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AN INFINITE-DIMENSIONAL APPROXIMATION FOR NEAREST
NEIGHBOR GOODNESS OF FIT TESTS!

By MARK F. SCHILLING

University of Southern California

Let Xj, .-+, X, be i.i.d. R™-valued observations from a bounded density
£(x) continuous on its support. Let W; = exp{— ng(X)V(R)},i=1, ..., n,
where V(R)) is the volume of the nearest neighbor sphere around X, and let
w(x) be any bounded continuous weight function on R™. An infinite-dimen-
sional approximation to the asymptotic form of the weighted empirical distri-
bution function of the W/s is presented. The distributions of quadratic
functionals of the limiting normalized weighted e.d.f. are found and tabulated
for m = w0 and m = 1 and compared with finite m > 1. Monte Carlo results are
given for n, m < oo,

.

1. Introduction. Recently Bickel and Breiman (1983) have introduced goodness of
fit tests for multidimensional densities based on quadratic functionals of the empirical
distribution function of the variables

Wi=exp(— ngX)V(R)}, i=1,---,n,

where X;, ..., X, is a random sample from a bounded density in R™ continuous on its
support (assumed open), g(x) is the hypothesized density, R; = min,.|| X; — X;| is the
distance from X; to its nearest neighbor, and V(r) is the volume of an m-sphere of radius
r. When g(x) is the true density the W;’s have an asymptotically uniform distribution. A
more general version has beén considered by the author (Schilling, 1983), which involves
the weighted empirical process

1
Fn(t)::";z:;l w(Xz)I(VV:St), OStSI:

for some bounded continuous weight function w(x), which can be chosen optimally for a
prespecified sequence of contiguous alternatives to g(x). Appropriately centered and scaled
versions of these processes are shown in Bickel and Breiman (1983) and Schilling (1983),
respectively, to converge weakly under the null hypothesis as n tends to infinity to zero
mean Gaussian processes which are essentially independent of g(x).

An obstacle to the implementation of these tests is the occurrence of a dimension-
dependent term in the covariance kernel of the limiting processes which is intractable for
m > 1. In this paper a simple approximating process is found for the case when | - ||
represents Euclidean distance by letting the dimension of the sample space tend to infinity.
This rather unorthodox asymptotic technique is presented in Section 2. In Section 3 a
representation for the null distribution of a quadratic functional of the approximating
process is produced by the method of Kac and Siegert (1947); tables are given for two
important weight functions. A corresponding tabulation for m = 1 is provided in Section
4 along with an examination of the adequacy of the m = © and m = 1 distributions as
approximations for situations in which 1 < m < . Section 5 provides some Monte Carlo
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14 MARK F. SCHILLING

comparisons for finite n and m. The main theoretical result is proven in Section 6. Finally,
Section 7 gives details of the distributional calculations.

2. The m = ~ approximation. Let
Z,(t) = nY*(F,(t) — E,F,.(t)}, O0=st=1
When g(x) is the true density, the process Z,(f) converges weakly (see Bickel and Breiman,
1983, Schilling, 1983) to a Gaussian process Z (f) with mean zero and covariance kernel

k(s t) = [s(l + tlog s) + stj {n(s, t,w) — 1} dw]ng2(X1)

B(s,t)

— st(1 + log st + log slog ) {E,w(Xy)}?>, O0=s=t=<]1,
where
B(s,t) ={wER™:r(s) =||w| =r(s) +r()}

and

log 7 (s, t,w)=f dz

(zER™||2||=r(s), llz—wll=r(t)}

where r(-) represents the radius of an m-sphere with volume —log(-). The term
(2-1) f {"1(8, t: 0.)) - 1} dw
B(s,t)

can be transformed to a one-dimensional integral; however, unless m = 1 this integral is
unmanageable—the integrand itself has an exponentiated term containing integrals which
must be evaluated numerically for each s and ¢. This renders exact solutions to the integral
equation (3.1)—a virtual necessity for solving the distribution problem—rather hopeless.
It turns out, however, that the above term is rather small with respect to the other terms
in k(s, t), is relatively constant in m, and approaches a simple limit function. Notice that
(2.1) is the only term in k(s, t) which depends on m. The following theorem leads to a
process which approximates Z (¢) in distribution for all m.

