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MUTUAL AND SHARED NEIGHBOR PROBABILITIES: 
FINITE- AND INFINITE-DIMENSIONAL RESULTS 

M. F. SCHILLING,* California State University, Northridge 

Abstract 

Let X, .. * , Xn be i.i.d. random variables defined in Wd having common 
continuous density f(x), and let Rij be the rank of Xj in the ordered list of 
distances from Xi. Both the mutual neighbor probabilities pl(r, s) = P(R12 = 
r, R21 = s) and the neighbor-sharing probabilities p2(r, s) = P(R13 = r, R23 = 

s) are studied from an asymptotic viewpoint. Infinite-dimensional limits are 
found for both situations and take particularly simple forms. Both cases 
exhibit considerable stability across dimensions and thus are well approxim- 
ated by their infinite-dimensional values. Tables are provided to support the 
results given. 
NEAREST NEIGHBORS; GEOMETRIC PROBABILITY 

1. Introduction and motivation 

The relationships among near neighbors in a collection of events are of 

interest both in mathematical statistics and in many areas of applied science 

such as pattern recognition, the social sciences and ecology. As an example of 

an ecological application, a dominant species in many desert regions of the 

American Southwest is Larrea divaricata, the creosote bush. This plant is 

known to exude a chemical into the surrounding soil which, along with a 

widely spreading root system, inhibits additional plant growth (including that 

of creosote itself) in the immediate vicinity. This results in a markedly regular 
distribution of the creosote bush across its habitat. Distributions of different 

species exhibit clustering tendencies, while still others behave as the realization 

of a two-dimensional Poisson process. Each of these patterns contains entirely 
different near-neighbor relationships. For results and procedures pertaining to 

this area of application, see Clark and Evans (1955), Clark (1956), Diggle 

(1975), Cox and Lewis (1976), Cox (1976), and references therein. 
The initial motivation for the current research stemmed from consideration 

of the following statistical situation. Let X1, ?* * , X be i.i.d. observations from 
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Mutual and shared neighbor probabilities 

some distribution in Rd possessing continuous density f(x), and let NNi(r) 
represent that sample point which is the rth nearest neighbor to Xi. Ties are 

neglected since their occurrence is an event with zero probability. Then a 
natural family of statistics which may be considered for inferences about f is 
based on the information contained in each point and its k nearest neighbors 
for some k ' 1 and takes the form 

n k 

Th(X, * * , Xn) = E h(Xi, NNi(r), r) 
i=1 r=l 

n n k 

= EE h(X, Xi,, r)I(NNi(r) = X,) 
i=l i'=l r=l 

where I(-) represents the indicator function. (For a particular application to 

non-parametric multidimensional two-sample testing, see Schilling (1986).) 
Under conditions ensuring asymptotic normality the limiting distribution of 

Th is determined by its first two moments. This requires the computation of 
covariance terms of the form 

(1.1) Eh(Xi, Xi, r)h(Xj, Xj, s)l(NNi(r) = Xi, NNi(s) = X). 

When i = j various nearest-neighbor geometries come into play. There are five 

mutually exclusive and exhaustive cases: 

(i) NN(r) = Xj, NN(s) = Xi; 
(ii) NNi(r)=NNj(s); 

(iii) NN,(r) = X, NNj(s) +Xi; 
(iv) NNi(r) + Xj, NNj(s)= Xi; 
(v) NNi(r) Xj, NNj(s) Xi, NNi(r) + NNi(s). 

(See Figure 1.) Xi and Xj are called mutual neighbors if case (i) occurs, 
whereas in case (ii) they share a common neighbor. The term 'reflexive nearest 
neighbors', due to Clark and Evans (1955), has been used by several authors 
for case (i). 

Let the above events and their respective probabilities be denoted by Em and 
pm(r, s), m = 1, * * , 5, suppressing for brevity the dependence on f, n and d. 
These probabilities are independent of i and j since the Xi's are exchangeable. 
Then for i j (1.1) can be written as 

5 

E {Eh(Xi, Xi, r)h(Xj, Xj,, s) | Em}pm(r, s). 
m=l 

Using the exchangeability of the Xi's the number of distinct conditional 
expectations is fairly small and these values will be feasible to compute for 
certain functions h. Thus the determination of the pm's is of paramount 
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(i) ~----- (ii) 
Xi Xj Xi Xj 

(mutual neighbors) (shared neighbors) 

