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MARK F. SCHILLING 

Long Run Predictions 

It is June of 1992, and the citizens of 
riot-torn Los Angeles have gone to 
the polls to cast their ballots in the 

local elections. The results are an 

nounced, and a judge orders a recount 
for one particularly closely contested 
race. Precinct by precinct, each batch 
of ballots is scrutinized by several offi 
cials and witnesses. It seems that one 

candidate's votes often occur in long 
runs, with several ballots in a row marked 
for the same individual. Could there 
have been sabotage? 

Here is the voting record from one 

typical precinct: 

CEEDAACCANAAEAADANNNA 
CADDDANCBBADAAAAAECCN 
ANABNAAABACNADACBENAN 
ECAEBNAEDNNDNBAABAAAA 
BABABAANAAAAAAAANAD CA 
A N A N N N A A A A G E A A A A A A D C A 
AAAAD N AC AB B B C NAAAACCA 
D BAN C AAAAAD AAC AB N AAAN 
ACACAFAABFAABCAAAACAN 
FAABFBFD CBAAAAAENNAA 
A A A A A D D A A A A N D AAA E A B A N A 
ANAAEBNAAAAABABEECDAC 

The seven candidates are indicated 

by the letters A through G; N represents 
a ballot with no vote marked. Notice 
that there are several long runs of votes 
for candidate A, including a series of 

eight in a row, seven in a row and six in 

a row. Do you think that the ballots were 

tampered with? 
The fans cheered with enthusiasm as 

the Seattle Supersonics of the National 
Basketball Association trotted onto the 
court for the start of the 1990-91 bas 
ketball season. With talented young play 
ers such as Shawn Kemp and Gary 
Payton complementing an able crop of 

MARK SCHILLING is professor of mathemat 
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veterans, hopes were high for a stellar 
season. Unfortunately, inconsistency 

marked the team's play and the Super 
sonics wound up with a mediocre .500 
record of 41 wins and 41 losses. Here is 
the game-by-game record of their per 
formance (W = win, L = loss): 

WWWLLLLWLLLLLLWLLWLWW 
WWWWLLWWLWLLWLWWLWLL 
WLWWLWLLLWLWWWWWLWLL 
LLLWWLLLWWWLWWWWWLLWL 

Several winning and losing streaks 
are evident, including one each of 

length six. Is it fair to say that the Seattle 

Supersonics of 1990-1991 were an un 

usually streaky team? 
On August 18, 1913, at the famous 

Monte Carlo casino in Monaco, black 
came up 26 times in a row on a roulette 

wheel. As the run on black continued to 

grow, people began to bet larger and 

larger sums of money on red in the 
belief that another repeat of black was 

virtually impossible. The casino made 
several million francs that night. Was 
the wheel fixed? Could a run as long as 

26 possibly be expected to occur on an 

honest roulette wheel? 
To help answer these questions, let's 

compare these results to the sorts of 
runs that tend to occur in truly random 

sequences. For example, if an ordinary 
coin is tossed, say 250 times, how long is 
the longest run of consecutive heads 

likely to be? A simple argument can give 
us a rough answer: Except on the first 

toss, a run of heads can only begin 
directly after a toss showing tails. There 
should be around 125 tails in 250 tosses, 
each providing an opportunity for a 

head run to start. After about half of 
these tails the succeeding toss will be 

heads, giving around 63 head runs in 
all. Roughly half of the time, the first 
head will be followed by a second one, 

so around 32 runs will be at least two 
heads long. Again, about half of these 
will contain at least another head. Thus 
we can expect around 16 head runs of 

length at least three, eight runs at least 
four heads long, four runs of length at 
least five, two of length six or more, and 
one run of seven heads or longer. 

If many people each toss a coin 250 

times, we can therefore expect most of 

them to obtain a head run of at least 
seven heads. In fact, precise calcula 

tions show that among all strings of 250 
coin tosses, 87% will contain head runs 

of length at least six, 63% will have runs 

of seven or more, and a substantial 38% 
will possess runs that are at least eight 
heads long. 

What about long runs of either heads 
or tails? Note that we can translate any 
string of250 coin tossing outcomes into 
a new sequence of 249 elements in 
which we keep a record of whether the 
outcome of each toss after the first is the 
same as (S) or different from (D) the 

previous 
one. For instance, 

HTTHTTTHTHH...generates the se 

quence DSDDSSDDDS...Since D's and 
S's occur independently with probabil 
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ity 1/2, we can apply the same analysis 
as above to predict the longest strings of 
S. The difference between 250 and 249 
outcomes has a negligible effect on run 

lengths; since a string of k S's in a row 

corresponds to a string of either k + 1 
heads or k + 1 tails, the results for head 
runs are simply shifted up by one. For 

instance, 63% of all sequences of 250 
tosses of a fair coin will have some run at 
least eight elements long. 