THEOREM 1.

(2.2) limy e J’ {n(s, t, w) — 1} dw = (log s)(log t) Vs, tE (Q, 1%
B(s,t)

The rather lengthy proof is given in Section 6.

The function which results from applying Theorem 1 to k(s, ¢) is the continuous limit
of covariance kernels, hence is positive definite and indeed the covariance function of some
Gaussian process. In fact a combination of familiar processes can be exhibited which has
this covariance function: Let Wy(¢f) be the Brownian bridge on [0, 1], let W (¢) be the
Wiener process on [0, «) and take Z, to be a standard normal variable; assume Wy(t), W (¢)
and Z, are mutually independent. Then it can be easily verified that

{Wo(8) + tW(—log ) HE w(X1))"* + {t(1 + log £)Zo} (Vargw (Xy))"?

is a zero-mean Gaussian process with covariance kernel lim,_..k(s, ). The Brownian
bridge occurs because the W/'s are asymptotically uniform on (0, 1], with the remaining
components arising from the nearest neighbor dependency structure.

3. Tabulation of quadratic functionals by the Kac-Siegert method. A natural
test based on Z,(¢) is to reject when the value of S, = [§ Z%(¢) dt is large. By Donsker’s
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TaBLE 1
Density and Distribution of S for m = «
wix) =1 E,w(X)) =0 and E,w?(X)) =1
y f» F(y) f(y) F(y)
.05 2.514 .036 904 011
.10 3.814 212 2.016 091
.15 3.072 .386 2.081 .196
.20 2.296 519 1.881 295
.25 1.719 619 1.646 .383
.30 1.309 694 1.429 460
.35 1.015 752 1.238 .526
.40 799 797 1.074 584
45 637 .833 934 .634
.50 514 .861 813 678
.60 343 904 « 619 749
.70 234 932 A75 .803
.80 .163 9516 .367 .845
90 115 9653 285 .878
1.00 .081 9750 222 903
1.10 .058 9819 174 923
1.20 042 .9869 .138 938
1.30 .030 9905 .109 9504
1.40 .022 9930 .087 9601
1.50 .016 9949 .069 9678
1.60 .012 9963 .055 9740
1.70 .008 9973 044 9790
1.80 .006 .9980 .036 9830
1.90 .005 .9985 029 9862
2.00 .003 .9989 .023 .9887
2.10 .002 .9992 019 .9908
2.25 .002 9995 014 9933
2.50 .0007 .9998 .008 .9959
3.00 .00016 99995 .003 9985
4.00 .0004 99979
5.00 ) .00006 99997

Theorem (Billingsley, 1968), S, converges weakly under the null hypothesis to S =
[ Z%(¢) dt. The distributional theory of functionals such as S has been studied extensively.
The technique established by Kac and Siegert (1947) (see also Anderson and Darling,
1952) shows that Z(¢) can be represented equivalently by

Y71 A0 Y,
where {7, ¢;(¢);7 = 1,2, ...} is the set of all solutions to the Fredholm integral equation

1
(3.1) j k(s, t)p(s) ds = Ao (2)
0

and Yy, Yo, .. . are independent standard normal variables. The eigenfunctions {¢,(?); j =
1,2, ...} form a complete orthonormal set, hence it is easily seen that

(3.2) Y= A Y]

