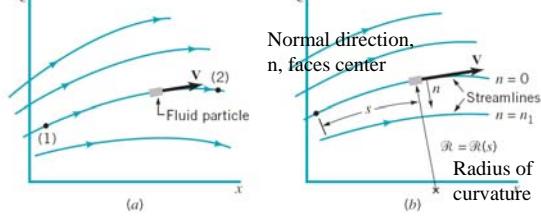
California State University
Northridge

Figure 2.24(d), Fundamentals of Fluid Mechanics, 5/E by Bruce Munson, Donald Young, and Theodore Okiishi Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

8

Streamlines

- A line everywhere tangent to a the velocity vector is a streamline (s , n) = distance (along, normal to) streamline

California State University
Northridge Figure 3.1, Fundamentals of Fluid Mechanics, 5/E by Bruce Munson, Donald Young, and Theodore Okiishi Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

$$-\gamma \delta s \delta n \delta y \sin \theta$$

$$+(p - \delta p) \delta n \delta y -$$

$$(p + \delta p) \delta n \delta y = ma_s$$

$$m = \rho \delta s \delta n \delta y$$

$F = ma$ Balance
along
Streamline

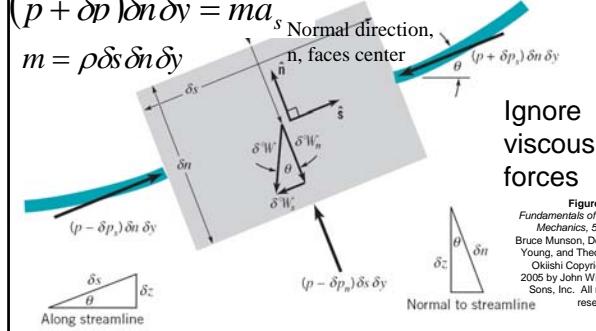


Figure 3.2,
Fundamentals of Fluid
Mechanics, 5/E by
Bruce Munson, Donald
Young, and Theodore
Okiishi Copyright ©
2005 by John Wiley &
Sons, Inc. All rights
reserved.

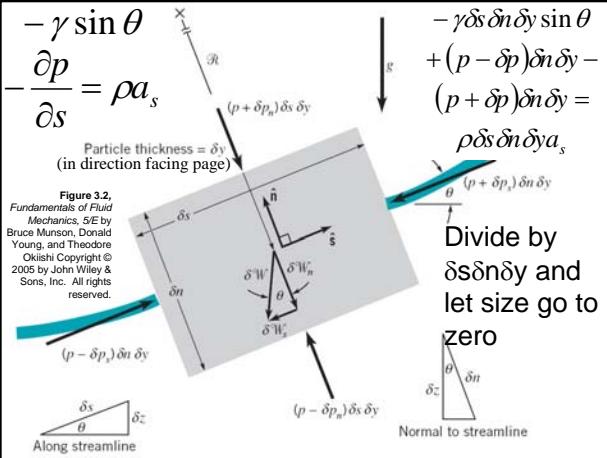


Figure 3.2,
Fundamentals of Fluid
Mechanics, 5/E by
Bruce Munson, Donald
Young, and Theodore
Okiishi Copyright ©
2005 by John Wiley &
Sons, Inc. All rights
reserved.

$F = ma$ Along Streamline

- Start with equation from previous slide and define acceleration terms

$$-\gamma \sin \theta - \frac{dp}{ds} = \rho a_s = \rho \frac{dV}{dt} = \rho \left[\frac{\partial V}{\partial t} + \frac{dV}{ds} \frac{ds}{dt} \right]$$

- Assume steady flow so $\partial V / \partial t = 0$ and substitute V for ds/dt

$$-\gamma \sin \theta - \frac{dp}{ds} = \rho \frac{dV}{ds} \frac{ds}{dt} = \rho \frac{dV}{ds} V = \frac{1}{2} \rho \frac{d(V^2)}{ds}$$

