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1. Introduction

Due to advances in computing and the ubiquitousness of statistical software such as R,
statisticians have begun to revisit the classic problem of interval estimation for parame-
ters of discrete distributions. Because practitioners are more open than ever to using
applets or specialized software packages for statistical analysis, there is decreasing
dependence on large sample confidence intervals based on distributional approximations,
such as Wald or score intervals. Instead, using software, high-performing confidence pro-
cedures can be determined numerically from the actual distribution at hand based on
selected criteria for optimality, such as minimal overall confidence interval length. Such
exact procedures are particularly valuable since one does not always have a large sample.

In an article from a recent issue of Significance magazine, Stapleton (2023) notes that
“confidence procedures are just algorithms, and we can adjust the algorithm to suit our
needs.” Since precision is desirable, shortness is often high on the list of needs. Length
minimizing algorithms have already been developed for what are often considered the
preeminent discrete statistical models, namely the binomial, Poisson, hypergeometric,
and negative binomial distributions (see Sterne 1954; Crow 1956; Blyth and Still 1983;
Casella 1986; Schilling and Doi 2014; Schilling and Holladay 2017; Schilling and Stanley
2022; Schilling, Holladay, and Doi 2023). However, the focus in the literature has been
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Table 1. Parameterizations of the binomial, negative binomial (NB), and hypergeometric (HG)
distributions.

Distribution PMF Support Parameter restrictions
Binomial (n, p) n _ x€{0,1,2,...n pef01],n€Z:n>0
X pX(-I _p)n X { }
NB (r,p); x+r=1\, X x€{0,1,2,..} pef01reZ:r>1
X observed x p(1=p)
NB (r,p); N-1) , Ner Ne{rnr+1,r+2..} peOI,reZ:r>1
N observed r—1 )P (1-p)
HG (N, M, n) (M)(N—M> max {0,n + M — N} < x < min{M,n} NMneZ:0<Mn<N
X n—x

The parameters given in bold are those that we wish to estimate. The remaining parameters of each distribution are
assumed to be known.

on the parameters of these distributions that are most commonly unknown, such as the
binomial success probability p. In this paper we determine short confidence intervals
for the reverse cases in which those parameters are known, while the remaining param-
eters of these distributions that are typically known in practice are unknown. In particu-
lar, we discuss estimation of the sample size parameter n in both binomial and
hypergeometric (HG) experiments and the count parameter r for the negative binomial
(NB) distribution (see Table 1).

We treat a binomial random variable in the usual way and define a negative binomial
random variable to be either the number of failures x in successive independent
Bernoulli trials before the rth success, or the number of trials N = r + x until the rth
success. The hypergeometric distribution gives the probability of drawing x units pos-
sessing a particular attribute (“successes”) when we randomly sample #n units without
replacement from a finite population of size N; M represents the total number of units
in the population possessing the attribute of interest.

Although inference for the count parameters of these distributions is less common
than for their other parameters, many researchers have in fact examined such problems.
For the binomial model, Feldman and Fox (1968), Draper and Guttman (1971),
Blumenthal and Dahiya (1981), Johnson (1981), Tang and Sindler (1987), Iliopoulos
(2003), Bayoud (2011), De and Zacks (2016), and Cheng, Eck, and Crawford (2020)
each treat the case when inference about # is desired when p is known.

In the prior research represented by the above references, several observations from a
common binomial distribution are typically assumed. However, there are occasions in
which inference about # is desired when only a single binomial count is available—the
situation we consider below. Examples are provided in Section 2. Tang and Sindler
(1987) and Iliopoulos (2003) provide some results for this situation.

