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Robustness of Design Against Autocorrelation in
Time Il: Optimality, Theoretical and Numerical

Results for the First-Order Autoregressive Process
P. J. BICKEL, AGNES M. HERZBERG, and M. F. SCHILLING*

The optimum design and its efficiency relative to the uni-
form design for estimating the mean of a stationary first-
order autoregressive process plus an independent error
are characterized completely. This is related to the work
of Jones (1948). Optimum designs and variances of least
squares estimates are calculated numerically for the prob-
lem of estimating the slope in a simple linear regression
when the errors follow the above structure, for a range
of values of the sample size and the parameters of the
process. Numerical results in both cases are compared
with asymptotic values obtained in Bickel and Herzberg
(1979). The asymptotic optimality of the uniform design
is borne out.

KEY WORDS: Robustness; Asymptotic design; Auto-
regressive process.

1. INTRODUCTION

In a recent paper Bickel and Herzberg (1979) (referred
to throughout as I) developed a new asymptotic theory
for studying the effect of dependence of the observations
in the design of experiments for the linear model. Designs
that are asymptotically optimal for estimating the param-
eters under a known dependence structure of the type
given below were characterized. The uniform design
turned out to be asymptotically optimal in a strong sense
for estimating location and in a weaker sense for esti-
mating the slope of a straight-line regression regardless
of the shape of p below. The uniform design thus seems
to have a claim to robustness against dependence.

In this paper we study the procedures of I numerically
for the location and linear regression models when the
dependence is first-order autoregressive and give some
fixed sample optimality results for the location case.

As in I, suppose that observations can be taken on a
variable y at N time points, ~ T =t = - =ty = T,
and that an observation at time T can be written

YO = Bifi(0) + - + Bpfpo()) + 1), (1.1
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where the f;(f) are known functions, the B; are unknown
parameters (j = 1, ..., p), and €(?) is a random error
with center zero.

If €,(s) and e,(s) are the errors of two observations
taken at times s and ¢, then we suppose

€(s) = €'(s) + €,
&) =€) + &,

where €'(+) is a stationary Gaussian process with mean
0, correlation function p, and variance yo?2, while the €,
are independent N{0, (1 — +)o?} variables. Note that
even if s = ¢, our.observations need not be identical.
Such a model naturally suggests itself in various situations.

An important class of examples pointed out by Mor-
rison (1970) includes repeated measurements of a biolog- -
ical variable on single individuals. Another important
class includes the situation in which the same observer
makes repeated measurements. The evidence for de-
pendence in such cases is very strong; see, for example,
Pearson’s data as discussed in Jeffreys (1961, p. 297),
which is discussed further later.

Under this structure, the errors €;(¢;,) (i = 1, ..., N),
have a joint normal distribution with

Elet,)} = 0, (1.2)

var{e(t;)} = o?, (1.3)

corr{Yi(t,), Y;(t)} = yp(t: — ) (G #J). (1.4)

In I the interest was in situations where the dependence
of the observations is not known too precisely and at
least initially is assumed to be negligible. For N obser-

vations, the correlation function was taken to be given
by

p(t) = pa() = pi(NY), (1.5)

where p,(f) = 0 as t > «. Thus p(-) depends on N and
is close to the correlation function for independent errors
if N is large.

The initial assumption that p(-) is not known precisely
suggested that designs should be studied for which the
ordinary least squares estimators, which are optimal
when the errors are uncorrelated, perform well. Thus the
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asymptotic theory of the variance-covariance matrix of
the least squares estimates where

23 = o*(FTF) " "(FTUF)(FTF)" ', (1.6)
F'={ft)} G=1,...,p;j=1,...,N), (1.7
U={yt:i—t) + 1 - yd;}G,j=1,...,N) (1.8)

was investigated.