California State University
Northridge

12

F = ma Along Streamline II

- From diagram $\sin\theta = dz/ds$; substitute this for $\sin\theta$, multiply by ds and integrate

$$-\gamma \sin\theta - \frac{dp}{ds} = -\frac{dz}{ds} - \frac{dp}{ds} = \frac{1}{2}\rho \frac{d(V^2)}{ds}$$

$$\frac{\rho g dz}{\rho} + \frac{dp}{\rho} + \frac{1}{2} d(V^2) = gdz + \frac{dp}{\rho} + \frac{1}{2} d(V^2) = 0$$

$$g(z_2 - z_1) + \int_1^2 \frac{dp}{\rho} + \frac{(V_2^2 - V_1^2)}{2} = 0$$

California State University
Northridge

13

Bernoulli Equation

- Limited to steady, inviscid, streamline flow
- Restriction to steady flow comes from assumption that velocity changes in space, but not with time ($\partial V/\partial t = 0$)
- Have to know ρ - p equation to integrate
 - Simplest relation is constant density

For constant density

$$g(z_2 - z_1) + \frac{p_2 - p_1}{\rho} + \frac{(V_2^2 - V_1^2)}{2} = 0$$

California State University
Northridge

Bernoulli Equation

14

Stagnation Point Flow

- External flow over a body
- At one point, called stagnation point, velocity is zero

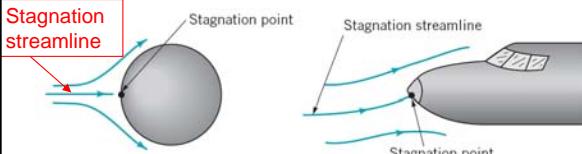
California State University
Northridge

Figure 3.5, Fundamentals of Fluid Mechanics, 5/E by Bruce Munson, Donald Young, and Theodore Okiishi Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

15

Stagnation Streamline

- What is the pressure at a stagnation point if, at another point along the streamline, the pressure, elevation and velocity are p_1 , z_1 and V_1 ?
- Assume steady, inviscid, incompressible flow along the streamline
- For stagnation, $V_2 = 0$

$$g(z_2 - z_1) + \frac{p_2 - p_1}{\rho} + \frac{(V_2^2 - V_1^2)}{2} = 0$$

California State University
Northridge

16

Stagnation Streamline II

- Solve Bernoulli equation for p_2 with $V_2 = 0$
- $$g(z_2 - z_1) + \frac{p_2 - p_1}{\rho} + \frac{(V_2^2 - V_1^2)}{2} = 0$$
- $$p_2 - p_1 = \frac{\rho V_1^2}{2} - \rho g(z_2 - z_1) = \frac{\rho V_1^2}{2} - \gamma(z_2 - z_1)$$
- For $z_1 = z_2$ $p_2 - p_1 = \frac{\rho V_1^2}{2}$
 - Find $p_2 - p_1$ for $V_1 = 30 \text{ m/s}$ and $\rho = 1.2 \text{ kg/m}^3$ (air) and $\rho = 1000 \text{ kg/m}^3$ (water)

California State University
Northridge

17

Stagnation Streamline III

- Find $p_2 - p_1$ for $V_1 = 30 \text{ m/s}$ and $\rho = 1.2 \text{ kg/m}^3$ (air) and $\rho = 1000 \text{ kg/m}^3$ (water)
- $$p_2 - p_1 = \frac{\rho V_1^2}{2} = \frac{1}{2} \frac{1.2 \text{ kg}}{m^3} \left(\frac{30 \text{ m}}{s} \right)^2 \frac{kPa \cdot m \cdot s^2}{1000 \text{ kg}} = 0.54 \text{ kPa}$$
- $$p_2 - p_1 = \frac{\rho V_1^2}{2} = \frac{1}{2} \frac{1000 \text{ kg}}{m^3} \left(\frac{30 \text{ m}}{s} \right)^2 \frac{kPa \cdot m \cdot s^2}{1000 \text{ kg}} = 450 \text{ kPa}$$

