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CHANCE ENCOUNTERS 

Probability: 
From Monte 

Carlo to 
Geometry 

The interplay between probability 
and other areas of mathematics of 
ten occurs in unexpected places. 

Below you will see how probability can 
be applied to problems in calculus, the 
estimation of e, and even to geometri 
cal proofs. 

To begin, let's look at a class of proce 
dures known collectively as the Monte 
Carlo method, an approach which has 
become increasingly popular in recent 

years due to advances in computer tech 

nology. Named after the famous casino 
in Monaco, these procedures involve the 
use of a computer to generate a large 
number of random values which simu 
late real world or mathematical phenom 
ena. The Monte Carlo method is effec 
tive because (1) modern high speed com 

puters can create an extremely large 
amount of random data very quickly, 
and (2) the patterns produced by ran 
dom observations, though haphazard in 
the short run, are quite predictable and 

well behaved in the long run. 

Monte Carlo Integration 
Suppose we have a definite integral such 
as 

?(x3+l) 
1/2 
dx, 
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which cannot be evaluated by standard 
?1/2 

analytic methods since 
(x3 4-1) has 

no elementary anti-derivative. The ap 

proximate value of the integral can be 
obtained by numerical integration or by 
using a power series expansion of the in 

tegrand. Another way, however, is to use 
Monte Carlo integration. 

There are two natural ways to imple 
ment the Monte Carlo procedure. In the 

first, note that since the integrand is a 

continuous function taking only positive 
values, the integral represents the area of 
the region that lies underneath this func 

tion, above the x-axis, and between the 
vertical lines x=0 and x = 2. This region 
is inscribed in a rectangle having the 
horizontal line y 

= 1 as its upper bound 

ary (see Figure 1). Now imagine throw 

ing a very large number of darts at this 

rectangle. Assume that each dart is 

equally likely to land anywhere within this 

rectangle, independendy of every other 
dart. As the number of darts increases, 
the proportion that land in the region 
representing the integral will approach 
the proportion of the rectangle's area that 
lies within the region representing the 

integral. Since the area of the rectangle 
is two, the integral is estimated by twice 
the proportion of darts that fall under 
the curve. Information about the prob 
able error of the estimate can easily be 
obtained from the fact that the number 
of darts that fall under the curve is a bi 
nomial random variable. 

A second way to employ Monte Carlo 
for the integration problem above is to 

randomly pick a large number of values 

of x between 0 and 2 and evaluate the 

function 
(x3 +1) 

for each of these. 
The definite integral above is then esti 
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Figure 1. A Monte Carlo approximation of (xs + 1 )~l/2 dx. 
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mated by twice the average of the func 
tion values obtained. This follows from 
the calculus result that the average of 
an integrable function/^:) over the in 

tegral [a,b] is given by 
1 cb - 

f(x)dx. 
b-aJaJ 

Estimating e by Monte Carlo 
An interesting application of the Monte 
Carlo method is to obtain an estimate 
of the transcendental number e. Pirooz 

Mohazzabi, a physicist, recently de 
scribed several ways this can be done [ 1 ]. 

One is based on the famous problem 
of the secretary who places k letters into k 
addressed envelopes but forgets to check 
that each goes into the correct envelope. 
If each letter is placed into a randomly 
selected envelope, what is the chance that 
no envelope will contain the correct let 
ter? In the case of three envelopes e v e2, 
and #3 and three corresponding letters 

lv Z2, and /3, the six equally likely possi 
bilities are listed below in columns: 

^\f\ ^\J i ^p^2 ^i?^2 ^l'^3 ^l'^3 
^2'^2 ^2'^3 ^2'^l ^2'^3 ^2*^1 ^2*^2 
^3'^3 ^3^2 evh e$Jl eV^2 e2>^\ 

There are two cases with no match 

(called derangements), thus for k=3 the 
chance of no match is 2/6 = .333. For 
k=4 the reader can easily verify that the 

chance of no match is 9/24=.375. Sur 

prisingly, as k increases the chance of 
no match does not grow or shrink but 
remains nearly constant and in fact con 

verges to 1 / e 
~ .368. In fact, the formula 

for the probability of no match for gen 
eral k can be shown by an inclusion 
exclusion argument to be just the 

Maclaurin polynomial of order k for He, 
l-l + l/2!-l/3!+-+(-l)*/*!. Thus 
one could estimate e by randomly per 

muting the integers 1,2,k a large 
number of times for a fairly big value of 

k, then finding the reciprocal of the pro 

portion of outcomes that yield derange 
ments. 