This is a surprising result. In fact, 
when asked to write down long se 

quences of heads and tails that would 
look like a typical random arrangement, 

most people are quite reluctant to in 
clude strings of more than four or five 
heads (or tails) in a row. It is therefore 

generally rather easy to distinguish a 

sequence simulated by a human from 
an actual random sequence by the fail 
ure of most simulated sequences to in 

corporate long enough runs! 

A Formula for the Longest Run 

We can easily generalize the infor 
mal arguments given above to predict 
probable run lengths for a sequence of 
n tosses of a coin in which the chance of 
heads on each toss, say p, is any value 
other than 0 or 1. Reasoning as before, 
there should be approximately n(l-p) 
tails in the sequence, hence n(\-p) 
possible starting points for a run of 
heads. Then about w(l-jfr)/>head runs 
of length one or more will occur, about 

n(\-p)f? head runs of length at least 

two, and so forth. In general, 
we 

will obtain about NR 
= 

n(l-p)pR 
runs of length at least R. To find a 

reasonable value for the typical length 
of the longest run of heads, we can solve 
the equation N = 1 for R to obtain 

R = 
Iog1/p(n(l-p)). (1) 

In the case of a fair coin (p 
= 0.5), this 

reduces to R=log2(0.5n) 
= 

log2(n)-1, 
which then gives simply R=log2(n) for 
the longest run of heads or tails. 

We can use (1) to predict typical 
longest run lengths in a wide range of 
situations whose structure, like coin 

tossing, can be modeled (at least ap 
proximately) by what statisticians call 
Bernoulli trials. Bernoulli trials are re 

petitive sequences with the same two 

possible outcomes for each event in the 

sequence. Each event's outcome is in 

dependent of the others, and the prob 
abilities remain unchanged from trial 
to trial. 

For example in the voting data, can 
didate A received p 

= 5l.6% of the 
n = 252 votes in the precinct. Formula 

(1) gives R=7.3 votes, quite in line with 
the actual longest run of eight votes for 

A. Votes that are not for A show similar 

results, with two runs of seven in a row. 

So the observed long runs in the ballot 
data do not represent evidence of tam 

pering. 
In the basketball data, the chance of 

a Seattle win undoubtedly varied some 
what from game to game. We shall use 

p=0.5 since the team won exactly half of 
its n=82 games. Formula (1) predicts 

R= 6.4 for the longest run of either wins 
or losses. The actual longest 

run was six. 

The Supersonics' 1990-1991 perfor 
mance was not unusually streaky by this 
measure. 

Figure 1 shows the approximate 
chances that the longest run will be 

longer (area to the right of zero) or 

shorter (area to the left of zero) than 

XXX u X X XXX X 

Figure 1. Approximate distribution of the length of 
the longest run minus its predicted value 

formula (1) predicts. The shaded re 

gion represents the central 95% of the 
curve's area. 

Thus, for example, for coin tossing, 
p=0.5 gives X = ln(l/p) =.69, so there is 
about a 95% chance that the length of 
the longest run of heads will be some 

where between log2(0.bn)-l .9 and 

log2(0.5n) + 5.3. A surprising feature of 
the curve in Figure 1 is that its scale 

depends on p but not on n (unless n is 

very small). Remarkably, therefore, one 
can predict the length of the longest 
run with the same degree of accuracy 
for n = 100 as for n = 1,000,000! 

Long Run Theory vs. Momentum 

Most people attribute streaks of suc 

cessful or unsuccessful performances 
in sports to "momentum." For example, 
a team that has won several games in a 
row is considered "hot," and is consid 

ered more likely to win its next game 
than its overall record would predict. 
The opposite kind of momentum is 
believed to hold for "cold" teams in 

losing streaks. Similar "hot" and "cold" 

periods are believed to affect baseball 

hitters, basketball shooters, and so forth. 

Many people believe that momentum 
also applies in gambling, producing 
both "lucky" and "unlucky" streaks dur 

ing which betting should be increased 
or decreased accordingly. 