(iii) X. X (iv) X, Xj 

(V) 

Xi Xj 

Figure 1. Neighbor configurations. Arrows from Xi and Xj point to NNi(r) and NNj(s) 
respectively 

importance. Note however that 

pl(r, s) = P(NNl(r) = X2 NN2(s) = X,)P(NN2(s) = X,) 

= P(NNi(r) = X2 NN2(s) = X) .- 

from which it follows readily that 

p3(r, s) =p4(r, s) = -pl(r, s), 
n-i 

n-3 
ps(r, S) = +pi(r, s) -p2(r, s) 

Thus it is only necessary to calculate pl(r, s) and p2(r, s) for each r and s, the 
probabilities associated with mutual and shared neighbors, respectively. 

In this paper, asymptotic values for p, and P2 are obtained for arbitrary r 
and s by exploiting the fact that as n grows and the point density increases, 
attention can be restricted to small regions of the observation space, within 
which f is nearly constant; thus the sample behaves locally as a d-dimensional 
Poisson process. The organization is as follows. Section 2 defines additional 
notation and presents the result for mutual neighbors. In Section 3 an 
expression for neighbor-sharing probabilities is obtained for arbitrary r, s _ 1 
and d > 1. The case d = 1 is treated separately. The limiting behavior of pl and 
P2 as d varies is studied in Section 4, where letting d-> oo is shown to produce 
substantial simplifications. Tables are provided for small r and s and various d. 
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Mutual and shared neighbor probabilities 

A discussion of related work and some additional results involving the 
distribution of the number of points claiming a given point as their nearest 
neighbor is given in Section 5. 

2. Mutual neighbor probabilities 

Let X1, * *, Xn be as in the introduction and define 

Rij = rank of Xj among X1, ' * , Xi-1, Xi+1, ' *, Xn 
when ordered by increasing (Euclidean) distance 
fromXi, i = 1, - , n; j = , , n; j i. 

Thus Ri =k indicates that Xj is the kth nearest neighbor of Xi. By the 
exchangeability of the Xi's only R12, R21, R13 and R23 need to be considered in 
determining pl(r, s) and p2(r, s). We clearly have 

pl(r, s) = P(R12 = r, R21 = s); 

p2(r, s) = (n - 2)P(R13 = r, R23 = s) 

for the mutual neighbor and neighbor-sharing cases respectively. 
In finite samples these probabilities depend on the underlying density f and 

are extremely difficult to compute exactly. It is shown below, however, that 
both npl(r, s) and np2(r, s) approach computable limits which are independent 
off. 

The mutual neighbor case has essentially been obtained by Cox (1981), who 
generalized a formula first given in incorrect form by Clark (1956) and later 
corrected by Dacey (1969). Recall that pl(r, s) = P(NN1(r) = X2I NN2(s) = 

X)(n - 1)-1. Cox determined the values of the conditional probabilities in the 
case when the Xi's are events in a d-dimensional Poisson process. 

Let 11.11 represent the Euclidean norm and for Xo E 1Rd and p > 0 write 

S(xo, p) = {x E R d: - Xll < p) 

for the sphere centered at xo having radius p. Let 

S = S(X1, {X2 - X111); S =S(X2, 11X2 - X11). 
Cox's formula applies directly to the current model to yield the following 
result. 

Theorem 2.1. 
min(r',s') r+ s - 

lim npl(r, s) = (1- Cd) 1 r', s' (1 C) 
n---oo /=0 1, r'-- , S- 

-1 

where r'= r-1, s' = s - 1, and Cd is the proportion of the volume of S U S 
which belongs to S (say) only. 

The value of I in Theorem 2.1 arises as the number of points Xi, i > 2, falling 
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in S n , which necessitates r'-l and s'-l points in S nc and Sc nS 
respectively. 

3. Neighbor-sharing 

The 'three-body problem' associated with the neighbor-sharing probabilities 
p2(r, s) is considerably more complex than the case of mutual neighbors. 
Initially attention is restricted to d > 1. 

Some further notational definitions are required. Take - to mean 'is 
equivalent in the limit to'. For any sets A and B, let A1 and A? represent A and 
the complement of A, respectively, and write B- A for B nA?. Let 
V{A} = JA dx for A measurable, and denote the volume V{S(., 1)} of a 

d-sphere of radius 1 by Kd. The value of Kd is trd/21/(d/2 + 1), where F(.) 
represents the gamma function. Let 0 and e indicate the d-vectors (0, 0, * *, 0) 
and (1, O, * *, 0), respectively. 