Previous work on estimation of the parameter r of the negative binomial distribution
is extensive. Generally, r has been treated as a dispersion parameter for the fitting of
the negative binomial distribution to data to model overdispersion relative to a Poisson
model, whereas in our setting it is a count parameter, thereby restricting interval esti-
mates to integer values. A treatment of the latter situation, with p assumed known, has
been given by Ganji, Eghbali, and Azimian (2013).
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For the hypergeometric distribution, Schilling and Stanley (2022) developed proce-
dures that produce short confidence intervals for both the parameter N (useful for cap-
ture-recapture problems) and the parameter M. This leaves the question of how to
estimate the remaining hypergeometric parameter, n. However, since we can redefine
the items sampled to represent the successes and let M correspond to the number of
items sampled, the length minimizing procedure developed by Schilling and Stanley
(2022) for estimating M can be extended to estimation of n by simply swapping the
roles of n and M in the procedure. This reduces our investigations below to the bino-
mial and negative binomial cases only.

Since we are interested in estimating integer-valued parameters, we consider count-
able confidence sets over integers, rather than uncountable intervals over all real values.
Therefore, an interval [, u] denotes the set {L,/+ 1,..,u—1,u}. We seek intervals that
are both (i) strict in that they maintain coverage at or above the nominal level, and (ii)
length minimizing.

We take a coverage probability perspective, extending the work of Schilling and Doi
(2014), Schilling and Holladay (2017), Schilling and Stanley (2022), and Schilling,
Holladay, and Doi (2023). Their approach can be summarized as follows: Let X be the
observed random variable, having distribution dependent on a parameter 0 which we
wish to estimate. For each 0, determine the family Ay of sets S of consecutive possible
values of X such that Py(X € S) > 1 — . Then, for every 0, choose Sy € Ay that satisfies
a specific set of criteria. We call the chosen Sy’s acceptance sets. By the duality between
confidence sets and families of hypothesis tests, the chosen Sy’s lead to a confidence set

C(X) = {0: X € Sy}

for the true parameter value 0. If any of these choices of Sy’s results in a confidence set
that is not an interval of consecutive values, an alternative set is substituted to resolve
this anomaly.

It will be convenient to think of the coverage probability CP(0) of each confidence set
to be given by Py(X € Sy), since

Po(@ € C(X)) = P()(X € Sg).

The function that maps each 0 to its corresponding coverage probability is called the
coverage probability function (cpf). Confidence procedures can be constructed and com-
pared through their cpf’s.

Our paper’s structure is as follows: In Section 2, we present a few motivating exam-
ples of situations where the confidence procedures we provide might be desired in prac-
tice. Section 3 introduces the analogs of several existing procedures. In Section 4 we
compare the average and expected confidence interval length of our procedures with
these previously developed procedures and identify the procedure(s) in each case that
tend to produce the shortest confidence intervals.

2. Motivating examples

Johnson (1981) presents an example of estimation of n in the binomial case where p is
known. The goal is to estimate the number n of submarine pingos (a type of large
underwater mound) in the southern Beaufort Sea by means of transect sampling,
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searching along equally spaced parallel tracks. Based on known size information for the
pingos, the probability that a transect intersects a pingo is known. An additional
example due to Drago et al. (2015) involves network flows that are involved in cloud
services. Flow data is sampled at a prescribed proportion p, and the total numbers of
connections n and “healthy” connections #n; are to be estimated.

Here are two additional illustrations of when inference about the binomial n with
known p may be desired:

1. Consider a community’s exposure to a certain disease (for example Lyme dis-
ease). Suppose the proportion of exposed individuals requiring treatment at a
hospital is known from past studies. Based on the number of such treatments
given in a certain community in the past 6 months, we wish to estimate the total
number # of people in the community that have been exposed during that time.

2. A factory is running an assembly line in which the time to produce each item
varies. It randomly withdraws each item with equal probability and sets aside
those withdrawn for later inspection. At the end of the inspection period, the
selected items are carefully examined. Based on the number of items that have
been set aside, the factory wishes to estimate the total number n of items pro-
duced in that run of the assembly line.

