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Sequential Partitioning

Mark F. Schilling

You have just agreed to repaint your parents’ guest bedroom. In their garage sits a
crusty old one gallon can of paint left over from the last time the room was
painted. You try to pry the lid off with a screwdriver, loosening here and there at
the edge of the lid, but the lid does not yield easily. The problem is a sticky one.

Soon you begin to wonder just how many places around the rim you will have to
pry before the lid can be removed, and what pattern will produce the desired
result most quickly. If it were known in advance exactly how many pryings would
be required, it would clearly be best to pry at points equally spaced around the
lid’s circumference, knowing that the last of these actions would free the lid.
Unfortunately, you are not able to anticipate this number so the above strategy
cannot be used. The next best procedure would be one in which the prying
locations are as evenly spaced as possible around the lid’s rim for every potential
stopping point of the process—but how to accomplish this?

In order to mount an analytical attack on this problem, it is necessary to adopt a
criterion by which to gauge the degree of evenness of spacing that a collection of
points scattered around a circle possesses. Clearly there are several possible
measures of evenness which could be used. The standard we shall primarily use
here is the size of the maximum gap (arc length) between any two consecutive
points, not only due to its simplicity, but because if the largest spacing can be kept
sufficiently small, this will necessarily impose considerable evenness among the
other spacings as well. (It should also be noted that when one is opening a sticky
can of paint, the size of the largest unloosened arc will probably be the primary
determinant of whether the lid will be removable—and also the main factor in the
tendency of the can to be secure from leaks when it is hammered shut after use.)

To bring the above problem into a more formal setting, consider a circle of
circumference 1 obtained by joining together the ends of the interval [0, 1]. In the
discussion and figures below, this circle will be traced out in a counterclockwise
direction with 0 and 1 meeting at the top of the circle. A cutting sequence will refer
to an infinite sequence of distinct points selected on this circle; any individual
point belonging to this sequence will be termed a cut, inasmuch as (except for the
first point) it subdivides an existing arc into two subarcs, thereby increasing the
total number of arcs by one. We may assume that the location of the first cut is at
0 = 1, thereby returning the circle to the original unit interval. Hence the problem
under consideration is really one of sequentially partioning an interval evenly in
the sense described above; however, there are advantages to working on a circle
which we will see later.

The goal which we wish to achieve can be loosely stated as:

Keep the largest gap small at all stages of the cutting process. (D)

Thus we are taking a minimax-type approach to the cutting problem—we want to
have a “good” partition regardless of when the process is terminated.
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Clearly there are conflicts in trying to accomplish this goal. For instance, making
the second cut at 1/2, which is best for stopping after two cuts, offers the worst
possible prospects for the maximum gap which will exist after three cuts, among all
choices of the second cut. Thus sacrifices at particular stages are necessary in
order to achieve consistently good performance.

LEAPFROG SEQUENCES. In a search for an optimal cutting scheme, a natural
first step is to consider the order in which the cuts and the resulting intervals
should be generated. Two rules can be developed: (i) It seems reasonable that each
cut should be made in (one of) the largest existing interval(s) present at that stage.
Only in this way can the size of the largest gap be reduced as soon as possible—in
one step, unless there is a tie for the largest interval size. (ii) Secondly, suppose
that n cuts have been made so far, and let the size of the smallest interval be S.
Then the next n — 1 cuts can at best produce a partition in which the new largest
interval has size S, and the only way that this can happen is if every interval which
is larger than § after n cuts is divided into two subintervals each no larger than S.
Taking the above two considerations together yields the following paradigm:

Each cut should divide any largest existing interval into two subintervals both no
larger than the smallest existing interval. A great benefit of this paradigm is that
the gaps generated by such a cutting sequence can be described by a single ordered
sequence. Let x, represent the size of the initial interval, obtained by cutting at 0;
thus x, = 1. Label the interval sizes obtained from the second cut as x, and x,
with x, > x3; thus x, = x, + x5. The third cut divides the interval of length x,
into subintervals of lengths x, and x5, where we shall take x, > x5; we then have
three intervals having lengths x; > x, > x5 satisfying x; + x, + x5 = 1. Continu-
ing in this way, the collection of intervals generated by such a cutting sequence
satisfies the following three conditions:

x =1

X, =Xy, t X3p41» n=12,3,...;