To determine the asymptotic value of np2(r, s) for arbitrary r, s and d > 1, 
begin by decomposing according to the identity of the shared neighbor and use 
exchangeability to obtain 

np2(r, s) = n(n - 2)P(NN,(r) = NN2(s) = X3). 

It is necessary to subdivide the space in which X3 may lie. For given 
X1, X2 = Xl E Id let 

A~, = S'n S; a, =0, 1. 
In addition put 

Si = S(xi, Ixi - x311); i = 1, 2. 

(See Figure 2.) Let 1 now represent the number of points in Si n S2 rather than 
in S n S as before, and write 6 and E for the number of points Xi, i > 3, falling 
into S, - S2 and S2- S,, respectively. Note that, given X3 E AL, , I may now 
range from 0 to I = min (r + a - 2, s + - 2), and determines 6 and : 6 = 
r-l+ a-2, =s-1 + 3-2. 

Considering all possible configurations for the location of X3 and the value of 
1 yields 

np2(r,s)=n(n-2) f (1 -J ) f f(X2) f 3) 
a,p=ol=o l, 6, J d Jd f xJ3 

{f f(x) dx}{s f(x) dx} { f(x) dx} 

( r An-1-6-E-3 

. 1- f(x) dx d3 dx2 ddxdxl. 

Terms with < 0 (which occur when min (r, s) = 1) are taken to be 0. 
Change variables to y = n ld(x - xl) and yi = n'ld(xi - x,), i = 2, 3, in order 
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(SU () (f 1) (ci =1) X 
x2 

y=l y=0 

Figure 2. Near-neighbor spheres. Spheres involved in the determination of the probability that 
X1 and X2 share a near neighbor X3 

to center and stabilize the probability contents of the regions of integration. 
Then the continuity of f allows us to approximate f locally by a d-dimensional 
Poisson process. We have 

f f(x) dx= f(x + n-dy) dy 
ins2 n Sns, 

which, for fixed x1 and y equals 

!f(xi)v(s n S) + o() 

where S' and S' are the images of S, and S2 under the change of variables, 
namely S= = S(0, Ily311) = S, Ily3 - Y211); similar approximations for other 
terms and dominated convergence lead to 

np2(r, s) 

= I S1++1 
J vfl+^+3( nSS} 

a,p=0l=0 O l *6 Jd Jd 4 

V{5S' - SP}V6{S' - S'} exp (-f(Xl)V{Sj U S}) dy3 dy2 dxl + o(1) 

where the A' p are the mappings of the corresponding A~, under the 
transformation to (x1, Y2, y3)-space. 

Changing variables once more to z,=y,i/IllY2, i=2,3, z = 1l11d and 
computing volumes by revolution produces 

1 
np2(r, s) - Kd fl+++3(X) zl+6+e+l 

(Y, =0=0 ol- !6!{ 
! 

R 

. f VI{SSf n S[}Vs {S 
[ - S-} exp (-f(x,)V{S' U S2}z) dz3 dz dxl, 

]2 
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where z2 is replaced without loss of generality by e in defining S' = S(O, 11z311), 
S = S(e, |z3 - ell) and A" = (S')a nl (S) for, a, = 0, 1. 

Fubini's theorem allows z and xl to be integrated out successively, giving 

np2(r, s) - Kd 1 )l+1 Vf'n S VS 
- 

S) 
aO,=0/=0 1, 6, e, 1 I/ n 

. Ve{S - S')V-(1+6+e+2){S'l U S'} dz3. 

Next transform to the polar coordinates v= I|z3 1, 0 = angle between the 
vectors e and z3, and let p = 1/v. We can again compute volumes by revolution 
to reduce the above expression to its simplest form, a double integral in the 
variables p and 6. Define 

D(p, )=(1 - 2pcos 0+p2) 

(p, 0) = v{s(, ) n 
S(e, 

1 
D(p, 0)}/ S(O, )}, 

H(p, 0) = Dd(p, 0)-O(p, 0). 

The quantity D(p, 0) is, by the law of cosines, the third side of a triangle 
whose other two sides have lengths 1 and p and form an angle 6. We have 
I|z3 - elI = D(v, 0) = p-D(p, 0). (See Figure 3.) Q(p, 0) and H(p, 0) repre- 
sent the volume of intersection and the volume unique to the rightmost sphere, 
respectively, for the two spheres whose cross-sections are shown in Figure 3, 
each expressed as a proportion of the volume of the leftmost sphere. 

