Does Momentum Exist in Competitive

Volleyball?

Mark F Schilling

ince T. Gilovich, R. Vallone, and

A Tversky published their seminal

1985 paper, “The Hot Hand in
Basketball: On the Misrepresentation
of Random Sequences,” there has been
considerable study of the question of
momentum in sports. The term "momen-
tum” here refers to a condition in which
psychological factors cause a player
or team to achieve a higher (or lower)
than normal performance over a period
of time due to a positive correlation
between successive outcomes. Put more
plainly, sports momentum—ifand when
it exists—can be summarized as "suc-
cess breeds success” (or, perhaps, "failure
breeds failure”). Gilovich and colleagues
referred to it as the "hot hand.”

Gilovich's rescarch team studied
questions such as whether a basketball
player who has made several shots in a
row becomes more likely to make the
next shot than his or her normal shoot-
ing percentage would indicate. Finding
no evidence for the existence of momen-
tum, they concluded that basketball
shots behave as independent trials,

Basketball, baseball, tennis, and
many other sports have been analyzed
for momentum, and little statistical evi-
dence has been found, although contro-
versy about the issue continues. The best
evidence for momentum has come in
sports that involve competition between
individuals, rather than teams, and have
little variation within the course of play,
such as bowling and horseshoes.

Here, we investigate whether momen-
tum exists in volleyball. By some accounts,
volleyball is the most popular sport in
the world in terms of the number of par-
ticipants; the Fédération Internationale de
Volleyball (FIVB) estimates approximately
800 million people play the game.

There are, of course, many ways in
which momentum could manifest itself
involleyball. We focus on whether “runs”
of consecutive points by a team give evi-
dence of momentum or whether they are
manifestations of the natural variability
that appears in the outcomes of chance

events. We provide three analyses to
help address the question and find the
resulis of all three consistent. The data
come from 55 games played in the course
of 16 matches during the 2007 NCAA
Collegiate Women's Volleyball season
between the California State Univer-
sity Northridge team (CSUN) and 15
opponents, most of them members of
the Big West Conference (to which
CSUN belongs).

Volleyball Basics

To understand the possible propensity
and nature of runs in competitive vol-
leyball, we need a basic understand-
ing of fundamental components of the
sport in its modern form. A volleyball
match consists of either a best-of-three
or a best-of-five series of games (also
called sets), where each game is played
until one team reaches a certain score—
typically 25 or 30 points—and is
ahead by at least two points. A
best of 2n—-1 game match ends
as soon as one team wins
# games.

There are six players
on a side at any given
time, each having nomi-
nal positions on the
court—three in the
front row and three in
the back. Only players
who begin the rally in
front-row positions can
jump close to the net
either to attack the ball
{typically with a hard-
driven ball known as a
“spike”) or to block the
opposing team's attack.
Volleyball uses a system
of rotation, so the same
players do notalways stay
in the same positions.

Play begins when a
member of ane team serves
the ball across the net to
the opposite team. The

action this generates is called a "rally.”
Whichever team wins the rally earns a
point, regardless of which team served.
{This rally-scoring system is a departure
from the scoring system used many years
ago, known as side-out scoring, in which
only the serving team could score.) [f the
team that was serving wins the point, the
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same plaver serves again. [f the
receiving team (the team not
serving) wins the point (called a
"side-out"), it serves next, at which
time rotation comes into play as each
player on this team moves clockwise
to the next of the six positions. The
player who moves to the back-right
position (facing the net) becomes the
new server.

We can now see the structure of a run
in a volleyball game: A run begins when
the receiving team wins the point and
continues as long as that team serves and
wins subsequent rallies. The only excep-
tion is if the team that serves to begin
the game wins an immediate string of
points. A run therefore terminates either
when the receiving team wins a rally or
when the serving team reaches the score
necessary to win the game and is ahead
by at least two points.