In Section 2 we consider the location model, p = 1,
f1(#) = 1. We characterize the design that minimizes (1.6)
for fixed p and N (Theorem 1) and calculate it explicitly
for

pi(®) = e ML (A >0). (1.9)

In this model we compare this optimal design to the dis-
cretized (asymptotically) optimum uniform design for N
= 10, 20 and what we argue is a practical range of \ and
v. In Section 3 we consider the regression model, p =
2, f1(®) = 1, () = t but restrict ourselves to symmetric
designs. In Section 3.1 we indicate how the design that
asymptotically minimizes the variance of the slope esti-
mate (3, is computed numerically and give its qualitative
shape. The uniform design is still asymptotically optimal
here for B,; for B, the uniform design is only optimal as
T — 0 (see I). We compare the asymptotic performance
of the uniform asymptotically optimal symmetric designs
for p, given by (1.9) with what we call the mimic design.
The mimic design has uniform mass equal to 3 supported
in each of the intervals {—1, —7'2} and {r"2, 1}, where
72 is determined for the optimal design. In Section 3.2
we sketch the numerical computation of the optimal de-
sign for estimating the slope B, for fixed N and p,. Nu-
merical comparisons between the exact and approximate
and mimic designs are given in Section 3.3 for the cor-
relation function (1.9). Conclusions are given in Section
4 and the Appendix contains the proofs of the theorems
in Section 2.

2. LOCATION MODEL

If, in (1.1), p = 1 and f,(¢) = 1, the asymptotically
optimal design on {—T, T} is the uniform design, as was
shown in I. For fixed N, the optimal design is charac-
terized in the following theorem. Recall that a symmetric
designhast;, = —tn_;o1 G =1,..., N).

Theorem 1. (a) If p,(¢) given by (1.5) is convex on [0,
) and continuous, an optimal design {¢,*, . . ., t5*} that
is symmetric always exists. (b) If, further, p,(¢) is strictly
convex and differentiable on (0, ) with a right derivative
at 0, the optimal design is unique and necessarily sym-
metric. The optimal design satisfies the following con-
ditions uniquely:

1. =T <* < 0implies t,_* < t,* < t,.,* for all
k.

2. Thereis anr =1 such that f,* = --- = t,* =
and ¢, ,* > —T.

-T
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3. Let [x] represent the greatest integer less than or
equal to x. For r < k = [3(N + 1)],

k—1
> e N — t7%)}
i=1

2.1
N
= X p/{N@t* -t}
i=k+1
N
4. r—Dp,/©) = X p/{NGt* + D}. (.2)

i=r+1
With the aid of Theorem 1, the optimal design is com-
pletely specified for p,(f) = e *!*!and any N, A\ > 0 by
the following theorem.

Theorem2.1fp,(f) = e =1, the unique optimal design

{t.*, . .., tn*} satisfies
1. t|*= =tr*= —T, t,+|*=aN— TfOI'aN>
0 for some r € {1, ..., [N/2]}.
2. tiF—t¥=by>0fori=r+1,...,[N?]
if r < [N72].

Furthermore, r, an, and by are specified by the
following:

3. If Nis even and AT =< log(N/AN — 2))2N, r = N/
2. (Hence ay = 2T.)

4. If Nis odd and AT = log((N — 1)/(N — 3))/N, r
=(N-DRanday = T.

5. Otherwise, let a = N\ay, b = NAby. Then r, a,
and b are the unique values satisfying equations

2a + (N = 2r — 1)b = 2N\T 2.3)
e =re? -1 2.4
a<b. 2.5

The proofs of both theorems are given in the Appendix.
The following corollary, which specifies r for large N,
follows readily from Theorem 2.

Corollary. For given \, T there exists N, such that, for
N = N,, ris constant. The value of r is the unique solution
to (eZ)\T _ 1)—1 <r=< ez)\T(e2)\T _ 1)—l'

From the corollary we see by expanding e**” that
for AT small and sufficiently large N, the optimal design
places a total of approximately 1/AT points at the ends
of the design region. (In fact, it can be shown that for
any value of AT, either r = [1/2\T] or r = [1/2\T] + 1.)
The remaining points are distributed uniformly on [T,
T], with the exception that the first and last spacings are
never more, and typically less, than the other spacings.

The optimal designs for location are seen to be inde-
pendent of the correlation parameter y. Some examples
of optimal designs for p,(f) = ¢~ ! are given below:

= 1.0, N = 10:
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t’s = *1, =.786, +.562, *.337, +.112;
A=.2,N=10:

t’s = =1, £1, =.751, =.450, +.150;
A= .02,N =10:

t’s = *1, =1, =1, =1, +£.599.