It is convenient to decompose z3-space into the regions {z3: 11z311 < 11z3- 
elI }, y =0, 1, which correspond in the original system to the events that the 
shared neighbor is either closer to (y = 0) or farther from (y = 1) X2 than Xl 
(see Figure 2). Consider first the contribution to np2(r, s) from y =0 only. 

I A1,1\ 

I p 

P pD (p, ,, 

^ ^A"'\ \ 

6\ I e 

Figure 3. Integration regions. Regions of integration for evaluation of the neighbor-sharing 
quantity p (r, s). The quadrant between the perpendicular dashed lines yields the contribution of 

the case y = 0 
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Define the regions 

Ao = {(0, p):O0 0< r/2,0<p<min(2 2cos002 

Ao' = (0, p)O -0< r/3 23, <2s 

Al'o = <; 

A'1 i=(0, p):0_ 0 7r/3, 1 p <2cos 0}; 

A= U A ft 
ar,/ =0 

The A',p are the images under the current transformation of the portions of 
the respective A",, regions in which y = 0. (See Figure 3.) The advantage of p 
over v is that the above regions are compact, which facilitates numerical 
integration. 

For the integrand, note that the locus of points {z3} with a particular value 
of (v, 0) defines a (d - 1)-dimensional sphere of radius v sin 0 having surface 
area (d - l)Kd_-(v sin O)d-2 and that V(S'1 n S) = KdvdQ(l/v, 0). Then com- 

puting volumes by revolution and using p = 1/v yields the contribution of y = 0 
to limn, ,np2(r, s) given below. Observe that for the y = 1 contribution we 
need only reverse the coordinate system by interchanging 0 and e and the 
result is the same but with 6 and e permuted. Hence we have finally the 
following result. 

Theorem 3.1. For d> 1, limno np2(r, s) exists and equals p'(r, s;0) + 

p2(r, s; 1), where 

(3.1) p(r, s;O)= (d -1) 
1 

(+6+e+1)f Kd ac,=Ol=0 \, 6, E, 1 
A', 

x{1 - Q(p, 0)}H (p, 0){1 + H(p, 0)}-(+6P+e+2)pd- sind-2 dpdO 

and p'(r, s; 1) has the same form but with 6 and E reversed. 
The quantities p'(r, s; 0) and p'(r, s; 1) represent the contributions of the 

regions where y =0 and y = 1 respectively. It is easy to express Q(p, 0) for 
y = 0 as a one-dimensional integral by revolving around the first coordinate 
axis: 

Kd re Cos- n{(cos - p)/D(p, se))i 
Q(P 0) =-l sinK +Dp,0) s4in6 do . 

Thus it is feasible to compute numerical values for limn,,, np2(r, s) if r and s 
are not too large, with no increase in difficulty as the dimension d increases. 
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Finally, we give attention to the limiting values of np2(r, s) for the univariate 

situation, which is not covered by Theorem 3.1. 

Theorem 3.2. For d = 1, 

[ 
- 21-' (r =s); 

lim np2(r, s)= r - 1 r 
n--+o 1-- 2-r (r >S). 

The proof follows generally along the lines of the proof of Theorem 3.1 and is 
omitted; however, some of the differences will be mentioned. The event 
(ca, l) = (1, 0), which implies that the shared neighbor lies closer to X1 than to 
X2, is clearly possible only if s > r. Similarly, (a, /) = (0, 1) can occur only 
when r <s, and if r = s then ac = /. The nearest-neighbor spheres S1, S2 are 
either disjoint or nested in the one-dimensional case, which forces the values 
of 1, 6 and e for each region Aa,;,y into which X3 can fall. 

Curiously, the one-dimensional values of limn,, np2(r, s) tend to 3 as 
r = s -oo while along any sequence of pairs {(r, s): r s; r, s oo} the value 
tends to 1. This provides an interesting comparison with the infinite- 
dimensional result for P2 obtained in the next section. 

4. Infinite-dimensional values 

A curious phenomenon of nearest-neighbor processes is their tendency 
towards simplicity as the spatial dimension becomes infinite. This behavior has 
been observed elsewhwere (Schilling (1983); Newman et al. (1983)) and it 
occurs in the present situation as well. 