As an example for estimating the number of successes in a negative binomial situ-
ation, consider a woodpecker foraging for insects by making tiny holes in the bark of a
tree. Suppose the probability p that any particular hole will contain an insect is known
from prior studies. A woodpecker will continue searching for bugs until satiated. Once
the woodpecker’s search is over an ecologist counts the number of holes drilled and
wishes to estimate the total number of insects r that the woodpecker consumed to reach
satiation.

3. Summary of existing procedures

We discuss here some notable strict confidence procedures. One of the earliest such
procedures in the literature is due to Clopper and Pearson (1934) for estimating p in a
binomial experiment. Their method is derived by inverting the equal tailed two-sided
level o test of Hy:p = po. The analog of the Clopper and Pearson intervals can be
obtained for estimation of parameters of other distributions by inverting the corre-
sponding two-sided level o test of Hy : 0 = 0y. Clopper and Pearson’s procedure tends
to be conservative due to the inflexibility of the rejection regions of an equal-tailed test
(i.e., a test where the probability content in each tail does not exceed o/2). As a result,
although the Clopper and Pearson method has sometimes been referred to as the “gold
standard”, it tends to produce excessively wide confidence intervals when compared
with other high-performing strict methods. We illustrate this point by providing com-
parative results for the Clopper and Pearson analogs in Section 4 below.

Blaker (2000) developed the following innovative approach to constructing confidence
intervals: For each value of 0, determine the tail probability Ty (x) = min(P(X <x),
P(X > x)); then 0 is included in the confidence interval for x if and only if P(X: Ty (X)
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< Ty (x)) > a. A primary advantage of Blaker’s method is that two confidence intervals,
obtained from the same data but having different confidence levels, are guaranteed to
be nested; i.e., the interval at the higher confidence level will contain the one at the
lower confidence level. Blaker’s method can be seen as an inversion of a two-tailed test
that does not restrict each tail area to be < «/2, consequently the resulting confidence
intervals tend to be reasonably competitive with those of length minimizing methods.

Though instances are typically quite rare, violations of nesting may occur for alterna-
tive methods that produce intervals that are shorter than Blaker’s. However, one could
argue that a few instances of nonnested intervals are acceptable when a significant
reduction in net confidence interval length is attained.

In the negative binomial case, when the number of failures x is observed and the
only unknown parameter is r, Blaker’s method will sometimes produce confidence sets
that contain gaps—i.e., sets not comprised of a sequence of consecutive integers. To see
this, it is constructive to look at Figure 1, which shows the 90% cpf of Blaker’s method
for the NB (r,p = 0.90) case. Each point on the graph indicates the coverage probability
of r, CP(r), which represents the probability that Blaker’s procedure will cover r, assum-
ing r is the true value of the parameter. We find it visually useful to connect the values
in play (Py (X € S) > 1 —a) for each acceptance set, forming a collection of acceptance
curves (each curve being associated with a different acceptance set).

We use the notation a-b to denote an acceptance set and to refer to the correspond-
ing acceptance set probability function P,(a < X < b). To better understand the inter-
play between a confidence procedure and its cpf, please refer to Section 2 of Schilling
and Doi (2014). The red crosses in Figure 1 indicate a region that results in a gap.
Notice that the cpf transitions from 0-6, to 1-6, and back to 0-6 again; thus, the confi-
dence set for x = 0 is {1,2,3,...,26,28}, which omits the value x = 27. This is because
the probability of observing a value of X with a tail probability as small as that of x =0
is greater than 0.1 when r = 26 or 28, but not when r = 27.

Many existing procedures employ only acceptance sets of minimal cardinality, which
tends to produce narrow intervals. Since for each value of the parameter, there may be
several acceptance sets of minimal cardinality, such procedures comprise an entire class.