For this analysis, we will not allow
a run to carry over from one game to
the next. There are several reasons for
this choice: (1) There is a significant
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&= time gap between the

. end of one game and

§ ; the start of the next; (2)

each team is [ree to start

the new game with a rota-

tion completely different

from that in which it ended

the previous game; (3) it is not

uncommon for different players

to be inserted into the match at this

point. Each of these factors may inter-

fere with the assessment of any momen-
tum that may contribute to runs.

Asis the case in basketball, volleyball
coaches often stress the importance of
limiting the runs achieved by their oppo-
nents (i.e., stopping their momentum).
Of course, a run could just as easily be
engendered by negative momentum,
wherein a team’s poor performance dur-
ing the run of points by its opponent
may feed upon itself. That volleyball
coaches believe in momentum is evi-
denced by the great majority of time-
outs being called when the opposing
team has scored a run of several points.
In our database, 88 of the 141 time-outs
(62%) were called immediately after a
run of three or more points by the oppo-
nent, and 95% were called after runs of
at least two oppoenent points.

Modeling Volleyball Play

To assess whether runs of points in
volleyball games suggest a momentum
effect, a probability model must be pro-
vided as a point of reference for how
runs would behave in the absence of
momentum. There is no unique model
that perfectly represents the structure of
volleyball games; rather, there is a choice
between models of varying complex-
ity and accurate representation of the
game. The simplest model is a coin-toss
model, in which each team is equally
likely to win each point. In this model,
the lengths of runs are easily seen to be
geometric random variables with param-
eter 1/2; thus the chance any given rally
(except for the first of the game) is the
start of a run of length k is (1/2)*". The
coin-toss model however, doesnotdo a
good job of representing volleyball.
First, one team is often significantly
stronger than the other. A generalization
to a biased coin-toss model can account
for this by choosing one team and letting
the probability that this team will win any
point be p. This model, along with the
special case p = 1/2, represents the points

of avolleyball game as a single sequence
of independent Bernoulli trials. This sort
of madel, however, is still not sufficiently
complex to model volleyball play well.

Second, in competitions between
skilled volleyball teams, the serving team
is actually at a significant disadvantage
because the receiving team has the first
opportunity to attack. Rallies are gener-
ally won by a successful attack and only
rarely as a result of a serve. In women’s
collegiate matches, the proportion of
times an average team is able to side-
out when receiving serve (the side-out
percentage) is typically about 60%,; thus,
the serving team “holds serve” only about
40% of the time. Therefore, the chance a
team will win a point depends greatly on
whether it is serving or receiving.

A probability model for volleyball
that accommodates both the difference
in team abilities and the disadvantage of
serving can be constructed using only
two parameters. Calling the two teams
in a match Teams A and B, let p, be the
probability that Team A wins a point
when it serves to begin the rally and let
p, be the corresponding probability for
Team B. If Team A is somewhat superior
to Team B, for example, typical values
for these parameters might be something
likep, = 45 and p, = .35.

This model is a two-state
Markov chain with transition matrix.

i TeamA ! TeamB
© serves | serves
i next next

. TeamA

serves P R
 TeamA
Cserves P 1 P

We refer to this model as a switching
Bernoulli trials (SBT) model, to con-
trast with the previous simpler models
that treat the course of play as being
comprised of a single sequence of
Bernoulli trials.

The SBT mode! incorporates team
and overall serving effects, but is not
flexible enough to account for rotational/
player effects. On any volleyball team,
some players are more skilled than others
at attacking, and some are more capable
at back row defense, etc. Players also
differ in serving ability. Thus, a team
may be stronger in certain rotations than
others—when their best attacker is in



Table [—Match Summary Data, CSUN vs. UCLA, 09/14/07

Points Won
L CUN - ucA Total

the front row and their best server is
serving, for example.

Normally, each time a team is in a
certain rotation within a given game,
the team has the same players in the
game, or the situation would be even
more complicated. Even so, amodel that
incorporates rotational/player effects
requires a combination of 12 Bernoulli
trials submodels, as there are six rota-
tions for each team and either team can
be serving. This 12-parameter model is
unwieldy, and parameter estimation is
poor due to the limited sample size for
each rotation. Also, the rotation configu-
ration (how each team lines up against
the other) often differs from one game
to the next, and different players are
frequently substituted into the line-up
when a new game begins.