The concept of asymptotics in the dimension is used below to produce 
simplified versions of the near-neighbor quantities p1(r, s) and p2(r, s). The 
limit in d of p2(r, s) is particularly simple. Write 

p'(r, s) = lim npi(r, s) for i = 1, 2, 
n-.)oo 

having proved the existence of such limits in Theorems 2.1 and 3.1. 

4.1. Mutual neighbors. The mutual neighbor quantity pi(r, s) has a nearly 
binomial form as the dimension d becomes large. 

Theorem 4.1. lim p(r, s) s - )2 rs 
lim pr, -ls- )21 d -->o r s 
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The theorem follows directly from Theorem 2.1 and Lemma 4.1 below, which 
exposes the source of the binomial character. 

Lemma 4.1. limd_o Cd = 2. 

Proof. Computing volume by revolution gives 

Kdl 1 Kd-1 3?(d- Kl 1 - 2Cd = 2 K (1 -- X2)(d-1)/2 dx d-1 (3)(d-1)/2 
Kd Kd 

Now Stirling's approximation yields Kd-1/Kd ~ (d/27r)1 and the lemma follows. 

Since C1= , pj(r, s) also takes a rather simple form for d = 1. From 
Theorem 2.1 we have, writing r' = r- 1, s' =s - 1 as before, 

min(r',s') r' + s - 

p;(r,s)=2 ( )3-(r'+s'-1+) (d = 1). 
1=0 1, s' - 

The convergence of Cd to i as d -oo is fairly rapid, as shown in Table 1. 
Table 2 presents a comparison across dimensions of p[(r, s) values, obtained 

from Theorems 2.1 and 4.1 and Table 1, for 1 s r _ 3. The d = oo values 
appear to provide reasonable approximations for rather low dimensions. 

A natural question concerning nearest neighbors is the following: 'What is 
the probability that the observation X1 is one of the k nearest neighbors to X2 
given that X2 is one of the k nearest neighbors of X1?' Write 

1 k k 

P1,k = - 
-2 E p P,(r ); k = lim nflp,k. k r=l s= n---oc 

Then an expression for the probability in the above query is easily seen to be 

{ pl(r, s)}/n = k(n - 1p. 

TABLE 1 
Values of Cd 
for selected d 

d Cd 

1 0-333 
2 0-378 
3 0-407 
4 0.427 
5 0-442 

10 0-479 
0 0-500 
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TABLE 2 
Values of p;(r, s) for selected r, s and d 

r=l r=2 r=3 

S 

0-667 
0*621 
0*593 

1 0-572 
0-558 
0-521 
0*500 

2 

0*222 
0-235 
0-241 
0*245 
0-247 
0*250 
0*250 

0*370 
0*329 
0-306 
0*292 
0-283 
0-261 
0*250 

3 

0*074 
0*089 
0-098 
0*105 
0-109 
0-119 
0-125 

0-222 
0-215 
0-210 
0-205 
0-202 
0-193 
0-188 

0-272 
0-243 
0-228 
0*218 
0-211 
0*196 
0*188 

d 

1 
2 
3 
4 
5 

10 
00 

1 
2 
3 
4 
5 

10 
00 

1 
2 
3 
4 
5 

10 
00 

The asymptotic value kp',k has an 

Applying Theorem 4.1, we have 
extremely simple form for d = oo. 

lim kpi,k = 21S 
d-m 

- 
k r(r)F(s) - d-+oo k r=1 s=1 

Some algebraic manipulations yield the following equivalent form for k > 1: 

Jim kiP,k= 1- 
1 

1 +) d--oo 2k j= \ 2j 

= 1- r(2k)/(k22k-r(k)2) 

1 - 1/Vk by Stirling's formula. 

Even for k as small as 3 the approximation is excellent-the value obtained is 

0.674 whereas the exact figure to three places is 0-688. 

Clearly limk, limd,o kop,k= 1. Theorem 4.2 below shows that the same 

limit, (in k) in fact holds in all finite-dimensional Euclidean spaces. 