X X=X 0.
Any sequence satisfying the above three conditions shall be referred to as a
leapfrog sequence. Note that after any number n of cuts there will be intervals with
lengths x, >x,,, > ‘" >x,,_, summing to 1; the (n + 1)-st cut then causes
the leftmost term, x,,, to “leapfrog” over the other interval sizes to form two new
terms on the right. Our goal is to keep the maximum gap size x,, ‘small’ for all ».

There are an infinite number of leapfrog sequences. A simple case is the one

which follows the rule of always bisecting a largest existing interval; this produces
the sequence {x,} = {1,1/2,1/2,1/4,1/4,1/4,1/4,1/8,...}. Figure 1 shows the

Cut # Intervals
1 X1
2 X2 X3
3 X4 Xs X3
4 Xy Xs X¢ Xq
5 Xg X9 Xg Xg X7
Figure 1
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relationship of a leapfrog sequence x, to the corresponding partitioning of the
unit interval created by the first cut. The particular interval sizes shown represent
the initial stages of the bisecting sequence.

THE OPTIMAL LEAPFROG SEQUENCE. It is easy to show that any leapfrog
sequence tends to zero at the rate of 1/n. Clearly x, > 1/n for each n, with
equality possible only if the gap sizes are all equal for some particular n, as in the
bisecting sequence above for n = 1,2,4,8,.... To obtain an upper bound on x,
note that 1 =x, + x,,, + -+ +x,,_, > nx,, since {x,} is nonincreasing, hence
X,, <1/n,ie., x, < 2/n for n even; a similar argument justifies the same bound
for odd values of n as well.

Let us therefore study the behavior of the normalized maximum gap M, = nx,,
which is of stable order and remains between the values 1 and 2 for all n for any
leapfrog sequence. A refined version of the objective given in (1) concerning the
long run behavior of the maximum gap can now be formulated:

Find {x,} such that L = limsup, _, ., M, is minimized . (2)
For the bisecting sequence described above,
{m,}) ={1,1,3/2,1,5/4,3/2,7/4,1,...}.
Figure 2 shows the graph of {M,} for this sequence. When n is any power of 2, all
gaps are of equal size and M, = 1, the lowest possible value. However, for
intermediate values of n the bisecting sequence can do very poorly indeed. In fact,

this cutting strategy exhibits the worst possible value of L, 2, among all leapfrog
sequences (recall that x, < 2/n for all n).

2 .
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10 20 30 40 50
Figure 2

It seems likely that for an optimal leapfrog cutting sequence, the graph of M,
would not contain peaks and valleys such as those in Figure 2. Is it possible, then,
to find leapfrog sequences for which M, possesses a limit, and will this lead to a
solution to (2)?

To answer these questions, the following ingredients are needed. First, note that
since the x,’s are nonincreasing, x, = x,, + X,,,, < 2x,,, thus M, < M,, for all
n. Hence L > M, for all n since every M,, is a member of a nondecreasing infinite
subsequence of M, ’s.

Now let §,=L/n+L/(n+ 1)+ -+ +L/(2n — 1). From the result just
shown we have that for each n, S, >x, + x,,; + -+ +x,,_; = 1. Furthermore,
comparing the partial harmonic series S,/L to [(1/x)dx shows that S, ap-
proaches the limit L In2 from above. Thus the best value of L that can be hoped
foris L =1/In2 = 1.44.
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This result shows that the minimum price which must be paid to achieve
optimality in the sense of (2) is a 44% increase in maximum gap size (for large n)
compared with the equal-spaced design which would be used if the total number of
cuts to be made was specified in advance. It remains to show that a leapfrog
sequence {x,} achieving this value of L exists.