One way to evaluate the case for 
"momentum" is to compare calcula 

tions from long run theory to actual 
records from human experience, such 

as those that have occurred in sports 
and gambling. Perhaps the most fa 
mous of these is Joe DiMaggio's accom 

plishment of managing at least one hit 
in 56 consecutive baseball games. Was 

DiMaggio a "hot" hitter whose profi 
ciency during the streak was greatly 

increased over his 
normal ability? Or 
could such a streak 
have been predicted 
by long run theory? 
Although DiMaggio's 
record was clearly 

an 

exceptional accom 

plishment even after 

accounting for his 

superb ability to hit a 

baseball, the real 

question we need to ask is whether in 
the absence of momentum we could 
have expected anyone in the history of 

major league baseball to achieve a hit 

ting streak as long as 56 games. 
It seems highly probable that the 

record would be set by a player who is a 

very good hitter. If we place end-to-end 
career records of the top 20% of all 

major league baseball players from 1901 
to the present, we obtain a string of 
about n = 500,000 player-games. (The 

possibility that the longest run in this 
list overlaps two different players' ca 
reer records is fairly remote and will be 
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ignored.) The overall batting average 

(hitting percentage) of these players is 

roughly .300; assuming four hitting 
opportunities per game, the chance 
that a .300 hitter would get no hits in a 

given game is (1-.300)4 
= .24, thus 

p= 1 - .24 = .76. Applying formula (1) 

gives R = 43, while the 95% prediction 
interval of 38 to 56 just reaches the 

DiMaggio record. 

Similarly adjoining all of the spins of 
honest roulette wheels in history (esti 

mating a total of half a billion spins) 
predicts a longest run of R = 27 of the 
same color. The remarkable run at 

Monte Carlo is in fact quite reasonable 
when viewed in this context. 

Table 1 presents several prominent 
record streaks in sports and gambling 
and compares them to predictions de 
rived from the long run theory above. 
In most cases, the figure used for p is an 

average, as the value typically varies 

among the trials. The values of n are 
also approximate, in some cases 

"ballpark figures" obtained from rough 
calculations. However, moderate 

changes in n do not greatly alter the 

predictions. 
The record streaks in the sports cat 

egories of Table 1 are in some cases 

somewhat above the length predicted 
from formula (1), but all lie within the 

95% prediction intervals. The runs in 

gambling, while at first glance amazing, 
are completely in line with what is ex 

pected for run lengths in very long 
strings of independent Bernoulli trials. 

Although a run of 26 in a row in rou 

lette, for example, has only a 1 in 

68,411,592 chance of occurring in a 

specified set of 26 rolls at Monte Carlo, 
our analysis has shown that it is quite a 

reasonable thing to have occurred on 
some wheel, at sometime. 

The data therefore refute the idea of 
momentum in games of chance, while 

giving less conclusive results for base 
ball and basketball. Although it can be 

argued that player attitudes and emo 

tions must surely cause significantly 
longer runs in sports than those ex 

pected by chance alone, the empirical 
support for this claim is weak. Detailed 
statistical analyses indicate, in fact, that 

contrary to the strong prevailing opin 
ions of fans, sports reporters, and the 

Event Record p n Predicted 95% Prediction 

Longest Run Interval 
Baseball 

Consecutive games 56 .76 500,000 43 (38,56) 
with hit (DiMaggio, 1941) 
(top 20% of batters) 

Consecutive hits 12 .30 2,000,000 12 (11,15) 
(top 20% of batters) (Higgins,1938; Dropo, 1952) 

Consec. wins, team 26 .60 55,000 20 (17,27) 
(top 20% of teams) (NY Giants, 1916) 

Consec. wins, pitcher 24 .62 40,000 20 (17,28) 
(top 20% of pitchers) (Hubbell, 1936-7) 

Basketball 

Consec. wins, team 33 .73 6,000 23 (19,35) 
(teamswinning>70%) (L.A. Lakers, 1971-2) 

Consec. losses, team 24 .73 6,000 23 (19? 35) 
(teamswinning<30%) (CI. Cavaliers, 1982) 

Free Throws 97 .90 40,000 79 (66,114) 
(Williams, 1993) 

Roulette 26 .48 5 x 108 27 (26,32) 
Same Color (Monte Carlo, 1913) 

Craps 28 .49 5 x 108 27 (25,33) 
Consec. passes (Las Vegas, 1950) 

Table 1 

players themselves, momentum maybe merely an illusion of the human mind [1 
4]. 

The almost universal tendency to regard long runs as having underlying, non 
random causes is probably due to the selectiveness of human perception, which 
is geared towards pattern recognition?streaks tend to stand out and be remem 

bered?coupled with an unawareness of the extent to which long runs arise by 
chance alone in merely random progressions of data. When a randomly generated 
sequence is placed side by side with an actual sequence reflecting human 

performance, gambling outcomes, etc., the patterns in the two sequences are 

quite often indistinguishable. Additional information on the theory of longest 
runs can be found in [5] and in the references cited therein. 
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