Theorem 4.2. For all d < o, limk,o kp ,k = 1. 
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Proof. Regard X1 and X2 as fixed and let M1, M2 and M3 be the numbers of 

points Xi, i > 2, falling into S- S, S- S and S n S respectively. For n large 
and X1, X2 close, M1, M2, M3 can be approximated by independent Poisson 
variables N1, N2, N3 having respective parameters proportional to Cd, Cd and 
1- 2Cd. Conditional on N1 + N2 + N3 = n, (N, N2, N3) ~ multinomial(no; 
C1, Cd, 1- 2Cd), and from the result of Theorem 2.1 we can write 

p[(r, s) = (1-C) I P(N1 + N3= r', N2+ N3= s' I N + N2 + N3= no). 
n0=O 

(This result should in fact serve to motivate Theorem 2.1.) Hence 

1 2k-2 
k=-(1-Cd) P(max (N1 + N3, N2+N3)<k N+ N2+N3= no). 

k,51,k k n=O0 

For k large it will be shown that all but a negligible fraction of the terms in 
the above sum are near either 0 or 1. Note that given N1 + N2+ N3 = n, 
N1 + N3 and N2 + N3 are positively correlated binomial (no, 1 - Cd) variables. 

Choose ~ e (1, 1) arbitrarily. Then for no - k/(1 - Cd) - k we have 

P(max (N + N3, N2+ N3) < k I N + N2+ N3= no) 

- P2(N1 + N3< k I N + N2 + N3 = no) 

1(k - no(l - Cd))2] _using Chebyscheff's inequality; 

[ (1 - Cd) ] 

while for no > k/(1 - Cd) + kS, 

P(max (N + N3, N2+ N3)< k N + N2+N3= no) 
? P(N1 + N3 <k N1 + N2+ N3 = no) 

no(1 
- C) 

- k)2 again using Chebyscheff; 
(nO(l - Cd) - k)2 

c 
2 

kl-2^ 
-(1- Cd)2 

On applying these bounds to the given expression for kp1,k, the result follows 
readily. 

4.2. Neighbor-sharing. Taking the limit of (3.1) as d---oo evokes a surpris- 
ing result which simplifies p'(r, s) completely. The following facts are needed 
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to produce it: 

(i) (d -1) K (d31/2r); 
Kd 

(ii) 0 < Q(p, 0) Dd(p, 0) 1 in A"', 
(iii) Q (p, 0)- 0 uniformly in A', as d->oo. 

The first result is obtainable from Stirling's approximation; the second follows 
from the geometrical interpretations of Q and D given in Section 3. As for 
(iii), it is evident from Figure 3 that for any d, Q(p, 0) is never larger for 
(p, 0) eA'1i than its value at 0 = lr/3, p = 1, where it equals 1 - 2Cd. Then 

(iii) follows from the proof of Lemma 4.1. 
The inequality in (ii) implies that the integrand of (3.1) is bounded in 

absolute value by Ipd-1 sind-2 01. Since Ip sin 0Q < V3/2 < 1 for all 0 and p in 

Ao,1 and A,oo, the integrals over these regions may be discarded in the limit, as 
the growth in (3.1) indicated by (i) is dominated by the uniformly bounded 
geometrical decay of the integrands. Furthermore, by (iii), all terms with 
a = = 1, > 0 become negligible as d tends to oo. Hence only one term from 
the sums in (3.1) remains, so that p'(r, s; 0) may be replaced in the limit by 

lim (d32) (r +s) f/3Sind-2 0 
2cos 

Dd(s-)(p, 0) 
(4.1) d--,oo F(r)F(s) 

{1 + Dd(p, O))-(r+s)pd-l dp dO. 

To evaluate (4.1) put p =p(v)=2cos 0-vid. Then for given 0, 
Dd(p(v), 0)-- exp (-v cos 0) and pd-l(v) - (2 cos O)d-1 exp (-v/2 cos 0)- 0 
as d -, , with both limits approached uniformly in v. Thus (4.1) is equivalent 
to 

rF(r +s) fr/3 lim (d/2)r r(+s) I3 sind-2 0(2 cos)d- 
d, Tr(r)F(s) Jo 

(4.2) r0 
exp[- {(s - 1)cos 0 + O sec 0}v] 

. {1 + exp (-v cos 0)}-(r+s) dv dO. 

The 'action' in the above expression occurs at 0 = lt/4 since (2 sin 0 cos O)d 
is constant and equal to 1 there but decreases geometrically otherwise. Since 
the inner integral is continuous in 0 and does not involve d, 0 may be replaced 
by 7r/4 with no effect on the limit. This gives 

f exp (-sv/V2)(1 + exp (-v/u))-(r+s) dv 

for the inner integral in (4.2). Letting t = exp (-v/V)/(1 + exp (-v/V2)) 
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reduces this to 

(4.3) V ' ts-l(1 -t)- dt. 