An intuitive justification for the form of the optimal
design as indicated by Theorems 1 and 2 can be given.
It is easy to see that the average distance from an ob-
servation to the remaining design points is maximized by
placing the observation at one of the two endpoints of the
design region—and this is desirable. However, the num-
ber of sample points that should be placed at an end is
limited by the lack of separation incurred between such
points, because

1. By the convexity of p more is lost by moving one
point closer to another one than is gained by mov-
ing it away;

2. The number of pairwise differences of zero due to
ties at an endpoint increases as the square of the
number of points placed there.

The absence of ties or clusters in the interior is also sug-
gested by (1).

21 Reductionto T =1

Define the equally spaced design for N observations
by t; = TG - D)IN - 1) -1}, G=1,..., N).
Consider generally the optimization problem for corre-
lation functions that depend on ¢ through A¢. For given
A and T, let Va(\, T) = N var (Y) for the optimum sym-
‘metric design with N observations on the interval [ - T,
T] for such a correlation function. Similarly, let Un(X,
T) = N var (Y) for the equally spaced design. It is evident
by matching design {t,, ... , ty} with design {t,7°',

, tINT™ '} that VN, T) = VN(AT, 1) and Un(\, T)
= Un(A\T, 1). Moreover, these identities hold for N =
« as well. Therefore, efficiency comparisons for the two
designs may be made for T = 1 and selected values of
A and N. '

2.2 Discussion of Table 1

Define the efficiency of the equally spaced design by
{U~n(\, T)/Va(N, T)}~ 1. Table 1 gives efficiencies for T
= 1 and for selected values of N, vy, and \.

The excellent performance of the approximation to the
asymptotic result is not surprising since the optimal de-
sign is so close in shape to the equally spaced one. It is
interesting to note that save for the fixed number of points
reserved for + 1 the optimal design is of the same shape
as that found by Jones (1948) to be optimal for estimating
Bi + Jie(r)dr when p(f) = e *!*!. Jones’s work grew
out of design questions in sampling theory. Correspond-
ingly, the results of I should be extendable to the sampling
context.

Joumal of the American Statistical Association, December 1981

Although our design is optimal only when the nonop-
timal least squares estimate is used, the work by Jones,
in which the sample mean is optimal for his design, the
work by Chipman et al. (1968), and asymptotic calcula-
tions indicate that for this p, the difference is negligible.

We can justify the range of A and y we consider as
follows. We obtain the same asymptotic efficiencies if,
instead of assuming that the interval [ — T, 7] is fixed and
p moves, we suppose p is fixed, p(f) = p,(¢), and the
possible interval of observation is [—NT, NT]. In this
context it seems clear that a relevant parameter that es-
sentially does not depend on N is the correlation between
successive observations in the equally spaced design,
which is approximately ye ~%*7.

The problem of correlation in observations is discussed
by Pearson (1902). Jeffreys (1961) reports that Pearson

carried out some elaborate experiments to test whether errors of
observation could be treated . . . as a combination of a random
error with a constant systematic error for each observer. . . . For
each type of observation there were three observers who each
made about 500 observations. When these observations were
taken in groups of 25 to 30 it was found that the means fluctuated
not by the amounts that would correspond to the means of 25 to
30 random errors with the general standard error indicated by the
whole series but by as much as the means of 2 to 15 observations
should.

If we apply our model and formula (3.1) of I we find
that the variance of the mean X, of N observations
spaced 2T apart is approximately (¢2/N) {1 + 2yQQ\T)}
= (6?/N) {1 + 2y(e**” — 1)"'}. The mean of N inde-
pendent observations of course has variance o?>/N. From
the Pearson statement we expect that the ratio of these

Table 1. The Efficiency of the Equally Spaced

Design

A y=1 5 2 N
1.0 .9998 .9999 .99995 10
.9998 .9999 .99996 20

8 .9989 .9995 .9998 10
9994 .9996 .9998 20

6 .9968 .9980 .9991 10
.9975 .9984 9992 20

4 .9868 .9910 .9954 10
.9893 .9924 .9960 20

2 9461 .9578 .9745 10
.9536 .9624 .9760 20

A 9251 .9367 9568 10
9154 .9255 9453 20

.08 .9246 9353 .9547 10
.9073 9170 .9369 20

.06 9291 .9382 9555 10
.9024 9112 9301 20

.04 .9392 .9462 9601 10
.9054 9125 .9286 20

.02 .9606 9647 9731 10
9278 9322 9427 20
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quantities ranges from approximately 12.5 to 2. For T
= 1 this corresponds to the following ranges for A and
the correlation between successive observations, ye ~2*,