has the same distribution as S, and only the eigenvalues Ay, A, - - are needed to fully
characterize S. All eigenvalues are greater then zero due to the positive definiteness of
k(s, t).
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TABLE 2
Density and Distribution of S for m = 1
wx) =1 E.w(X:) =0and E,w*(X)) =1
y () F(y) () F(y)
.05 2.652 034 934 011
.10 4.473 236 2.336 101
.15 3.548 439 2.405 222
.20 2.538 590 2.115 335
25 1.800 697 1.789 433
.30 1.291 764 1.501 515
.35 941 .829 1.259 584
40 695 870 1.060 642
45 520 900 .896 691
.50 .393 923 .760 7132
.60 .230 9529 564 797
.70 139 9709 410 845
.80 .085 9819 307 .880
.90 .053 .9886 233 .907
1.00 .033 9928 .178 928
1.10 021 .9954 137 943
1.20 .013 9971 .106 9553
1.30 .008 9981 .083 9647
1.40 .005 .9988 .065 9721
1.50 .003 9992 .051 9778
1.60 .040 9823
1.70 .032 .9859
1.75 .001 .9998 .028 9874
1.80 .025 .9888
1.90 .020 9910
2.00 .0004 99991 .016 9928
2.10 .013 9942
2.25 .0001 99997 .009 .9959
2.50 .005 9976
3.00 .002 .9992
4.00 .0002 99990
5.00 .00002 .99999

For general m, solutions to (3.1) are impracticable due to the complexity of (2.1);
however, using the result of Theorem 1 a solution can be found for the case m = « by
using power series for the eigenfunctions. Closed form solutions to equations such as (3.1)
are generally quite difficult or impossible to obtain.

Once the eigenvalues have been determined, the density and distribution function of S
can be obtained by inverting the characteristic function of (3.2),

(3.3) E(e™®) = {I[5=1 (1 — 2iNu)} ™%

Details on both the power series method for solving (3.1) and the inversion of (3.3) for
m = o are given in Section 7.

The distribution of S for given m depends only on the first two moments of w(x). Table
1 gives the density and distribution function of S for m = o« for two important types of
weight functions: w(x) = 1 (the Bickel-Breiman test statistic), and any weight function
with E;w(X;) = 0 and (without loss of generality) E.w*X;) = 1. The latter case is of
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V\ m=1;wx) =1

m = oo, w(x) =1

m=1; Egw(X,) =0, Egw’(X;) = 1

f(y) m = oo; E;w(X,) = 0, Egw*(X,) = 1
2
1
o]
25 50 .75 1.00 1.25
y
F16. 1a. Densities of S for m = 1, .
1.00 B
75
m=1;, wx) =1
m = oo; wix) =1
F(y) .50 |-
m=1; Egw(X,) = 0, Egwi(X,) = 1
M = w; E;w(X.) = 0, E,w(X,) = 1
.25
0 1 1 1 1 ]

.25 .50 .75 1.00 1.25
FicG. 1b. Distributions of S for m = 1, .

interest because the optimal weight function against any prespecified contiguous sequence
of alternatives to g(x) is of this form (see Schilling, 1983).

4. The case m = 1 and a comparison with 1 < m < .

4.1. The case m = 1. The only finite value of m for which (2.1) takes a simple form is m
= 1. We then have

J {(n(s,t,w) — 1} dw =log t + 2t7/2 — 2,
B(s,t) .

and the Fredholm equation (3.1) may be solved with power series in a similar fashion to
the m = o case.

A tabulation of the density and distribution function of S for m = 1 is given in Table 2
for the same two weight functions used in Table 1. The m = 1 and m = « densities and
distributions are compared graphically in Figures 1a and 1b.
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TABLE 3
Means of S for selected m and w(x)
m=1 3 5 7 9 0
wkx)=1 226 247 .258 .264 .268 278
E,w(X)) =0 and E,w?(X)) =1 411 432 443 449 453 463

4.2. Comparison with 1 <m < . The primary usefulness of the S, test is for (finite)
values of m greater than one, for which very few distribution-free competitors exist. The
distributions given in Tables 1 and 2 are of value only if they are close to the distributions
of S for such m. While the convergence indicated in Theorem 1 has not been proved to be
monotone, there are strong indications that this is the case.

After some manipulations, the following closed form for (2.1) can be obtained for the

simplest case, s = ¢, m odd:

.

? 2K =12 [ (m — 1)/2 (= 1’
4.1) {n(t, t,w) — 1} dw = —log t[ eXp[K_,,.: 2j=o ( j )m

B(t,t)

{1 = (u/2)¥*"}log t:] mu™"'du — (2™ — 1)log ¢,

where K,, denotes the volume of an m-sphere with radius 1. For m even, the upper limit
of the summation is replaced by oo.