While this in itself has no closed form, one may be obtained by now including 
the contribution of the term p'(r, s; 1). By symmetry this term will be the same 
for the outer integral and equal to 

(4.4) V f2 t-1(1 -tl)s- dt, 

for the inner integral. The substitution t = 1 - t1 allows (4.3) and (4.4) to be 
combined into the single integral 

1 ) F(r)F(s) 
V2 ts-l-t)r- dt'r-V r(rd)t 

Jo F(r + s) 

Thus we have reduced to 

p2(r, s)-(dl2n)t (r + s) Y3(2)F(S)/3 
P'(r, s) -(d2r) (r ) sind-2 0(2 cos 0)d-12 r) )} dO 

r(r)r(s) } F(r+s) 
;r/3 

=(d /7r) f sind-2 0(2 cos )d-1 dO. 

The upper limit may be replaced by I/2 without effect, by the argument 
following (4.2). Then letting u = sin2 0 gives finally 

p;(r, s) (d/l)2d2f U(d-3)/2(1 - u)(d2)2 du 

(dlr)2d-((d - 1)2)r(d/2)r(d - 1/2) 
- 1. 

Thus we have proven the following result. 

Theorem 4.3. For all positive integers r and s, limd,, p(r, s) exists and 

equals 1. 

Note that from Theorem 4.3, p2(r, s) = (n - 2)P(NN,(r) = NN2(s) = X3) 1/ 

n when d and n are large, whereas P(NNi(r) = X3) = P(NN2(s) = X3) = 1/ 

(n - 1); thus the implication of Theorem 4.3 is that in high-dimensional spaces 
the identities of the k-nearest neighbors of one sample point in a Poisson 
ensemble are approximately independent of those of any other randomly 
selected sample point. 

We may also be interested in the probability that two points, say X, and X2, 
have any of their respective k nearest neighbors in common for specified k. 
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This corresponds to the mutual neighbor problem treated in and prior to 
Theorem 4.2. Writing analogously 

1 k k 

P2,k = k-2 p2(r, s), 
r=l s=l 

2,k = lim np2,k, 
n-*..oo 

we have P(X1 and X2 share a k-nearest neighbor) = k2p2,k. There are simple 
closed forms for P2,k for both d = 1 and d = oo. From Theorem 3.2, we have for 
d=l 

d^2- =- 1 P,k =- E (3--21 -r) + 2 1E (( 21 ) 
1-- 

k r= r=2s=l - I 2k' 

while Theorem 4.3 trivially yields limd,,oP,k= 1 for all k. Unless k is very 
small the difference between the univariate and infinite-dimensional values is 
again seen to be slight. 

In order to assess the rates of convergence of the asymptotic neighbor- 
sharing values to their infinite-dimensional limits, a numerical integration 

TABLE 3 
Values of p'(r, s) for selected r, s and d 

r=1 r=2 r=3 

s d 

0-50 0-75 0-88 1 
0-63 0-78 0-86 2 
0-71 0-81 0-87 3 

1 0-76 0-84 0-89 4 
0-80 0-87 0-91 5 
0-92 0-96 0-96 10 
1-00 1.00 1-00 oo 

1-00 0-75 1 
0-96 0-88 2 
0-96 0-92 3 

2 0-97 0-95 4 
0-97 0-96 5 
0-98 0-98 10 
1-00 1.00 oo 

1-25 1 
1-01 2 
0.99 

3 0.99 
0.99 
0-99 10 
1-00 10 
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program was used to evaluate p'(r, s) for r, s 3 and various d>l. 
Computations were performed on an IBM 3033 using the IMSL library routine 
DCADRE. Table 3 provides the results along with values for d = 1, computed 
easily from Theorem 3.2. 

Table 2 and 3 indicate that near-neighbor geometric probabilities, when the 
observations are locally Poisson-like, vary slowly with d in a smooth, 
frequently monotone fashion, with the infinite-dimensional values providing 
good approximations for quite low-dimensional situations. Parallel results have 
been found for nearest neighbor goodness-of-fit tests (Schilling (1983)). 