California State University
Northridge

18

Head Terms

- Bernoulli equation between two points along a streamline ($\rho = \text{constant}$)

$$g(z_2 - z_1) + \frac{p_2 - p_1}{\rho} + \frac{(V_2^2 - V_1^2)}{2g} = 0$$

- This is equivalent to saying that $p + \rho V^2/2 + \gamma z$ is constant along a streamline – divide by g (recall $\gamma = \rho g$)

$$z + \frac{p}{\gamma} + \frac{V^2}{2g} = \text{Constant along a streamline}$$

California State University
Northridge

19

Head Terms II

- Terms in equation just written have dimensions of length called head

$$z + \frac{p}{\gamma} + \frac{V^2}{2g} = \text{Constant along a streamline}$$

- z is elevation head
- p/γ is pressure head
- $-V^2/2g$ is velocity head

California State University
Northridge

20

Energy Terms

- Bernoulli equation terms $\rho V^2/2 + \gamma z + p$ can also be interpreted as energy terms per unit volume
 - Kinetic energy $mV^2/2$ divided by volume so that $m/\text{volume} = \text{density, } \rho$
 - Potential energy mgz divided by volume so that $mg/\text{volume} = \gamma$
 - Pressure energy is product of p times volume – dividing (p times volume) by volume leaves p

California State University
Northridge

21

Forces Normal to Streamline

- Similar force balance involving pressure and weight as forces
- Result is $\gamma \frac{dz}{dn} + \frac{\partial p}{\partial n} + \frac{\rho V^2}{R} = 0$ R is radius of curvature
- For negligible density $\frac{\partial p}{\partial n} = -\frac{\rho V^2}{R}$
- For swirling flows, pressure **decreases** towards the center

California State University
Northridge

22

Dynamic and Total Pressure

- Bernoulli equation analysis of stagnation point flow shows stagnation pressure, $p_2 = p_1 + \rho V^2/2$
- Call $\rho V^2/2$ the dynamic pressure
- Call $p + \rho V^2/2$ the stagnation pressure
- Call pressure, p , static pressure to distinguish this from other pressures
- Total pressure is $p + \gamma z + \rho V^2/2$

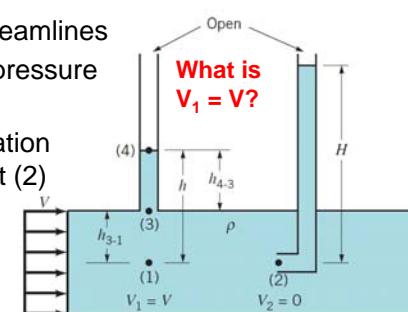
California State University
Northridge

23

Static and Stagnation Pressure

- Parallel streamlines
- h is static pressure at (1)
- H is stagnation pressure at (2)

Figure 3.4,
Fundamentals of Fluid
Mechanics, 5/E by Bruce
Munson, Donald Young,
and Theodore Okiishi
Copyright © 2005 by
John Wiley & Sons, Inc.
All rights reserved.



California State University
Northridge

24

Finding $V_1 = V$

- Piezometer relations
 $-p_1 = \gamma h$ and $p_2 = \gamma H$
 - Bernoulli with $z_2 - z_1 = V_2 = 0$
 $p_1 + \rho V_1^2 = p_2$
 $\gamma h + (\gamma/g)V_1^2 = \gamma H$
 $V_1^2 = g(H - h)$
 $V_1 = g(H - h)^{1/2}$

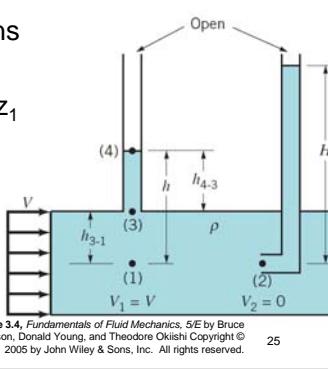


Figure 3.4, Fundamentals of Fluid Mechanics, 5/E by Bruce Munson, Donald Young, and Theodore Okiishi Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