To this end, define y, = Z7"'x, for n = 2,3,.... For n = 2% we have

Yo=X1+ (x5t x3) + (x5 +x5+x5+x7) + 0+ (x4 0 +x_;)
=k = log, n.

This suggests that to obtain a cutting sequence whose gap sizes decrease smoothly,
we could set y, = log, n for all n to determine values of x, from the relationship
X, =Y,+1 — Y, We obtain from this the sequence

x, = log,((n + 1) /n), n=12,....

To check that {x,} is in fact a leapfrog sequence, note that

2n +1 2n + 2
Xop + Xo, 41 = log, o + log, 1

2n + 2 n+1
= log, o = logz( P =X,;

the other two conditions for a leapfrog sequence are apparent at once. We shall
refer to this sequence as the logarithmic cutting sequence. It is easy to see that for
this sequence, M, possesses a limit and that that limit is indeed 1/In 2, hence the
logarithmic cutting sequence is asymptotically optimal.

The graph of {M,} for the logarithmic cutting sequence is shown in Figure 3.
Note that the curve approaches its limit from below, hence we have obtained as a
bonus that the sequence performs particularly well for small values of n. Rather
remarkably, although there are many partitioning schemes that yield a smaller
maximum gap size for some values of n (such as the bisecting sequence), only the
logarithmic sequence achieves criterion (2):

1.75
15
1.25
1 1o
0.75

0.25

10 20 30 40 50

Figure 3

Theorem. Let {x,} be the logarithmic sequence and let {z,} be any competing
leapfrog sequence. Then limsup,, _,, nz, > 1/In 2.

Proof: Write z, =x, + ¢, for n=1,2,3,... and let ¢, = ng,. Since nz, = nx,

+ §,, it suffices to show that limsup, _, £, > 0. Now the conditions of a leapfrog
sequence give ¢; = 0 and ¢, = €,, + €,,,, for each n. Thus either all ¢, = 0 or
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some ¢, > 0. If a particular ¢, > 0 then max(e,,, €,,,,) > €,/2, which immedi-
ately yields max(¢,,, &,,.1) > £,. Since this argument can be repeated indefinitely,
the theorem follows.

We have shown that the logarithmic cutting sequence x, = log,((n + 1)/n) is
the unique optimal leapfrog cutting sequence with respect to the minimax criterion

).

THE DUAL PROBLEM. The criterion given in (1) and more precisely in (2) is of
course not the only standard which could be used to measure the evenness of a
sequential partitioning algorithm. One obvious alternative is to concentrate instead
on the smallest interval which exists at each stage rather than the largest. This
leads to the following dual to the objective given in (2):

Find {x,} such that 1 = liminf, _, ., m, is maximized, 3)

where m,, = nx,,_, is the normalized smallest gap which exists after n cuts of a
leapfrog sequence.

One might naturally conjecture that, since making the larger intervals smaller
must make the smaller intervals bigger because the sum of all the interval lengths
is constrained at 1, the logarithmic cutting sequence is again the unique optimal
solution to this new criterion. The following theorem verifies that this is indeed the
case:

Theorem. The logarithmic cutting sequence is uniquely optimal with respect to
criterion (3), achieving a value of | = (1/2)In 2.

Proof: The relationship x,,_; = xX4,_, + X4,_; yields x,,_; > 2x,,_,; multiply-
ing by n then gives m, > m,, for all n. Thus m, > [ for all n. Now

L=xp, 14 Fxy4,3
> X0, 1+ 2 Xppi1 FXppus T HXg,3)
= mn/n + 2[”nn+1/(n + 1) + mn+2/(n + 2) + - +m2n—1/(2n - 1)]
221/ (n+ 1)+ 1/(n+2)+ - 1/2n — 1) + 1/2n]

> 20" av/x = 20[(2n + 1) /(n + 1)].
n+1
Taking n — o establishes the claimed maximal value of /. It is again easy to show
(by expanding the logarithm function) that the logarithmic cutting sequence
achieves this value.