Y A ve —2A
1 .08-.55 . .33-.85
5 .04-.35 .25-.46
2 .02-.17 .14-19

3. LINEAR REGRESSION MODEL
31 The Case N = »

Asymptotic designs. If, in (1.1), p =2, fi0) =1, £,
= t, and one is interested in N var((,), it was shown in
I under suitable conditions, including the convexity of
p(?) on (0, =), that the asymptotically optimal symmetric
design g is a solution to the equations

T
f TQ(t, p*, 1*)dt = 1, (3.1)

T 1 5
ZI_TQ(;>t qdt
- =
f 2 qdt
-T

where, forp > 0,0 = 7 < T'?,
0 ([t]=1'"),
qt, w, M) = J[H Yl -t 2]~ (2 =|1]=D,
0 ([t|>D,

3.2)

(3.3)

oW = 2 pi(jio)
J=1 (3.4)

H@) = 00 - 10" ().

Such a density is given in Figure 1.

Unfortunately, we were unable to show that the so-
lution to these equations is unique. However, we did
obtain solutions that yielded designs with asymptotic var-
iances below those of any competitors we considered.
We conjecture that these solutions are the unique asymp-
totically optimal designs. These solutions are the source
of Table 2.

Figure 1. Optimal, Uniform, and Mimic Designs for
T=1+vy=.5\=.483 and "2 = 2985

————Uniform  ----------Mimic

~—— Optimal

.89

66

437

.21

873

In addition, we consider two suboptimal designs, the
uniform design and the mimic design, both defined in
Section 1. Although the mimic design can be defined for
arbitrary | 7 | = T2, we only give numerical results for the
interesting case when it indeed mimics the optimal design,
that is, T = 7*(\). Figure 1 shows comparable optimal,
uniform, and mimic designs for r/2 = 2985,y = .5, and
A = .483.

Reduction to T = 1. Let V(\, T) be the asymptotic
variance of N'?@, for the optimum symmetric design.
Arguing as in the location case, it follows readily that
V(\, T) = T~2V(AT, 1). The same relationship holds for
both the uniform and mimic designs. Moreover, if we
assume that (3.1) and (3.2) have a unique solution for
each \, we readily get (indicating now the dependence
of p* and 7* on T) w*(\T, 1) = p*(\, T) and 7*(\T, 1)
= T~27*(\, T). Thus all our efficiency comparisons can
again be carried out for T = 1 and selected \.

Computations. Simple expressions exist for the vari-
ances of the uniform and mimic designs. From Formula
(3.1) of 1, the asymptotic variance of N2, for a design
whose design measure has distribution function F is

V(a) = (¢%/D) (1 + 2yC/D) 3.5)
where
a(t) = F~'(0),
1
C= f Ofa' (D}a*(r)dt,
0
1
D = fo a?(f)dt.
For p, given by (1.9)
o = (e — D", (3.6)

Using a(t) = 2t — T, we obtain for the uniform design
with py(¢) = e M land T = 1,

V2t — 1) = 3{1 + 2y(e** — 1)~ "}o?, 3.7
and for the mimic design,
wo - {0z
20 =7 + 27" - 1) GG<t=1,
yielding
302
T (3.8)

X (1 + 2ylexp{2A(1 — 7'2)} — 117 1).

Details of the computation of the conjectured asymptot-
ically optimal design from (3.1) and (3.2) are available
from the authors upon request.

3.2 The Case N < =

Designs and computational methods. If t, < -- =ty
is a design and p,(¢) = e ~*!*!, the variance of N'?B, is
given by
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: Na?
Vi, ...t N) =
2 t?
i=1
2vS e o)
x 41+ —=

N
>t

i=1-

Clearly, V(t;, ..., tn, \) = T2V, T}, ,INTTY,
AT), and we can again restrict to T = 1. The design points
for the various designs are

1. Uniform design:

L=-1+20-D(N-1 G=1,...,N).
2. Mimic design:
—1+£(1—~r"2)(i—1) i=1,...,iN),
t; = N
~IN+1-i (i=%N+1 ., N).

3. -Approximate optimal design: Let G be the distri-
bution function of the asymptotically optimal design
given by (3.1) through (3.3). The approximate optimal
designhas t;, = G™'(( — DN - 1))(i=1,...,N).
The approximate optimal design is clearly symmetric.