A numerical integration program was used to evaluate (4.1); the resulting figures were
substituted into &(z, t) to produce values of Var Z(¢) for selected m and ¢. For each ¢ these
quantities increased monotonically in m, converging quite rapidly to the m = o values.
This convergence is indicated in Table 3, which contains estimated means of S for selected
m and w(x), obtained from the formula (see Section 7) ES = [ Var Z(¢).

5. Monte Carlo results for n, m < «. A Monte Carlo examination of the S, test for
small to moderate sample sizes and numbers of dimensions suggests that the S distributions
given in Tables 1 and 2 are reasonably adequate for actual experiments.

Samples of size 25 and 100 were generated from selected densities in R™ for m = 1, 3
and 5. Although data sets of 100 or less points might not generally be considered adequate
for assessing models in as many as five dimensions, the trade-off between sample size and
cost deemed investigation of larger samples unprofitable. Furthermore, given the asymp-
totic behavior of any statistical procedure, one generally has a better notion of how the
procedure will perform for large samples based on its behavior for small samples than vice
versa.

Figure 2a gives a comparison of the estimated upper tails of the unweighted
(w(x) = 1) S, distribution (the primary region of interest for testing hypotheses) with those
of the S distributions for m = 1 and m = o, for samples of size 100 from the multivariate
standard normal density in 1, 3 and 5 dimensions. 1000 samples were used for m = 1, 200
each for m = 3 and 5.

In Figure 2b a corresponding comparison is given for weighted S, test statistics with
weight functions satisfying E,w(X;) = 0, E,w?(X;) = 1. For m = 1, the optimal weight
function for contiguous normal shift alternatives (w(x) = x) was used. For m = 3 and 5
three different weight functions were tried with 200 replications of each; one optimal
against location alternatives as for m = 1, one optimal for scale alternatives and one
optimal against a mixture of two multivariate normal distributions with common covari-
ance matrix I but different means. Figure 2b plots averages for these 600 test samples.

The centering quantity E.F,(¢) of S, is not in general computable exactly. It is shown
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Fly)(m=1,n = ) 2 3
-

1.00 P‘

.95 1 1 { 1 |
.06 .07 .08 .09 1.0 1.1
y
Fic. 2a. Monte Carlo upper tail values of S, distribution for w(x) = 1; g(x) = N(O, I); m = 1, 3, 5;
n = 100.

1.00
B 3
g/;

/‘/

i:'(y) .95 om=1
s F(y) (m= o0, n =c0) om=3
-m=25
: * m = 5 (scale-optimal cases deleted)
.90 1 1 1 1 i
1.0 1.2 1.4 1.6 1.8 2.0

y

F16. 2b. Monte Carlo upper tail values of S, distribution for Eqw(X)) = 0, E.w*(X,) = 1; g = N(O, I);
m =1, 3,5, n=100.

in Schilling (1979) that E F,.(t) = tE,w(X1) + R,(¢), with

Rn(t) = C(t, m)Eglig)_{(gﬁ___)‘;_:‘){};g;f_EX/_’lJl:ln—Z/m + O(n"‘/’"),

where ¢ depends only on ¢ and m, and tr{g(X:)} represents the trace of the Hessian matrix
of g, evaluated at X;. For the case when g is the multivariate standard normal density,
tr{g(X1)}/g(X1) = Y2(X% — 1), which corresponds directly with the optimal weight
function for scale alternatives. Hence R,(¢) is rather large in this case, leading to larger
values for S,. This is evident in Figure 2b, where the deletion of samples using the scale-
optimal weight function yields a marked improvement in fit to the asymptotics.

The sample S, distributions matched the corresponding S distributions equally well in
the lower portions of their range. The S, distributions for samples of size 25 also followed
the asymptotic distributions fairly well on the whole considering the smallness of n. The
best fits were for w(x) = 1.