California State University
Northridge

Pitot-static Tube

- Concentric tubes (2) faces flow, (1) normal to flow
 - Measures difference between static and stagnation pressure, $p_3 - p_4 = \rho V^2/2$
 - Used to measure velocity
 - $V = [(p_3 - p_4)/\rho]^{1/2}$

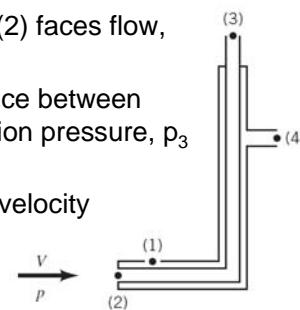


Figure 3.6, Fundamentals of Fluid Mechanics, 5/E by Bruce Munson, Donald Young, and Theodore Okiishi Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

26

Free Jets

- Look at streamline from (1) to (2) to (5)

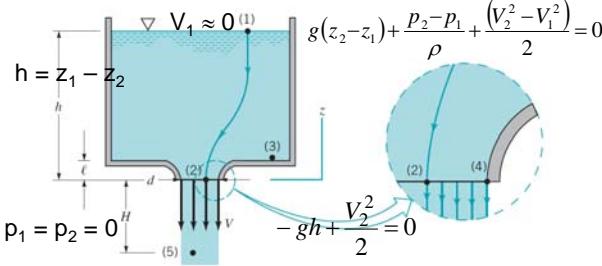


Figure 3.5, Fundamentals of Fluid Mechanics, 5/E by Bruce Munson, Donald Young, and Theodore Okishi Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

California State University
Northridge

Ideal Gas Isentropic Flow

- For ideal gas $P = \rho RT$
 - For ideal gas with frictionless flow and no heat transfer (constant entropy or isentropic flow) $P/\rho^k = C$ ($k = c_p/c_v$)
 - $k = 1.4$ for air at room temperature

$$\int_1^2 \frac{dp}{\rho} = \int_1^2 \frac{Ck\rho^{k-1} d\rho}{\rho} = Ck \int_1^2 \rho^{k-2} d\rho = \left[\frac{Ck\rho^{k-1}}{k-1} \right]_1^2 = \frac{k}{k-1} \left[\frac{C\rho_2^k}{\rho_2} - \frac{C\rho_1^k}{\rho_1} \right] = \frac{k}{k-1} \left[\frac{p_2}{\rho_2} - \frac{p_1}{\rho_1} \right]$$

California State University
Northridge

Ideal Gas Isentropic Flow I

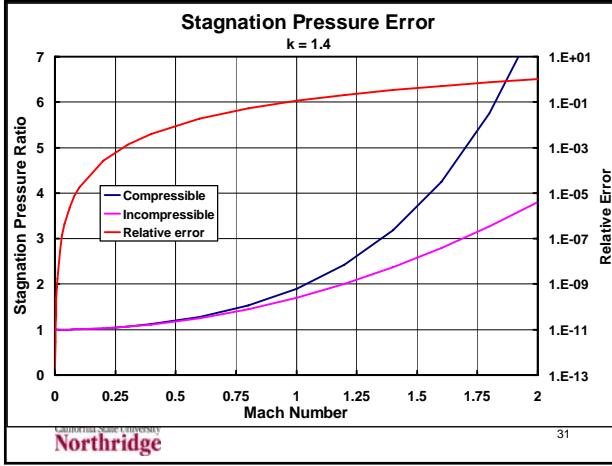
- Start with integral form of Bernoulli $g(z_2 - z_1) + \int_1^2 \frac{dp}{\rho} + \frac{(V_2^2 - V_1^2)}{2} = 0$
 - Substitute ideal gas isentropic flow result $\int_1^2 \frac{dp}{\rho} = \frac{k}{k-1} \left(\frac{p_2}{p_1} - \frac{p_1}{p_2} \right)$
 - Equation applies to steady, frictionless ideal gas flow along streamline with no heat transfer or viscous forces

no heat
California State University
Northridge

Incompressible Error

- What is the error for assuming incompressible flow in a gas
 - Compute pressure ratio p_2/p_1 , where p_2 is stagnation pressure, as a function of initial Mach number, $Ma_1 = V_1/a_1$
 - $a = \text{sound speed}; a^2 = kRT$ where $k = \text{heat capacity ratio } c_p/c_v$ (T in kelvins)
 - Use of Mach number based on accurate analysis of compressible flow