NB(r,0.90); x observed
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Figure 1. lllustration of a gap in Blaker's 90% cpf for the NB (r,0.90) distribution when the number
of failures is observed. The acceptance set probability functions {P,(a <X< b)} are labeled by a-b.
The red crosses highlight the region that corresponds to a gap.
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Figure 2. All 90% minimal cardinality acceptance curves in the binomial (n,0.35) case, excluding
those that would cause gaps. We label acceptance curves P,(a < X < b) by a-b. Colors are used to
better distinguish nearby curves. Nearby curves that are of different shades of the same color indicate
that the curves have equal cardinality.

Members of this class of procedures include the analogs of the methods of Crow and
Gardner (1959) and Byrne and Kabaila (2005), which were developed for estimating the
parameter of the Poisson distribution. Additionally, Schilling and Doi (2014), Schilling
and Holladay (2017), and Schilling and Stanley (2022) developed minimal cardinality
procedures for the usual parameters of the binomial, Poisson, and hypergeometric dis-
tributions that are length minimizing.

Plotting the coverage probabilities for all the candidate minimal cardinality acceptance sets
is an invaluable way to explore and contrast minimal cardinality procedures. For example,
Figure 2 shows all 90% (Py (X € S) > 0.90) minimal cardinality acceptance curves in the
binomial (#,0.35) case, excluding those that would cause gaps. The analogs of the methods of
Crow and Gardner (CG), Byrne and Kabaila (BK), and Schilling and Holladay (see their
Optimal Coverage procedure (OC)) choose acceptance curves in the following way: For each
n, selection of acceptance curves is first reduced to those sets of minimal span curves
{Pn(a <X< b)} that would keep the sequences of {a} and {b} values monotonic in the
parameter. These are the curves shown in Figure 2. Then, for each #n, whenever there are mul-
tiple curves {Pn(a < X< b)} available, CG chooses the curve with largest value of a, BK
chooses the one with smallest value of a, and OC chooses the one with highest coverage.

Figure 3 shows all 90% minimal cardinality acceptance curves in the NB (r,0.84) case
when the number of failures x is observed, except those that would cause gaps. The ana-
logs of CG, BK, and OC choose acceptance curves in an identical fashion to the bino-
mial case above. Other confidence levels and choices of p result in similar plots.

When the likelihood function is strongly skewed right (e.g., L(p) for the negative bino-
mial distribution), minimal cardinality procedures may not be length minimizing.
Schilling, Holladay, and Doi (2023) proposed a new method that deals more effectively
with such situations and applied it to estimation of p for the negative binomial distribu-
tion. Rather than being restricted to minimal cardinality sets, the procedure steps through
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NB(r,0.84); x observed

2 1

= 0-2
_(% 98 — ous

_Q 0-3
o) 0-4
= .96

o

(O]

)

st

O .92

>

O

O 9 14 _-ri=

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

r

Figure 3. All 90% minimal cardinality acceptance curves in the NB (r,0.84) case when the number of
failures is observed, excluding those that would cause gaps.

the values of a (beginning at a = 0) as the parameter to be estimated increases, transition-
ing from eligible acceptance sets {a-b: b > a} to those starting at a + 1 at the smallest
value of the parameter for which b achieves its minimum among the collection of eligible
acceptance sets {(a+ 1)-b: b > a + 1}. The resulting process is referred to as a condi-
tional minimal cardinality (CMC) procedure, since for each given a + 1 the acceptance
sets (a + 1)-b used have minimal cardinality among all choices of b. The acceptance sets
used in this procedure do not always have overall minimal cardinality, as a transition from
a to a + 1 may lead to using an acceptance set with a larger cardinality than one that is
available with a. However, significantly narrower confidence intervals are obtained than
result from any (unconditional) minimal cardinality procedure.