Other densities and weight functions were tried for R' with very similar results.
Complete information on all Monte Carlo experiments performed may be found in Schilling
(1979).
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REMARK. Caution should be exercised when using Tables 1 and 2 for certain high-
dimensional models due to possible boundary effects. For example, the multivariate
uniform distribution will not provide a close fit to the asymptotics for m > 3 without many
thousands of sample points.

6. Proof of Theorem 1. Expression (2.2) clearly holds when s = 1 or ¢ = 1. For given
m, s and tsuch 0 < s <t <1, let w = | | and transform to spherical coordinates to obtain

for (2.1)

r(s)+r()

(6.1) mej w™  {n(s, ¢, w,0,---,0) — 1} dw
r(s)

where K, = 7#™?/T'(m/2 + 1) is the volume of a sphere in R™ with radius 1. The factor

mkK,, is the surface area of such a sphere. To evaluate (6.1) the method for computing

volumes by revolution may be employed to yield

r(s)
log (s, t, W, 0, -+, 0)) = Kn J’ (r¥(s) — 22} ™ V2 dz
(6.2) (rA(s)—r*()+w?) /2w
r(t)
+ Ky f (ri(e) — 22} ™ V2 dg.
(r¥(&)—r¥(s)+w?) /2w
The first term in (6.2) equals
K ! K, 1
m—1 (~log 5) j (1 — 2% ™m0/ g <omt (—log s) J’ (1 — 2212 gy
Kn (r(s)—r(t)+w?) /2wr(s) K, 12

upon minimizing (r%(s) — r’(t) + w?/2wr(s) in (r(s), r(s) + r(¢)). Now

1‘(ﬂ + 1)
Km—l 2
= ~ (m/2m)*?

Km W1/2F<m + 1)
2

by Stirling’s approximation; since

1 m(—=1)/2
J’ (1 _ 2'2) (m—1)/2 < (§)
172 4

the first term in (6.2) tends to zero uniformly in w. A similar argument works for the
second term of (6.2). Hence log (s, ¢, (w, 0, - -+, 0)) = 0 uniformly in w. Combining this
result with the inequality x < e* — 1 < xe™ produces

limy, e j (s, t, w) — 1} dw
B(s,t)

r(s)+r(t)
= limpyomKn w™ (log n(s, t, w, 0, ---,0))} dw

r(s)

r(s)+r(t) 1
63) = limm_.me_l{(—log s) mw™! j (1 —23)™ D2 dz dw

r(s) (r¥(s)—r*(t)+w?) /2wr(s)

r(s)+r() 1
+ (—log t) mw™™! J’ (1= 2%)m02 g, dw}.

r(s) (r3(8)—r(s)+w?) /2wr(¢)
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Putting @ = w/r(s) in the first term and a = w/r(¢) in the second, then using integration
by parts on each double integral, (6.3) becomes

K 1
limp o I'("_l {logzs[— J' (1—23)m /2 g,

m 1-(r(8)/r(s))*/2

. Jl,,,,.(t)/r(s) {1 B [1 — (r@®/r(s))* + a2]2}(mn/2{w___l+_l}am da]
| o 2a 2

1

64) + logzt[— (r(s)/r@)™ J' (1 =2%)m V2 gz

r(t)/2r(s)

1+r(s)/r(®) 1— (r(s)/r(t))2 + a2 2y (m~1)/2 (r(t)/r(s))2 -1 1
[ ) s )

(s)/r(®

The terms [ (1 — 2%)™ V2 dz in (6.3) are again less than (%)™ "/ in magnitude and
therefore contribute nothing to the limit.
For the remainder of the proof the property

lim,.r(t)/r(s) =1

is employed. Using this fact and making the substitution z = a?*/4 for each integral, (6.4)
can be seen to be equivalent in the limit to

(1+r(8)/r(s)%/4 2y (m—1)/2
{1 _ [1 — (r(®)/r(s))* + 4u] } LV gy,

4u 1/2

limy, —.o(m/27)" 22’"1(logf"s J'
1/4
(6.5)