California State University
Northridge



Usual Rule of Thumb

- Accurate results for gas flows can be found from incompressible flow equations provided that the Mach number is less than 0.3
 - $Ma = 0.3$ gives relative error of 0.13% for computation of stagnation pressure
- Results less accurate for $Ma > 0.3$
- Catastrophic errors for $Ma > 1$
 - 1145% relative error for $Ma = 4$
 - Shock wave for $Ma > 1$ changes equation

California State University
Northridge

32

Continuity Equation

- Consider internal (confined) flow
- Look at simple example shown in figure
- Conservation of mass for steady flow
- Mass flow in = mass flow out

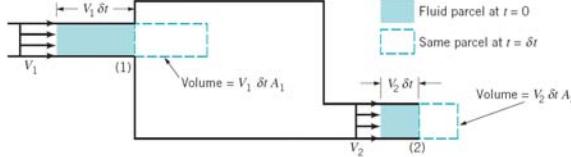


Figure 3.15 Fundamentals of Fluid Mechanics, 5/E by Bruce Munson, Donald Young, and Theodore Okiishi Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

California State University
Northridge

33

Continuity Equation II

- Volume flow rate, $Q = \delta V / \delta t = VA\delta t / \delta t = VA$
- Mass flow rate, $\dot{m} = \rho Q = \rho VA$
- Mass in = mass out gives $\dot{m}_1 = \dot{m}_2$
- Continuity equation: $\rho_1 V_1 A_1 = \rho_2 V_2 A_2$

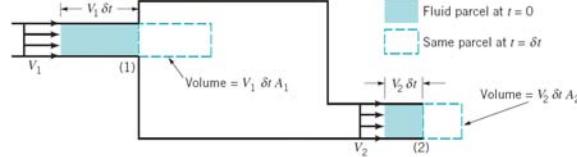


Figure 3.15 Fundamentals of Fluid Mechanics, 5/E by Bruce Munson, Donald Young, and Theodore Okiishi Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

34

Continuity Equation III

- For more complex confined flows there may be several inflows and outflows
- Also, flow may be unsteady

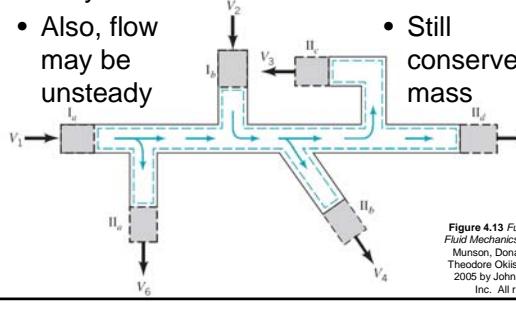


Figure 4.13 Fundamentals of Fluid Mechanics, 5/E by Bruce Munson, Donald Young, and Theodore Okiishi Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

Continuity Equation III

- $$\frac{dm}{dt} \Big|_{\text{control volume}} = \sum \dot{m}_{in} - \sum \dot{m}_{out} = \sum \rho_i A_{in} V_{in} - \sum \rho_{out} A_{out} V_{out}$$
- For steady flow $dm/dt = 0$

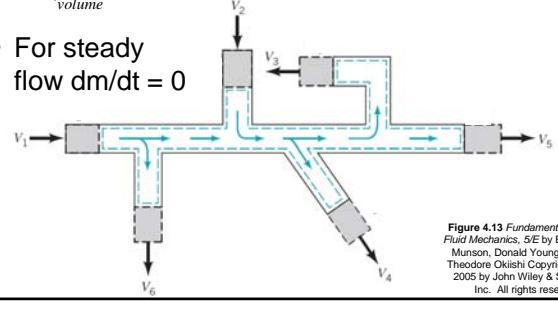


Figure 4.13 Fundamentals of Fluid Mechanics, 5/E by Bruce Munson, Donald Young, and Theodore Okiishi Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