Fortunately, our data suggest the rota-
tional/player effect is small. Coaches, in
fact, often try to arrange their line-up
according to what mathematicians call a
“maximin criterion” so their weakest rota-
tion is as strong as possible. This tends to
equalize the strengths of their rotations.

One aspect of the game that can
potentially make one rotation particu-
larly strong is if a team has a player with
a powerful and reliable jump serve. This
serve is similar to a spike and can be dis-
ruptive to the receiving team’s efforts to
achieve aside-out. However, womenvol-
leyball players rarely have the strength
to have a dominating jump serve, and
few players used jump serves in the
matches analyzed.

Somewhat like Goldilocks, then, we
disdain those models that are either “tco
cold” (simplistic and unrepresentative)
or “too hot" {(complex and unstable) and
choose the SBT model as “just right”
for the task at hand—simple enough
to estimate parameters well and inter-
pret effects easily, yet representative
enough to provide an accurate baseline

for how volleyball play should prog-
ress if psychological momentum is not
present. Note that in the SBT model,
point runs will tend to be shorter than
in a single Bernoulli trials model because
most rallies in a typical match end in
a side-out.

Analyzing Volleyball Runs

Working with the SBT model, suppose
Team B has just won a point, and let L,

be the length of the subsequent run of
points, if any, for Team A. Such a run
must begin with a side-out by Team
A, after which the number of points in
the run is a geometric random ' variable
with parameter p,. We therefore have
PiL, =) = (1= p o islorl=alith 8,0
A parallel expression gives the prob-
ability distribution of a run of points for
Team B. Note that we are ignoring two
boundary effects here, namely that the
first run of a game need not start with a
side-out and that the last run is truncated
by the end of the game.

Now suppose we attempt to apply
the distribution theory our model gen-
erates to an analysis of actual games.
The critical information from the match
is summarized in a two-by-two table
such as Table 1, compiled from a best-
of-three-game match between CSUN
(Team A) and UCLA (Team B). (UCLA
won both games, making the third
game unnecessary. )

What information does this table
contain? We can see UCLA earned 34
side-outs when CSUN was serving,
and CSUN achieved 33 side-outs when
UCLA served. The first serve alternates
from game to game, so each team served
first once. Neither team won the first
point when serving to start the game;
therefore, CSUN had N, = 33 runs of
points during the match and UCLA had

N, = 34. (These totals include many runs
of just one point.)

The values of the transition prob-
abilities p, and p, can be estimated by the
sample proportions p, = 9/43 = .209,
P,= 26/59 = 441. With this informa-
tion, we can estimate the number of runs
of each length that each team would
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be expected to achieve in a match
with parameters N, N, p, = Pyandp, =

w5 : B .
Py- Letting Rfand R be the numbers Table 2—Actual and Expected Numbers of

Runs of Each Length = 4, According to the SBT Model

of runs of at least | points for teams A
and B, respectively, we have approxi-

mately E(R,A) =N (- ﬁﬁ)ﬁ;_l and Length Actual Expected

ER)=N,(1=p)py forb=1,2, 4 e 697

3.... Slight adjustments are needed to 5 35 3'0_| o
account for the boundary effects. b R
Compiling the expected numbersof : 6 & k32
runs for each team in each match in the 7 5.8
database by the above formulas (with = T
adjustments) gives the results shown in 8 26
22 :

122 } 123.6

Table 2 and Figure 1.

The agreement hetween the actual
numbers of long runs and the values
the SBT model predicts is excellent. If
momentum had been a significant fac-
tor, we would have expected the actual
numbers of long runs to generally exceed
the predicted numbers, but this is not
what we see in Table 2. In fact, the total
number of runs of at least four points
was fewer than the predicted total. The
results shown in Table 2 and Figure 1
are compatible with the hypothesis that
the points scored in volleyball games
depend on which team is serving, but
arc otherwise independent.