(1+r(s)/r(£)?/4 2 2y (m—1)/2
+ lothJ {1 - [1 — r@/r(O) + 4“] } u 72 du).
(

172
F(s)/r(8)2/4 4u

The limits of each integral can be replaced by zero and one; this can be seen by verifying
that for sufficiently large m each integrand is nonnegative and less than some constant
times z ™ V2(1 — u)™ V"% ~ 0(b™) for some b < % when u is bounded away from %. In fact
one can express (6.5) as an expectation against a beta density of the form ™ V% (1 —
u)™ Y72, Observe that the normalizing constant for such a density is

(=)

~ @/m)"2 7,

- Tm+1)
using Stirling’s approximation again. Consequently, (6.5) is equivalent to
(6.6) % lim,, .(log’s)EV{™ + % lim,, ...(log*t) EV§™,
where

Vim = fm™(U,), i=1,2
with

+ +
Um~Beta<m 1 m 1),

2 ' 2
f@) = (A = [1 = (r(8)/r(s)}> + 4ul/16u)/(1 — u)}™ 7,
5 () = {(1 = [1 = {r(s)/r(®)) + 4u]?/16u)/(1 — u)} ™ 7,
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Note that {U,} —, %. The limiting behavior of f{™(x) and f§™(z) must be found. Some
algebraic manipulation produces

() = {1

1 _pl/m a _pl/m)z (m—1)/2
T2(1-w 16wl - u)} ’

where p = {r(t)/r(s)}™ = log®t/log’s. It is enough to check convergence behavior for
log f{™(u). Since p*™ — 1, log f{™ (1) can be expanded to

—(m — —_ pl/m _ a1/m2
LR RS

(6.7) 2 2(1—u)  16u(l —u)

where R, is of uniformly smaller order than the first term in (6.7) for z bounded away
from zero and one. Upon using L’Hépital’s rule for (6.7) we find that f{™(u) converges
uniformly in a neighborhood of % to

fi(w) =p1/4(l—u) = (log t/log 5)1/20-w),

The function f;(x) is continuous at u = % and equals log ¢/log s there.

The same arguments applied to f§™ (1) produce a limiting function fo(z) = 1/fi(w) with
the same convergence and continuity properties. Using Corollary 2 to Theorem 5.1 of
Billingsley (1968) we obtain

VW —, log t/logs, V& —, log s/log t.

It has been mentioned in the arguments following (6.5) that the tail contributions to
EV{™ and EV{™ are asymptotically negligible, i.e., the sequences {V{™}, {V§”} are each
uniformly integrable. Thus (Billingsley, 1968, Theorem 5.4) {EV{™} and {EV{™} have the
same respective limits as {V{™}, {V§™}. Upon insertion of these limits into (6.6), the
theorem is proved.

7. Distribution of S.

7.1. Solution of the Fredholm equation (3.1) for m = . The kernel k(s, ¢) is singular
at 0 but analytic in (0, 1]; this suggests a power series expansion around the point £ = 1. It
is not difficult to show that all eigenfunction-eigenvalue pairs are generated by this method.

Successive differentiations of (3.1) yields the following set of equations for ¢ (¢) and A:

t! J’ sp(s) ds + f s(log s)¢ (s) ds
0 0
(7.1) . 1
+J ¢ (s) ds + log tj s¢(s) ds

1
+log ¢ f s(log s)¢ (s) ds =Ae (2)/t,
0

1 1

(7.2) - f s (s) ds + tJ' sp(s) ds + tJ’ s(log s)p (s) ds =X (&' (t) — ¢ (2)),
(1] ()

0

(7.3) f sp(s) ds — t°(t) — i3¢'(t) =X (%" (t) — tp' () + (1)),
(1]

Ate™ @) + (n + D™ 2(1)) + (£ + DoV (2)
7.4 +{(n+ 1)1+ 20 + 3™ ()
+n(n+ 2" @) =0, n=0,12 -,
where ¢ 7V(2) = 0, ¢ V() = ¢(#), and ¢ (¢) = d"¢(¢)/dt" for n = 1. It is helpful to let u =
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1—tand ¢(8) = ¥(u) = ¥ %0 a.u”, where a, = (—1)"¢(1)/n! for each n. A recursive
formula for the a,’s can then be obtained from (7.4) for n = 3. It can be shown that a
power series solution to (7.4) is convergent on | # | < 1 regardless of A > 0. Series expansion
of the log function and term by term integration yield for (7.1)-(7.3), respectively,

(7.5) a = ; Yim=1 % Y0 an/{(m +n+ 1)(m + n + 2)},
(7.6) a=—a1/2 + % Yo an/{(n + 1)(n + 2)},
(7.7) az = —ap/\ — a1 /4.