4. Exact optimal design (symmetric): We seek design
points —1 = ¢, < - sty=<1suchthatt = —ty_;4
and V(¢,, . . ., tx;N\)is aminimum. We arrive at a system
of equations and inequalities similar to (2.1) and (2.2) by
differentiating with respect to t,, k = 1, , M and
requiring the derivatives to be zero in the interior and

Joumal of the American Statistical Association, December 1981

nonnegative at the boundaries and specifying ¢, = -
=t = —T.

Unfortunately, we cannot show that the solution is
unique or that every solution yields the optimal design.
Starting from the uniform case, we solved the equations
iteratively and again found that in every case the value
of V(t,, .. ., tn, N) obtained from the algorithm, which
we call VN()\ T), is smaller than the variances of all the
competitors.

The optimal designs found consnsted of two compo-
nents: (a) several values are placed at the endpoints of
the design region; and (b) the values in the interior cor-
respond approximately to the asymptotically optimal de-
sign measure. Note that this is precisely what was found
for the location designs as well.

An example of a design for regression is the following,

optimal for A = 4,y =1, N = 20: =1, =1, +.926,
+.839, +.751, +.66 3 +.574, +.482, +.389, +.291.
3.3 Tables

Table 2 gives values of 7'2 and the corresponding op-
timal, uniform, and mimic asymptotic variances of
N '/ZBz, with the percentage due to the dependence

component
1
1 - {V(a)f0 az(t)dt}‘

for different values of vy and \. The dependence com-
ponent increases as N decreases. Table 2 also gives the
efficiencies of the uniform and mimic designs to the op-
timal design in terms of the ratio of asymptotic variances.

Table 2. Asymptotic Variances and Efficiencies of N2, for Various Designs When p,(t) = e M, T = 1,
ando = 1 *
Optimal % Dependence Uniform Mimic Optimal ~ Optimal
A T2 Variance Component Variance Variance Uniform Mimic
y=1

1.0 .2840 3.5334 43.48 3.9391 3.5779 .8970 .9876
.8 .2366 4.2208 50.03 4.5178 4.2614 .9343 .9905
.6 .1843 5.3934 58.30 5.5861 5.4269 .9655 .9938
4 1270 7.7969 68.85 7.8967 7.8193 .9874 .9971
2 .0653 16.1721 82.42 15.2016 15.1807 .9981 .9994

y=.5

1.0 .4260 2.6700 37.14 3.4695 2.7335 .7695 .9768
8 .3837 3.0575 42.71 3.7589 3.1256 .8134 .9782
6 .3331 3.6996 50.06 4.2930 3.7717 .8618 .9809
4 2710 4.9754 60.18 5.4479 5.0497 .9133 .9853
2 .1890 8.7730 74.96 9.1008 8.8430 .9640 .9921

Y= .

1.0 .5785 1.9804 28.16 3.1878 2.0421 .6212 .9698
.8 5420 2.1697 32.25 3.3036 2.2390 .6568 .9691
.6 .4949 2.4731 37.90 3.5172 2.5520 .7031 .9691
4 .4301 3.0525 46.38 3.9793 3.1439 7671 .9709
.2 .3285 4.6927 61.08 5.4399 4.7997 .8627 9777
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Table 3. Variances and Efficiencies of N'23, for Various Designs and Values of N When p4(t) = e~Mt, y =
5, T=1ando =1 ’
Approximate Optimal Optimal Optimal

A T2 N Optimal Optimal Mimic Uniform Appr. Opt. Mimic Uniform 2r
1.0 .4260 10 2.0510 2.0980 2.1283 2.6530 9776 9637 7731 2
20 2.3325 2.3629 2.4086 3.0266 9872 9685 7708 2

40 2.5115 3.2385

300 2.6487 3.4376
8  .3837 10 2.2076 2.2921 2.3261 2.7753 9631 9490 7954 2
20 2.5838 2.6401 2.6915 3.2192 9787 .9600 8026 2

40 2.8415 3.4758

300 3.0280 3.7195
6  .3331 10 2.4064 2.5746 2.6137 2.9823 9347 9207 .8069 4
20 2.9527 3.0713 3.1312 3.5618 9614 9430 .8290 4