Cavitation

- Change from small to large velocity ($V_1 \ll V_2$) will cause large pressure decrease: $p_2 = p_1 + \rho(V_1^2 - V_2^2)/2$
- Could reduce pressure to vapor pressure of liquid
- This causes vapor bubbles to form and burst exerting pressure on surfaces
- Cavitation can, over time, damage surfaces and must be avoided

California State University
Northridge

37

Cavitation II



Figure 3.16 Fundamentals of Fluid Mechanics, 5/E by Bruce Munson, Donald Young, and Theodore Okiishi Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

Bubbles from Propeller

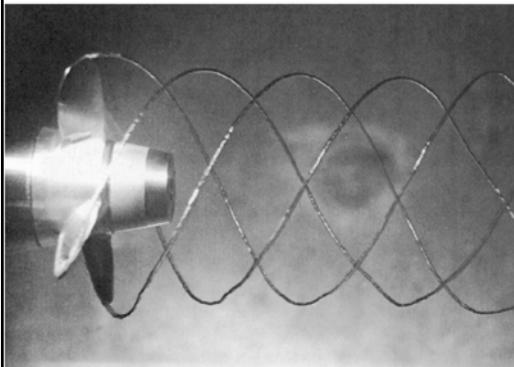


Figure 3.17
Fundamentals of
Fluid Mechanics,
5/E by Bruce
Munson, Donald
Young, and
Theodore Okiishi
Copyright © 2005
by John Wiley &
Sons, Inc. All
rights reserved.

39

Flowrate Measurement

-
- Venturi meter shown here is example of flow meter
 - Measure velocity (and flow rate) by measuring pressure difference $p_1 - p_2$

California State University
Northridge

Figure 3.18 Fundamentals of Fluid Mechanics, 5/E by Bruce Munson, Donald Young, and Theodore Okiishi Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

40

Flowrate Measurement II

- Flow meters use basic idea of Bernoulli equation and continuity
 - Continuity: area differences give related velocity differences: $V_2 = V_1 A_1 / A_2$
 - Bernoulli: velocity differences give V^2 difference in terms of pressure difference: $V_2^2 - V_1^2 = 2(p_1 - p_2)/\rho$
 - Assumes $z_2 = z_1$
 - Substitute continuity result, $V_2 = V_1 A_1 / A_2$

California State University
Northridge

41

Flowrate Measurement III

- Result of substitution
 - Continuity: $V_2 = V_1 A_1 / A_2$
 - Bernoulli: $V_2^2 - V_1^2 = 2(p_1 - p_2)/\rho$
 - Combination: $V_2^2 - V_1^2 = (V_1 A_1 / A_2)^2 - V_1^2 = V_1^2 [1 - (A_1 / A_2)^2] = 2(p_1 - p_2)/\rho$
 - $$V_1 = \sqrt{\frac{2(p_1 - p_2)}{\rho [1 - (A_2 / A_1)^2]}}$$
 - For circular pipes $(A_1 / A_2)^2 = (D_1 / D_2)^4$
- Bernoulli-continuity combination important in problem solving

California State University
Northridge

42

Flowrate Measurement V

- Is measuring flow rates really this easy?
 - No. The approach used here ignores viscous forces that are ignored in the Bernoulli equation
 - Consideration of these forces is usually done by empirical modifications to basic equation on previous chart
 - Can also apply these ideas to open channel flows where flow rates are measured by elevation differences

California State University
Northridge

43

Flowrate Measurement VI

- Basic relation: velocity (or flow rate) proportional to square root of Δp

$$Q = V_1 A_1 = A_1 \sqrt{\frac{2(p_1 - p_2)}{\rho[1 - (A_2/A_1)^2]}}$$

- Problem: Find V_1 for $D_1 = 0.1$ m, $D_2 = 0.05$ m, $p_1 - p_2 = 100$ Pa, water ($\rho = 1000$ kg/m³)