4, Results

All the methods presented have coverage at or above the nominal level. To compare
confidence interval length, we consider both cumulative average length,

S -kt ),

(ng)xSK

considered as a function of the nonnegative integer K, where (x < K) is the number of
x’s less than or equal K, and expected length,

3 (e = L+ 1)Py(X = x),

all x
considered as a function of 0. Note that confidence interval length refers to the number
of elements in the confidence set, u, — I, + 1. Note that with access to both the com-
plete set of confidence intervals for each procedure and the corresponding probability
mass function, we can compute exact values for cumulative average length and expected
length, without needing simulations or additional steps.
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4.1. Estimation of binomial n

Figure 4a-d displays the cumulative average length of each procedure (Byrne and
Kabaila (BK), Clopper and Pearson (CP), Optimal Coverage (OC), Blaker (B), and
Conditional Minimal Cardinality (CMC)) relative to Crow and Gardner’s method (CG)
at 95% confidence for p =0.35, 0.50,0.65 and 0.90 and 0 < K <200 in the binomial
case.

In all four cases CG and CMC attain smaller average length than the other methods,
with CG and CMC performing similarly for p =0.35, 0.50, 0.65 and producing identical
intervals for 0 < x <200 when p=0.90. The results given here (at the 95% level) and
throughout the remaining plots below are similar to those at confidence levels 90% and
99%. In addition, since there tends to be only subtle differences in the plots between
successive values of p, the four values of p we selected (p = 0.35, 0.50, 0.65 and 0.90)
provide a reasonable representation of the behavior that would be seen for other values.
We checked additional values of p throughout the range (0,1) and found similar results
for these cases as well.
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Figure 4. (a—-d) 95% cumulative average length for p =0.35, 0.50, 0.65 and 0.90 relative to CG in the
binomial case. For each K, the average length is calculated for all x values up to and including K.
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Figure 5. (a—d). 95% expected length for p =0.35, 0.50, 0.65 and 0.90 relative to CG in the binomial case.

Figure 5(a-d) displays the expected length of each procedure relative to CG at 95%
confidence for p =0.35, 0.50, 0.65 and 0.90 and 0 < n < 100 in the binomial case.

Here a similar hierarchy can be seen to that found for cumulative average length,
with CG and CMC possessing the shortest expected lengths of all methods considered.

4.2. Estimation of negative binomial r (x observed)

Figure 6a-d shows the cumulative average length of each procedure relative to CG at
95% confidence for p = 0.35, 0.50, 0.65 and 0.90 and 0 < K < 200 in the negative bino-
mial case when the number of failures is observed. CG and CMC again have the short-
est average length with CMC attaining a shorter average length for K roughly less than
100 when p = 0.35 and for K less than about 50 when p = 0.50, 0.65 and 0.90; CG
attains the shortest average length elsewhere.

Figure 7(a-d) displays the expected length of each method relative to CG at 95% con-
fidence for p =0.35, 0.50, 0.65 and 0.90 and 0 < r < 100 in the negative binomial case
when the number of failures is observed. CMC tends to attain a smaller expected width
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Figure 6. (a—d) 95% cumulative average length for p = 0.35, 0.50, 0.65 and 0.90 relative to CG in the
negative binomial case when the number of failures is observed. For each K, the average length is
calculated for all x values up to and including K.

than CG for all r less than some cutoff, with CG having smaller expected width else-
where. When p = 0.90 CMC maintains a smaller expected width throughout the entire
range provided, 0 < r < 100.

4.3. Estimation of negative binomial r (N observed)

Figure 8(a-d) shows the cumulative average length relative to CG at 95% confidence for
p =0.35, 0.50, 0.65 and 0.90 and 0 < K < 200 in the negative binomial case when the
total number of trials is observed. CG and CMC again have the shortest average length
with CMC attaining a shorter average length for K roughly less than 100 when p =0.35
and 0.90 and for K less than about 40 when p = 0.50 and 0.65; CG attains the shortest
average length elsewhere.

Figure 9(a-d) shows the expected length relative to CG at 95% confidence for p =
0.35, 0.50, 0.65 and 0.90 and 0 < r < 100 in the negative binomial case when the total
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Figure 7. (a-d) 95% expected length for p =0.35, 0.50, 0.65 and 0.90 relative to CG in the negative
binomial case when the number of failures is observed.

number of trials is observed. In this case CG has the shortest expected length except for
small values of r, and OC and B do almost just as well as CMC.