To prove uniqueness, let {z,} be any leapfrog sequence which achieves the
optimal value / = 1/21n 2. First we show that the lim inf can be extended from the
odd terms z,,_; to the even terms z,,: using the fact that {z,} is nonincreasing
gives liminf, (n + 1/2)z,, > liminf,  (n + 1/2)z,,,, = liminf,_, (n +
Vz,,.q = liminf, ,,nz,,_; = 1/2In2. Combining the two cases then yields
liminf, , ((n + 1)/2)z, = 1/2Dn2, ie., liminf,_,nz,=1/In2. Writing z, =
X, — €, n=1,23 - and reasoning as in the previous theorem, it follows that
¢, must be 0 for all n so that once again the logarithmic sequence alone is optimal.

Just as the size of the normalized maximum gap M,, increases to its limit for the
optimal cutting sequence, the size of the normalized minimum gap decreases to its
limiting value as n — o, so the logarithmic sequence is especially good for small
values of n under both optimization criteria.
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An Application to Data Analysis: Sunflower Plots. When a large amount of data on
two variables is displayed in a scatterplot, frequently several data values will have
the same position on the graph; this may cause a distorted impression of the data
set to be rendered to the observer. Cleveland and McGill [3] introduced a
graphical device they called sunflowers to display such multiple observation points.
A sunflower is simply a collection of equal-length spokes each representing one
observation, emanating from a common center which represents the variable
values that these data share.

Normally the data are completely compiled before the scatterplot is made, in
which case the spokes of each sunflower are spaced perfectly evenly, with angles of
27 /n between adjacent spokes. However, frequently situations occur in which the
data is processed “on line,” or a file is updated when new data becomes available.
In these situations it is not possible to anticipate the spacing which the spokes
should ultimately have. Clearly, to maximize the resolution of distinct observations
at a common site (precisely the problem that motivated the idea of sunflowers in
the first place), one would want to keep the minimal angle between any two spokes
as large as possible. This is exactly criterion (3); hence the logarithmic cutting
sequence is a most appropriate technique for such a situation. Figure 4 illustrates a
scatterplot of data from Chambers, Cleveland, Kleiner and Tukey [2] in which the
sunflowers have been constructed according to this paradigm. The sunflowers are
no longer symmetric but the overall appearance of the plot is still very similar to
the original (see [2], p. 111). Even for values with as many as twelve coincident
observations, the spokes are clearly resolvable.

100 150 200 250
>

STAMFORD OZONE

50
T L

0 50 100 150

YONKERS OZONE

Figure 4

A SIMPLE IMPLEMENTATION OF THE OPTIMAL CUTTING PROCEDURE.
The periodicity of the circle allows the logarithmic leapfrog sequence derived
above to be implemented in a particularly straightforward manner: Beginning at
the point labeled 0 and moving always in the same direction (clockwise or
counterclockwise), cut whenever the total distance traveled (arc length) is a value
of log, ¢ for ¢ = 1,2,3,... . Figure 5 shows the locations of the cut points for
counterclockwise winding. Note that whenever ¢ is even, i.e., ¢ = 2k for integer k,
the cut at that point will already have been made since log, ¢ = log, k + log, 2 =
log, k + 1; thus these cuts can be eliminated. Every odd value of ¢ on the other
hand yields a new cut; taking ¢ = 2n + 1 for integer n we have log, ¢ = log,(n +

1992] SEQUENTIAL PARTITIONING 851



0

1/2) + 1, which shows that the cut divides the interval between the cuts made
at log, n and log,(n + 1). This interval, which has length log,(n + 1) — log, n =
log,((n + 1)/n), is therefore divided into subintervals of lengths log,(n + 1/2) —
log, n = log,(2n + 1)/2n) and log,(n + 1) — log,(n + 1/2) = log,(2n +
2)/(2n + 1)), which is precisely the requirement used above to derive the logarith-
mic leapfrog sequence.