There is another way to test whether
the SBT model will produce run patterns
that are consistent with those observed
in actual volleyball. Suppose we wish to
assess the run patterns observed in a par-
ticular game played to 30 points that has
the game summary shown in Table 3.

Without loss of generality, assume
Team A was the winner, so NA = Figure |. Actual and expected numbers of runs of each length = 4, according to the
max(30, N, — 2). In the SBT model, SBT model
the a priori probability of any par-
ticular sequence of play that results in
Table 3 and represents a possible game
(one in which Team A does not reach a
winning position before all the totals in
the game table have been achieved) is
p—pi)pie(L- pia™y. As this
value does not depend on the particu-
lar ordering of rally outcomes, each Points Won
allowable configuration that leads to ‘
the desired table is equally likely. In
principle, then, one could analyze the
run patterns of a given game com- : S
binatorially by considering all such Team B
configurations. For example, if the lon- : RS,
gest run in a game with a given game
summary table consists of six points,
one could count the proportion of con-
figurations having the specified game

80

1 B Observed

6 i 8 @
Number of Runs of Lengths Shown

Table 3—General Game Summary Table

_TeamA  TeamB

— Team A

Total ;
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Table 4—Actual and Simulated Expected Numbers of
Runs of Each Length = 4, According to the SBT Model

Length Actual Simulated
4 67.1
e A | ; |9 S
I ) IR
80
70-
60
50 i ;
404 @ Observed
!E_E)f_pected
30 ‘
20-
10
0 T

Figure 2. Actual and simulated expected numbers of runs of each length =4, according to

the SBT model

table in which the longest run was six
orlonger. This would serve as a measure
(essentially a p-value) of how unusual
such a run is.

However, the combinatorialapproach
is too complex for easy use. An alterna-
tive is to use simulation. One simulation
option is to use the observed values fJA
=n,/(n,+N,~ ) and Dy = nfn+N )
as the probabilities teams A and B will
win a given point when serving and
reject any outcome that does not match
the game summary table. Any values in
(0,1) can be used for these probabilities;
however, the simulation runs faster if
values are used that are at least close to
Pyand Dy

Simulating a game many times pro-
duces results for a random sample of
all possible configurations having the
given game summary table. Compar-
ing the run patterns for the sample to
those of the actual game provides another
approach to assessing the assumption
thatrally outcomes are independent once
serving is accounted for,

To obtain the results shown in Table
4, 100 simulations were enacted for
each of the 55 games in the database.
The number of runs of each specified
length was then divided by 100 to
produce an expected number of runs of
each length for all games based on the
SBT model. Table 4 and Figure 2 compare

these values to the actual numbers of
runs of each length = 4.

Once again there is outstanding
agreement between the actual numbers
of runs of various lengths and the values
the SBT model predicts. Although the
total number of actual runs of at least
four points was higher than the aver-
age for the simulation, the difference is
slight. There is only one case, runs of
length five, where the actual number of
runs is noticeably greater than the
simulated value.

To make sure this case does not give
ameaningful indication of a momentum
effect, we can make a formal check.
Since five-point runs occur rarely, we
can approximate the probability dis-
tribution of their number as a Poisson
random variable with parameter A equal
to the simulated expected number, 28.9.
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The observed value X = 35 then gives
a p-value of P(X = 35) = 15%. Thus,
the excess number of runs of length

five observed is not significant and most Table 5—Numbers of Runs of Lengths =3,

likely an artifact of chance variation. CSUN vs. Santa Barbara, 10/20/07
We again have solid evidence that ' ’

the course of play in volleyball is well- :
described by the rather simple SBT lRun Lehgth: g I 2 2 I : 4 I
model (at least as far as run frequencies ~ CSUN L. . . . .
and run lengths are concerned) and— : ‘ ; : :
much more important—behavesasifthe
points scored depend on which team is
serving, but are otherwise independent.
There is yet a third way we can
evaluate whether volleyball runs show
evidence of momentum. [f rally out-
comes behave according to the SBT
model, the chance that one team will
win the next point at any time during