40 3.3712 3.9064

300 3.6544 4.2389
4 2710 10 2.6835 3.0121 3.0552 3.3368 8910 8784 8043 4
20 3.5670 3.8318 3.9069 4.2345 9309 9130 8424 4
40 4.1904 4.3663 4.4418 4.7981 9597 9434 8733 4

300 4.8912 5.3561
2 .1890 10 2.9118 3.5994 3.6306 3.8190 .8089 .8020 7624 8
20 4.6000 5.4581 5.5489 5.7609 8428 .8290 7985 8
40 6.2440 6.9032 7.0141 7.2444 9045 8902 8619 8

300 8.5055 8.8323

As can be seen from the table, the mimic design does
very well. Here 7'? is optimal for the given \. As A
increases, 7' tends asymptotically to one. This is ob-
vious on intuitive grounds, for the larger the value of \,
the less dependent the observations; in the independence
case A = o, one-half of the observations are taken at
—1, and one-half the observations at +1.

Table 3 gives for y = .5 and particular values of \ the
variances of N2 for the exact design (the optimal design
for N points), the approximate optimal design, the mimic
design, and uniform (equally spaced) designs and their
efficiencies for several values of N. We also show the
number 2r of points placed by the exact design at *1.
One can see from the table how quickly the asymptotics
work.

Table 3 also shows that on the whole the ordering of
the variances of the designs is as one would expect. How-
ever, toward the lower end of the range of plausible val-
ues of \, the uniform design begins to perform compar-
atively poorly again and the optimal design places a large
number of points at +1.

Interestingly, the number of points at +1 is constant
in N for each X in Table 3; in calculations for v = 1.0
and .2 and the same values of \ and N, this was also the
case. We conjecture that, as in the location case, the
number of such points is constant for all N sufficiently
large.

4. CONCLUSIONS

The asymptotics of I suggested that the equally spaced
design should be nearly optimal for estimating both in-
tercept and slope in a linear regression when the errors

have a convex correlation function. Theorem 2 shows
that for p,(f) = e¢~*!"! and location the exact design is
nearly uniform for relatively small N. Our numerical re-
sults for the first-order autoregressive process seem to
bear out the asymptotics for estimating both parameters
for reasonable sample sizes and values of the parameters
of the process. They also suggest that if the order of
magnitude of the correlation is known, linearity of the
response is secure, and estimation of the slope is desired,
the mimic designs for T > 0 may be worth pursuing.

APPENDIX
Proof of Theorem 1. (a) Let V(t) = V(t,, . . . , tn) =
N var(Y) when the design points are t; < -+ < tyand ¥

is the mean of the observations. It is easy to see that

N j—1

V(L) = 02[1 +2yN~' 3 X p{N(; - t.-)}], (A.1)

j=2i=1

where o is the experimental error variance. Our objec-
tive is to minimize V) on § = [{t;, .. ., tx}: =T =1,
=--- =ty =T]. Since V(t) is continuous and S is compact,
a minimum point clearly exists.

Suppose {t,’, . .. ty'} is such a point. Then, by the
symmetry of V(t), sois {—tn', ..., —1;'}. Since p,(-)
is convex on [0, ®), V(t) is convex on S and hence
the symmetric design {t;*, ... , tny*}, where t* =
12(t) — ty—i+1) G =1, ..., N)is also a minimum
point for V(t). Part (a) follows.

To prove (b), note first that V(t) is strictly convex and
unicity and symmetry of the optimal design follow. By
convexity of V(t) and differentiability of p;(-) on [0, ),
a necessary and sufficient condition for {¢,*, . . . , tnz*}
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€ § to be a minimum point is that

a%' Ve + m(t — )0 = 0 (A.2)

for t* = (,*, ..., ty*) and every t € S. The left-hand
side of expression (A.2) easily reduces to
N j—1

270'2 2 2 {(tj - tx)

Jj=1i=1

— (t* — "N {N(* — 1*)}

N
=2ya? X (4 — 1*)

Jj=1

J—1
X I:Z pi {N(* — t*)}
i=1

(A.3)

N
2 P {N@* — tj*)}],

i=j+1

where sums with overlapping indices are interpreted as
0.