To summarize this partitioning recipe, starting with a cut at 0, wind in a
particular direction by cutting at each value of log, ¢ for odd c. The procedure
always jumps from the location of the cut just made, over the next existing cut, to
the interior of the next interval which lies ahead in the direction of winding; this
gives a second justification for the leapfrog adjective. One can easily imagine a
machine programmed to carry out this operation very rapidly since no changes of
direction are involved. Note that at any stage of the process, the intervals are
ordered with respect to size.

OTHER PARTITIONING SCHEMES

Fixed Angle Cutting. Suppose that in the same fashion as described just above, we
travel around the circle making each cut after a prescribed arc length has been
traversed. Now suppose, however, that this arc length must be the same each time
—what is possible in this case? Remarkably, it turns out that no matter what arc
length (or equivalently, angle) is selected, there will never be more than three
different gap sizes present at any given stage! (The reader may wish to experiment
with this surprising result—angles that are simple fractions are the easiest compu-
tationally, however the statement holds for all irrational angles as well.) This result
is known as the Three Gap Theorem,; it was originally a conjecture of Steinhaus. A
proof and references to this theorem may be found in a recent article by van
Ravenstein [8], where it is also shown that using an angle equal to the golden ratio
¢ =G5 —1)/2=.61803... is optimal among the class of fixed angle parti-
tioning strategies in the sense that the minimum over n of the ratio of smallest to
largest gap sizes is maximized. The author notes that virtually all plants that
produce leaves sequentially grow essentially according to this pattern in order to
reduce leaf overlap.

Fixed angle cutting schemes are not leapfrog sequences; however it can be
shown (see [8]) that each new cut in such a scheme divides a largest existing gap
and produces one new gap whose size is equal to that of the smallest existing gap
(the other new gap may be larger, however). The values of M and m for the
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golden ratio strategy are easily found to be M =1 + 2/\/§ =189 and m =
1/ V5 = 0.45. This represents significantly inferior results to those achieved for the
optimal leapfrog sequence.

Random Partitioning. Suppose the partitioning is done by selecting each cutting
point completely at random. How much worse is this method? Of course (with
probability 1) we will not obtain a leapfrog sequence. It might be conjectured,
however, that such a scheme will do fairly well asymptotically inasmuch as the cut
points will eventually tend to become quite evenly spread out around the circle. In
fact it can be shown that the maximum gap tends to shrink not at the rate of 1/n
but at the somewhat slower rate of In n/n. Thus random cutting does infinitely
worse asymptotically than any leapfrog sequence.

RELATED PHENOMENA

Benford’s Law. There is an interesting connection between the optimal leapfrog
sequence and the well known result known as Benford’s Law [1], which concerns
the remarkably consistent but non-uniform distribution of the decimal digits
1,2,...,9 which is observed among the first significant digits of naturally occurring
numbers, such as those in tables of physical constants, tables in almanacs, etc.
Benford’s Law states that each digit d occurs with frequency log,,((d + 1)/d) for
d=1,...9.

Many arguments attempting to justify Benford’s Law have been put forward
since it first appeared in print in the paper of Newcomb [4], who preceded Benford
by fifty-seven years; see [7] for a review. One of the most appealing of these, due to
Pinkham [5], invokes the principle of invariance. The argument goes essentially as
follows: Suppose that there is in fact such a law; i.e., each digit d occurs with
frequency f, throughout the great majority of natural tables. Then the law must
certainly be independent of the units used; for example, the proportions of each
digit’s occurrence should not change measurably when a table using inches is
retabulated in centimeters. The key observation is that regardless of the general
magnitude of a number n, the first digit of n corresponds to a given range for the
mantissa of the common logarithm of that number; for example, any number
whose first digit is 1 has a mantissa between log,, 1 = .000 and log,, 2 = .301.
Now rescaling the units by any factor F adds log,, F to the logarithms of each
value in the table, which cycles the mantissas around by that amount (mod 1). In
order for the distribution of first digits of a set of numbers, and hence the
mantissas of their logs, to remain unchanged regardless of the scaling factor F, the
distribution of the latter must be uniform. This directly yields Benford’s Law.