a run of points by the other team is Table 6—Proportion of Rallies in Which a

its (constant) probability of siding-out. d o ¢
A e i A ol Run Was Stopped vs. Match Side-Out Percentage

during all point runs and compare the #* Stop Overall

proportion of times the run ended onthe | gide-Out % Opportunities | # Stops | Proportion | Side-Out %
next rally with the receiving team’s side- :
39 BB B 2%

out percentage. ==51% ooz 5 b
o56% o 528%

In the CSUN vs. Santa Barbara match (-5-"["%,55%] _ [35 75 :
(10/02/07), for example, each team had I |4 63 553% = -52;7%

several runs of at least three points (see (55%’59%] s
Table 5). Consider the CSUN run of >59% 128 84 {
seven points: Santa Barbara had five 77T
opportunities to terminate the run—
after the third, fourth, fifth, sixth, and
seventh points. They were successful
once, after the seventh point. For the
match as a whole, Santa Barbara had
4x1 + 4x2 + Ox3 + 1x4 + 1x4 = 21
opportunities to stop a CSUN run and
was successful 4 + 4 + 0+ 1+ 1 =10
times, for an overall proportion of 10/21 90.0%
= 48%. This value is somewhat lower
than Santa Barbara’s 58% side-out per-
centage for the match. 70.0%

The reverse computation, for CSUN
stopping Santa Barbara runs, is slightly
different. Using the same method as 50.0%
before, we would conclude that CSUN

100.0% [ = —
80.0% -

60.0% -

| [Fe—stop Percentage |
gjw‘%MAvg. Side-Out %

stopped a Santa Barbara run 11 out of S

21 times. However, two of the Santa 30.0%

Barbara runs were not stopped by CSUN

points because each ended with Santa 20.0%-

Barbara winning the game; therefore, 10.0%

two opportunities and two successful

stops must be subtracted. Thus, CSUN 0.0% -— ==

actually stopped a Santa Barbara run e [:53.:55) |55 =5

9/19 = 47% of the time, compared with
CSUN's 59% side-out percentage for Figure 3. Proportion of rallies in which a run was stopped vs. match side-out percentage
the match.
If our conclusion were to be based
on this match alone, we would report
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that there is some evidence in favor
of momentum, given that each team
stopped runs less often than their over-
all side-out percentage. However, using
the data from all 32 cases (16 matches x
two teams each) in the database tells a
different story. To reduce the effects of
heterogeneity among matches, Table 6
groups the results into four categories
so matches in the same category have
similar side-out percentages. Category
boundaries were determined so the
total numbers of opportunities to stap
a run after the third point were similar
for each category.

Within each range of match side-out
percentages, the stop proportion shown
in Table 6 is the proportion of all rallies
after the third point of a run in which
the run was stopped. Note that these
values are close to the overall side-out
percentages for each category. Figure 3
shows a comparison.

A chi-square test of conditional inde-
pendence shows no significant differ-
ence between the stop proportions and
side-out percentages (p = .81). As with
the previous two analyses, this approach
also shows the run data to be consis-

tent with the SBT model. All three run

analyses support the contention that
runs such as those observed in volleyball
behave as the natural consequence of
play involving rallies whose outcomes
are affected only by the abilities of the
two teams and which team is serving. No
evidence for momentum in collegiate
women's volleyball has been found.

Conclusion

Players, coaches, and fans almost invari-
ably focus on the perceived significance
of runs in sports, whether they involve
consecutive field goals in basketball,
hitting streaks in baseball, runs of points
in volleyball, or a2 team winning or los-
ing strezk in any sport. It is hard to let
go of the impression that when teams
or players are successful several times
in succession, they are likely to con-
tinue to play at a higher-than-normal
level, at least in the short run. Yet sta-
tistical analyses often fail to support the
notion that these patterns are anything
more than those that occur naturally in
sequences of chance events. Contrary
to the strongly held intuition of most
observers of athletic contests, outcomes
of such events are often compatible with

maodels that do not presume the presence
of momentum.
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