5. Related work and additional results 

As mentioned previously, the probability that an arbitrary point in a Poisson 
ensemble is the rth nearest neighbor of its own sth nearest neighbor was first 
obtained by Clark and Evans (1955) in the two-dimensional case for r = s = 1 
and later generalized, incorrectly, to r = s > 1, by Clark (1956). Correct values 
for the latter case were provided by Dacey (1969), and the generalization to d 
dimensions with r and s not necessarily equal was obtained by Cox (1981). 

Schwarz and Tversky (1980) defined the R value of any member of a list of 
elements as its rank in the proximity order from its own nearest neighbor and 
obtained the distribution of R under several models. They showed that this 
distribution approaches a geometric distribution for the model treated in the 
preceding-i.e., locally approximately Poisson samples in Euclidean d-space- 
and noted the stability as d changes. Note that their results yield the values of 
pi(l, s) for s = 1, 2, 3, * * *. 

Pickard (1982) considered mutual nearest neighbors for r = s = 1 in Poisson 
processes and obtained their frequency of occurrence (p (l, 1)) and the 
probability distribution for the relative distance to the next closest point. 

Several authors have studied the distribution of the number of points N in a 
Poisson process which claim an arbitrary point as a nearest neighbor. The 
earliest of these were again Clark and Evans (1955), who provided only Monte 
Carlo results in I2. Roberts (1969) found bounds for the individual probabil- 
ities for N, and in the process obtained the values of pi(1, s) for s = 1, 2, 3, * * ? 
in two dimensions. Roberts also furnished Monte Carlo results in two and 
three dimensions. 

Recently, Newman et al. (1983) have studied expressions for the d- 
dimensional distributions of N, which appear to be intractable, and determined 
the corresponding large-dimensional limits in several Poisson-type models. The 
distribution of N as d - oo is found to approach a Poisson distribution with 
parameter 1 in most of the cases considered. 

The results given for neighbor-sharing (Theorems 3.1 and 4.3) can be used 
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to shed some light on the finite-dimensional distributions of N as well: let Nn 
be the number of points claiming X1 as their nearest neighbor when 

X,, * , X, are distributed as before. As n ->m the distribution of Nn will 

approach that of N defined above. Applying inclusion-exclusion and exchan- 

geability we have 

n 

P(Nn ' 1) > P(NNi(l) = X1) - P(NNi(l) = NNj(l) = X1) 
i=2 i#j 

= n n- 1 p2(1, 1) 
V 2 n-2 

P(Nn ? 2) E P(NNi(l) = NNj(1) = X1) = (n 1) ( 1); 
i+j \2 n-2 

combining these results with the formula P(Nn = 1) = P(Nn > 1) - P(Nn 2) 
yields the following simple asympotic bounds on P(Nn = k) for k = 0, 1, 2: 

(5.1) lim P(Nn = 0) < 2p(1, 1); 
n-.oc 

(5.2) lim P(Nn = 1) 1-p2(1, 1); 
n--.oc 

(5.3) lim P(Nn >2) '< p2(1, 1). 
n- oc 

For d = 1 these bounds are achieved exactly since N, is always <2 with 

probability 1. 
The distribution of N, was estimated for d = 3 and 5 via a Monte Carlo 

experiment involving in each case n = 10 000 points uniformly distributed on 
the 'wrapped-around' d-cube, or torus, in order to eliminate boundary effects. 
The results are shown in Table 4 along with the values of the bounds given 

TABLE 4 
Monte Carlo and theoretical values, bounds for P(Nn = k)* 

k=0 1 2 3 4 2 

d 

1 0-25 (0-25) 0-50 (0-50) 0-25 0-25 (0-25) 
3 0-30 (0-35) 0-44 (0-29) 0-21 0-04 0-26 (0-35) 
5 0-33 (0-40) 0-41(0-20) 0-20 0-05 0-01 0-26 (0-40) 
oo 0-37 (0-50) 0-37 (0-00) 0-18 0-06 0-02 0-26 (0-50) 

*Results for d = 3 and 5 are based on n = 10 000 points uniformly 
distributed on a d-dimensional torus; values for d = 1 and oo are exact for 
n =oo. Numbers in parentheses are upper/lower bounds obtained from 

(5.1)-(5.3). 
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above. Also included are the theoretical values for d = 1 and d = oo, the latter 
obtained from the aforementioned result of Newman et al. (1983) on the 
limiting Poisson distribution of Nn. Once again, the stability across dimension 
is notable; it is particularly striking for P(N, _ 2). 
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