California State University
Northridge

44

Flowrate Measurement VI

$$V_1 = \sqrt{\frac{2(p_1 - p_2)}{\rho[1 - (A_2/A_1)^2]}} = \sqrt{\frac{2(100 \text{ Pa}) \frac{N}{\text{Pa} \cdot \text{m}^2} \frac{\text{kg} \cdot \text{m}}{\text{N} \cdot \text{s}^2}}{1000 \text{ kg} \frac{1}{\text{m}^3} \left[1 - \left(\frac{\pi}{4} (0.05 \text{ m})^2 / \frac{\pi}{4} (0.1 \text{ m})^2 \right)^2 \right]}}$$

$$V_1 = \sqrt{\frac{0.2}{1 - \left(\frac{0.05 \text{ m}}{0.1 \text{ m}} \right)^4}} \text{ m/s} \quad \bullet V_1 = 0.462 \text{ m/s}$$

- Problem: Find V_1 for $D_1 = 4$ in, $D_2 = 2$ in, $p_1 - p_2 = 10$ psf, air ($\rho = 0.00238$ slugs/ft³)

California State University
Northridge

45

Flowrate Measurement VII

$$V_1 = \sqrt{\frac{2(p_1 - p_2)}{\rho[1 - (A_2/A_1)^2]}} = \sqrt{\frac{2 \left(10 \frac{\text{lb}_f}{\text{ft}^2} \right) \frac{\text{slug} \cdot \text{ft}}{\text{lb}_f \cdot \text{s}^2}}{0.00238 \frac{\text{slug}}{\text{ft}^3} \left[1 - \left(\frac{\pi}{4} (4 \text{ in})^2 / \frac{\pi}{4} (2 \text{ in})^2 \right)^2 \right]}}$$

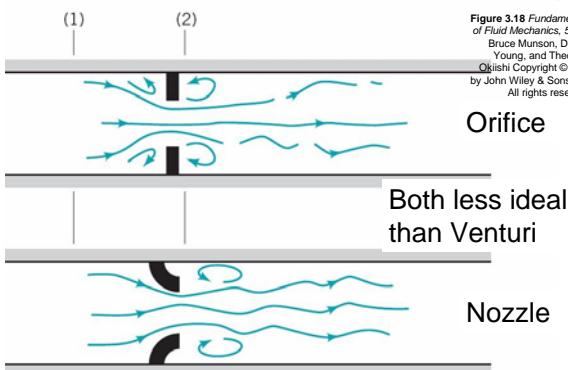
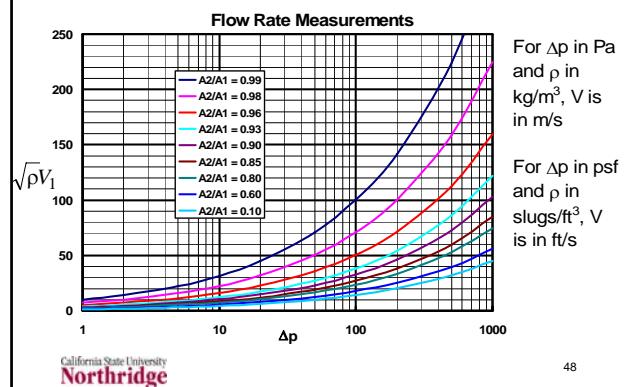
$$V_1 = \sqrt{\frac{20}{0.00238} \frac{\text{ft}^2}{\text{s}^2} \frac{1}{1 - \left(\frac{4 \text{ in}}{2 \text{ in}} \right)^4}} \quad \bullet V_1 = 94.7 \text{ ft/s}$$