A second method is equivalent to 

tossing n darts at a board partitioned 
into n equally likely target regions. The 

chance that a given region is not hit by 
any of the darts is (1 

- 
\/n)n, which ap 

proximates \/e when n is large. So e can 

be estimated by n divided by the num 
ber of regions with no hits. 

A third method simulates shaking 
grains of salt out of a salt shaker. Sup 
pose that on each shake any given grain 
has probability p of coming out of the 
shaker. If p is a number of the form 1/w, 
then after n shakes each grain has prob 
ability (l 

? 
p) ~l/e (for n large) of not 

having come out. Thus if S is the initial 
number of grains in the salt shaker and 

Sn is the number still in it after the nth 

shake, e can be estimated by S/Sn. 
How well does the Monte Carlo 

method work? Although highly versa 

tile, often it does not achieve the same 

level of accuracy as other methods. This 
is because the rate of convergence of 

Monte Carlo estimates to the exact val 
ues generally^ occurs at the rather slow 
rate of 1/vw. A striking example of 
worst case performance occurs for the 
famous Buffon's needle problem, per 

haps the first Monte Carlo procedure 
in history. 

The problem involves dropping a 

needle onto a floor with parallel lines 

spaced I apart. It is not too hard to show 
that if the length of the needle is /, then 
the chance that the needle will inter 
sect one of the lines is 21 Jt. Thus Jt can 

be estimated by 2 Ip, where p is the pro 

portion of needles that intersect a line. 
How accurately does this estimate jt? 
Readers familiar with confidence inter 

vals are invited to derive an approxi 
mate 95% confidence interval based on 

21 p. Doing so reveals that about 

8.65xl02rf tosses are required in order 
to have a 95% chance that the estimate 
of jt is correct to d digits of accuracy. 
This means that one needs about 8,650 
tosses to be reasonably certain of obtain 

ing 3.1, about 865,000 tosses to obtain 

3.14, and about 8.65 billion tosses to 

obtain 3.1416! 

Using Probability to Prove 
Results in Geometry 
While the above methods illustrate how 

probability can be used in the empiri 
cal side of other branches of mathemat 

ics, probability can contribute to the 
theoretical aspect as well. Here is one 

example: Suppose 10% of the surface of 

a sphere is white, while the rest is black. 
Prove that there is a cube inscribed in 
the sphere such that all eight of its ver 
tices are black. 

The proof relies on the Bonferroni 
Inequality: Let A p..., Ak be a set of events. 
Then P(at least one of them's occurs) 

<^P(Ai) where P(-) represents the 

probability of the enclosed event. (Do 
you see why Bonferroni's Inequality is 

true?) Now suppose we choose a ran 

dom inscribed cube. The probability that 

any given corner is white is . 1, so the 

probability that at least one corner is 
white is at most .8. Thus the probability 
that none are white, i.e., all are black, 
is more than .2. Thus there must be 
such inscribed cubes. 

Here is another good problem: A 

piece of paper, of any shape (even allow 

ing holes), has an area of ten square cen 

timeters. Show that it can be placed on 
an integer lattice that has its points spaced 
one centimeter apart in such a way that 
at least ten grid points are covered. 

To make the proof, suppose that the 

paper is placed over the grid randomly. 
Let the random variable X be the num 

ber of grid points it covers. It seems logi 
cal that the expected value of X is ten. It 
can be shown (although a rigorous argu 

ment is somewhat technical) that this is 
indeed true. Since it is impossible for a 

random variable to take only values less 
than its expectation, there must therefore 

be at least one case in which X= 10. 
You may wish to try your hand at the 

following problem: The earth's oceans 
cover more than one half of the earth's 
surface (actually about 70%). Use a prob 
ability argument to prove that there are 
two antipodal points (points on oppo 
site ends of a chord through the center 

of the earth) that are covered by water. 

You can find the answer to this prob 
lem, and see other examples of proba 
bilistic proofs, in the recent paper by 
Alexander Shen in the Mathematical 

Intelligencer [2]. 
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