Benford’s Law extends easily to second and other leading digits in a straightfor-
ward way, using the uniform distribution of the mantissas. The law holds in any
base b simply by using logs in that base. Thus, the optimal leapfrog sequence
corresponds to Benford’s Law for the distribution of leading digits in numbers
represented in binary form. Of course for first digits alone, Benford’s Law in this
case is trivial—every number begins with 1. Suppose however that we look instead
at the first k digits where k can be any positive integer. What proportion of
naturally occurring numbers, then, have a binary representation which begins with
a specific configuration of digits, say those which represent the integer n? Since
only the mantissa of the base 2 logarithm of n is important, the answer is
mantissa(log,(n + 1)) — mantissa(log, n) (mod 1) = log,(n + 1) — log, n =
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log,((n + 1)/n), precisely the values generated by the optimal leapfrog cutting
sequence.

Figure 6 is a base 2 version of Figure 5 which can be used to illustrate Benford’s
Law for binary numbers. Let the circle represent the mantissa scale for base 2
logarithms, winding counterclockwise from 0 to 1, which meet at the top of the
circle. The circle is subdivided into eight intervals that correspond to the eight
possible configurations of the first four digits of any binary number. A number
whose base 2 mantissa falls in a given interval will have as its leading binary digits
the string shown at the clockwise edge of the interval. Thus in a collection of
binary data, we would expect more numbers to begin with 1000 than 1001, more to
start with 1001 than 1010, and so forth, in proportion to the interval lengths shown
in Figure 6. To obtain the relative frequencies of occurrence for binary numbers
for which a smaller number of leading digits is specified, simply combine the
appropriate neighboring intervals in Figure 6. To visualize Benford’s Law as it
applies to more than four leading digits, just continue the cutting process described
for Figure S. The law for a specific digit after the first can be illustrated by shading
in alternating blocks of intervals beginning at the top of the circle. For instance,
the frequency of 0 in the third digit of binary numbers according to Benford’s Law
is shown in Figure 6 by the total length of the arcs between 1000 and 1010 and
between 1100 and 1110. Figure 6 can easily be modified to work for the original
(base 10) version of Benford’s Law or for any other base.

Circular Slide Rules. These now archaic devices have a close connection to the
optimal leapfrog cutting sequence. Circular slide rules have two indicators similar
to the hands of a clock, situated over a logarithmic scale which is wound several
rotations and is numbered typically from 1 to 10. That is, if there are w windings
to span the range 1 to 10, each revolution increases the value shown on the slide
rule by 10'/*. The diagrams shown in Figures 5 and 6 have a logarithmic scale
which increases by a factor of two per revolution.

A crude slide rule for binary calculations can be constructed by adding two
hands to Figure 6 and converting these binary values to the range 1 to 2 by
inserting “decimal points” (binary points?). To illustrate, consider the calculation
of 9 X 5, which in base 2 is 1001 X 101. Placing the first hand of the slide rule at
1.001 and the second at 1.010, rotate the two hands together so that the first hand
is now on 1.010 and read off the answer from the position of the second hand. If
you try this on Figure 6 you will find that the result is located at a point just

1000
1111

1001
1110

1101
1010

1100
1011

Figure 6
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greater than (counterclockwise from) the cutting position 1.011 (labeled as 1011 in
Figure 6). This yields the leading digits of the product, 45, which has a binary
representation of 101101. Raimi [6] discusses the connection between Benford’s
Law and the circular slide rule for base 10 numbers in his article on the first digit
problem.

ACKNOWLEDGMENT. The author is indebted to Ann Watkins for suggesting the application to
sunflower plots.
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It is true that Fourier had the opinion
that the principal object of mathemat-
ics was public use and the explanation
of natural phenomena; but a philoso-
pher like him ought to know that the
sole object of the science is the honor
of the human spirit and that under this
view a problem of [the theory of]
numbers is worth as much as a prob-
lem on the system of the world.

—C. Jacobi
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