- A given Δp means a larger V with air as compared to water

California State University
Northridge

46

Other Flow Meters



48

Open Channel Flows

- Measurements by sluice gates and weirs
- Measure height difference, $z_1 - z_2 = H$, at between two points with $p = 0$
- Rectangular flow areas with width b has areas bz_2 and bz_1 so that $V_2bz_2 = V_1bz_1$ and $z_1 + V_1^2/2g = z_2 + V_2^2/2g = z_1 + (V_2z_2/z_1)^2/2g$

$$V_2 = \sqrt{\frac{2g(z_1 - z_2)}{1 - (z_2/z_1)^2}}$$

California State University
Northridge

49

Sluice Gate

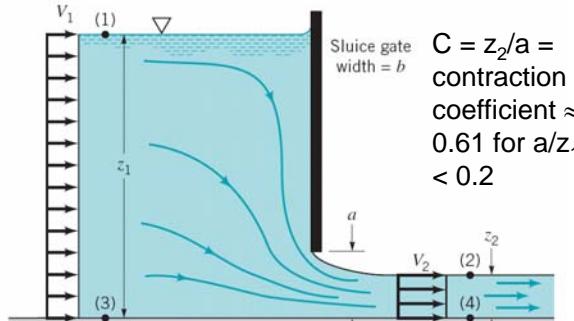


Figure 3.19 Fundamentals of Fluid Mechanics, 5/E by Bruce Munson, Donald Young, and Theodore Okiishi Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

Sluice Gate II

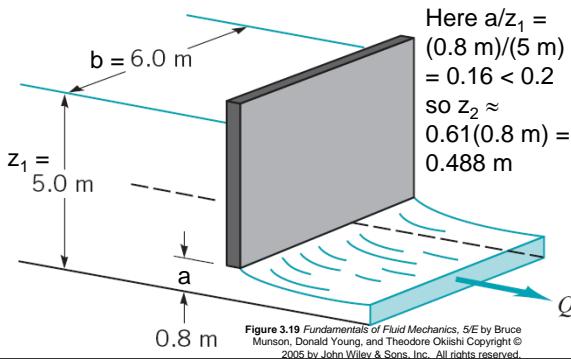
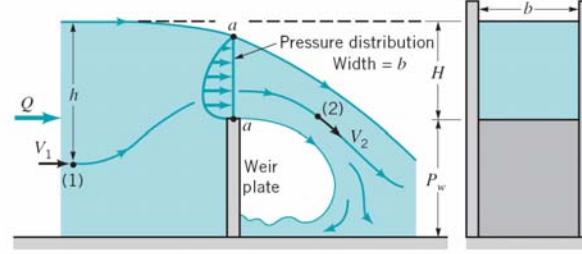


Figure 3.19 Fundamentals of Fluid Mechanics, 5/E by Bruce Munson, Donald Young, and Theodore Okiishi Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

Weir

California State University
Northridge

52

Energy/Hydraulic Grade

- Natural definition of lines in a flow from Bernoulli equations
 - Energy line = $z + p/\rho + V^2/2g = H$ = total head, a constant for an inviscid steady flow
 - A series of pitot tube measurements will always produce the energy line
 - Hydraulic Grade Line = $z + p/\rho =$ energy line $- V^2/2g$
 - A series of piezometer tubes will always produce the hydraulic grade line

California State University
Northridge

53

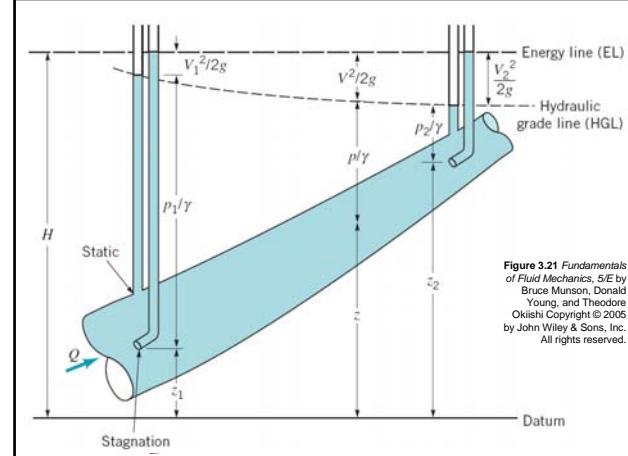


Figure 3.21 Fundamentals of Fluid Mechanics, 5/E by Bruce Munson, Donald Young, and Theodore Okiishi Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.