Consequently the eigenvalues of (3.1) are precisely those values of A which yield a
simultaneous solution to the recursive equation and (7.5)-(7.7). A possible approach to
obtaining these is to try initial values of ao, @; and A and then iterate these quantities.
Since ¢ (#) in (3.1) is determined only up to a multiplicative constant, just two unknowns
are involved. )

An algorithm for this procedure was successfully employed with the aid of quite accurate
initial values, which we obtained by considering a discrete analogue to (3.1), namely the
determination of eigenvalues and eigenvectors for the n X n matrix (1/n){K;;} where

Kij=K;i= t:(1 + tjlog t;) + titlog(t)log(t)), lsi=sj=n,

with ¢, = (i — %)/n,i =1, ..., n. This was solved with an IMSL subroutine for n = 100.
The five largest eigenvalues obtained from the power series convergence algorithm agreed
with those for the discrete problem to within a relative error of 0.000003; consequently the
remaining eigenvalues of the matrix were taken as correct for (3.1).

The acceptability of the substitution of eigenvalues from the discrete problem for those
of the continuous case can be measured by an independent check on the moments of S.
From Anderson and Darling (1952, page 200) we have

1 : 1 1
(7.8) ES= j k(t,t)dt, VarS=2 f f k%(s, t) ds dt,
0 0 0

whereas from (3.2) we obtain
(7.9) ES=Y%.7;, VarS=2Y%,A%
The errors in using the 100 estimated eigenvalues for (7.9) as compared with the exact

moments computed from (7.8) were 0.000004 and 0.000028 for ES and Var S respectively.

7.2 Inverting the characteristic function. It is assumed subsequently that A; = A, =
..+ . Seventy eigenvalues were retained for inverting the characteristic function of S. That
is, we are actudlly finding the distribution of S™ = ¥ 72, A;Y?. The density function of
8 js

fswo(y) = = J’ e“{D(2iu)}/* du
27 J_,

where
D(y) =12 (L= A;y).
A procedure for complex integration due to Slepian (1958)—although the form first

appears in Smirnov (1937)—yields the computational form

1
fsoo(y) = o S, (—1)*L,
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where

1/2A 4,
I, =f e™ | DQuw|?du, k=1,2,...,385.
1

/2A2k-1

It is easily seen (Fubini’s Theorem) that the distribution function of S”” can be expressed
as

Fsan(y) =1—7"" 2211 (=1)* s,
where

1/2A gy,
Jr = J’ | DQu)| ™2™ du, k=12 ...,35
1

/2A2k-1

The I.’s and Ji’s were found by numerical integration, and for each value of y used
decreased rapidly with k. :

The distribution of S clearly provides an upper bound for that of S. A lower bound
is of greater importance since it allows conservative level a tests based on S,, at least
asymptotically. Letting R™ = ¥'%_» A;Y; we have, for any ¢ > 0,

(7.10) Fs(y) = Fsao(y — )Fraoe).

A simple procedure due to Blum, Kiefer and Rosenblatt (1961) yields
(7.11) Frao(e) = 1 — exp[—{e/ur — log(e/ur) — 1} pr/2A7]
where

Ur = ER™ = 2;3:71 }\j~

Upon choosing ¢ appropriately, it results that the lower bound for Fs(y) obtained from
(7.10) and (7.11) is never more than 0.006 below the tabled value; for the upper tail (of
greatest interest for testing) the difference is much less. For example, using the 95th
percentile of the lower bound as critical value will result in a true asymptotic level between
0.0489 and 0.0500.
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