1. We show that —T < t;,* < T implies #;,—* <
¥ < tj,+1*; that is, there are no ties in the interior of
the design region. For a symmetric design, this is just
(1). Suppose there are ties in the interior; that is, there
exists jo and & = 1 such that

~T<tp* = = fipei* <T.
Taking t; = t* (j # Jo), tj, < t;,*, we obtain from (A.3)

Jo—1

2 o {N(* — 1)}

i=1
N

>

i=jo+k+1

P {N(t* — %)} (A-4)

— kpy'(0) = 0.

Similarly, taking t; = t* (j # jo + k), tig+x > tio+4™*, WE
get

Jo—1
> o/ {NW* — 1)}
i=1
N
-, j%.ﬂ P {N(t* — 1,*)} (A.5)
. i=jo+k

+ kp:'(0) = 0.

From (A.4) and (A.5) we have that —kp;'(0) = kp,'(0).
Since p;(+) is convex and decreasing on [0, ®), p;'(0) <
0 and we have a contradiction.

2. Suppose tx* = —n* =al. If0<a <1,itis
evident from (A.1) that the design with each ¢, = t*/a
produces a smaller variance since p; is decreasing, a con-
tradiction. Taking a = 0 gives a design clearly inferior
to any other design.
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3-4. From expression (A.3) we see that since #,_*
< ¥ < tp+1*, we can by selecting #, = 1.* force (2.1).
The necessity of (4) is similarly clear.
On the other hand, since t,* = —T, any point (¢,,
, tny) € S must have ¢, = t,* = —T and similarly
“Inre1 = tn—r+1¥ = T. The sufficiency of (3) and (4) and
uniqueness of r follow from (A.2).

Proof of Theorem 2. Part (1) follows directly from
“Theorem 1. For (2) through (5) we have from Theorem
1 the following necessary and sufficient conditions for
the optimal design

k—1

2 e—Nx(t, —u*) — 2 e—Nx(t/.‘ ti*)
i=k+1 i=1

(A.6)
(r<k=[N + 1D,

N-r .

. —_ L .
re ~2NAT 4 I[r’<N/2] 2 e N)\(t.' L I 1,
i=r+1 :

(A.7)

where I, represents the indicator function. We argue
cases (3), (4), and (5) successively. If the conditions of
(3) hold, then for the design satisfying (1) with r = N/2,
(A.7) is easily seen to be satisfied and (A.6) is vacuous.
As for (4), the design satisfying (1) with r = (N — 1)/ 2
and ay = T gives for (A.7) e ™7 + (N — 1)[2) e "2M\T
= (N — 3)/2, which easily reduces to the condition of
(4). Equation (A.6) follows from symmetry.

Now suppose we have a design satlsfymg (1) and (2)
for some r < [N/2]. The condition ty* — £,* = > N7!
(t:e1* — t*) = 2T produces (2.3). Equation (A.6) for this.
design becomes
N—k—r

2 eI 4 pe—la+(N—k-nb}

Jj=1
' k—r—1
= relatk=r=08 4 3 b
Jj=1 .

forr<k= [-1;—/],

which reduces after some algebra to (2.4).

Equation (A.7) also contains a geometric series for such
a design, which allows (2.12) to be expressed as re ~*M\T
+ e %1 — e"WN=2b)1 = ¢~%)~1 = r — 1..Upon ap-
propriate substitutions of (2.3) and (2.4), this equation
can be reduced to just (2.5).

To complete the proof it is necessary to show that for
any N and \ not covered by cases (3) and (4), a solution
to (2.3), (2.4), and (2.5) exists for some r < [N/2]. Write

b = hia) =
b= hz(a) =

Q@NAT — 2a)(N = 2r — 1)7!
log(er="' + 1)
as equivalent versions of (2.3) and (2.4). Define

- _JInGr = 1)) (>1),
e‘“’)‘{+w =1
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Since h,(a) is continuous, increasing, and satisfies (2.5)
on (0, €(r)], and h(a) is continuous and decreasing, a
solution exists for given r if and only if #,(0) > h,(0) and
hx(€) = € = h;(€). Combining these two conditions gives

(N=2r—Dlr+ 1 (A.8)

<2NAT = (N - 2r + 1)€(r).

Observe that the bounds in (A.8) partition the possible
range for 2N\T in case (5) as r varies from 1 to [N/2]
— 1. Hence a solution to (2.3)-(2.5) exists.

[Received February 1980. Revised April 1981.]
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