5. Conclusion

When estimating the sample size parameter of the binomial or hypergeometric
distributions, or the count parameter of the negative binomial distribution, we desire a
procedure that is strict and minimizes confidence interval length. Obtaining an interval
estimate of the sample size parameter n of the hypergeometric distribution is immediate
since the preexisting procedures that have been developed for estimating M
(e.g., Schilling and Stanley 2022) can be applied directly for estimation of n by simply
swapping the roles of n and M in the procedure. On the other hand, to handle the
binomial and negative binomial distributions, we extended the most competitive strict
procedures in the literature to these new cases. This includes the Byrne and Kabaila
method (BK), the Clopper and Pearson method (CP), Schilling and Doi’s Optimal
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Coverage method (OC), Blaker’s method (B), the Crow and Gardener method (CG),
and the Conditional Minimal Cardinality procedure (CMC) of Schilling, Holladay
and Doi.

Upon comparing both the cumulative average width and the expected length of these
procedures, we found that the Crow and Gardener method (CG) and the conditional min-
imal cardinality approach (CMC) perform the best in nearly every case. For the binomial
case, both of these methods perform almost equally as well. For the negative binomial
case, when the number of failures is observed, if it is suspected that r might be fairly small,
then CMC is preferable to CG (and to all other methods considered) as judged by expected
length. Of course, if there is more than weak prior information about what values of r are
plausible, then a Bayesian approach (perhaps using credible intervals) may be preferable.
Note that credible intervals come with their own set of issues due to the posterior distribu-
tions themselves being discrete. This includes the fact that it will not usually be possible to
find an interval with a specified credible probability.
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Figure 9. (a—d) 95% expected length for p =0.35, 0.50, 0.65 and 0.90 relative to CG in the negative
binomial case when the total number of trials is observed.

In the locations where CG had shorter expected length, (at least through r = 100) CMC
performed as well or nearly as well on this measure as CG in every case investigated. Results
for cumulative average length showed that for small x (which is consistent with a small value
of r), confidence intervals produced by CMC tend to be shortest, with CMC only doing
slightly worse than CG for larger x. In the negative binomial case, when the total number of
trials N is observed, CG is preferable to CMC except at small values of , where CMC shines.

6. Technical notes
1. All computations were performed in the statistical software R. A Shiny web app

for determining confidence intervals for the count parameters of the binomial
and negative binomial distributions is available at https://discrete-ci.shinyapps.io/
count_ci/. Confidence intervals for the sample size parameter n of the hypergeo-
metric distribution can be obtained from Schilling and Stanley (2022) shiny app
for estimating the success count M (https://github.com/mfschilling/HGCIs), by
swapping the roles of M and n.
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2. All confidence interval computations are relatively fast. For instance, for the
binomial and both versions of the negative binomial, determining the first 100
intervals at a 90% confidence level with p = 0.5 for both CG and CMC takes no
more than a couple of seconds on a standard home desktop computer.

3. At each value of the parameter, the Optimal Coverage method (OC) uses the
candidate minimal cardinality acceptance curve with the highest coverage. When
two or more acceptance curves {Po(a <X< b)} are tied for the highest cover-
age, we define OC to be the one using the larger value of a.

4. In the negative binomial case, when p is sufficiently small (e.g., p less than about
0.04), the confidence intervals for small x (or small N if the number of trials is
observed), will sometimes be the empty set for each of CP, B, and CMC. This is
a result of the procedures using an acceptance set a-b with a >0 (or a > 1
when the number of trials is observed) when r = 1. This causes the confidence
intervals for x=0,1,..,a—1 (or N=1,2,...,a—1) to be empty. We recom-
mend the use of CG in such cases as it avoids this issue by using acceptance sets
of the form 0-b (or 1-b if the number of trials is observed) when r = 1.
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