\qquad

Reducing Distributions

aRegardless of numbers of scores, distributions can be described with three pieces of info:
■Shape (Normal, Skewed, etc.)
-Central Tendency
-Variability

How do scores spread out? -Variability
-Tell us how far scores spread out
-Tells us how the degree to which scores deviate from the central tendency
\qquad

How are these different?

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Measure of Variability

Measure	Definition	Related to:
Range	Largest - Smallest	Mode
Interquartile Range Semi-Interquartile Range	$\mathrm{X}_{75}-\mathrm{X}_{25}$	
$\left(\mathrm{X}_{75}-\mathrm{X}_{25} / 2\right.$	Median	
Average Absolute Deviation	$\frac{\sum\left\|X_{i}-\bar{X}\right\|}{N}$	
Variance	$\frac{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}}{N-1}$	Mean
Standard Deviation	$\sqrt{\frac{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}}{N-1}}$	

The Range

-The simplest measure of variability \qquad

- Range (\mathbf{R}) $=\mathbf{X}_{\text {highest }}-\mathbf{X}_{\text {lowest }}$
-Advantage - Easy to Calculate
- Disadvantages
\qquad
aLike Median, only dependent on two scores \rightarrow unstable
$\{0,8,9,9,11,53\}$ Range $=53$
$\{0,8,9,9,11,11\}$ Range $=11$ \qquad aDoes not reflect all scores
\qquad

Detour: Percentile

- A percentile is the score at which a specified percentage of scores in a distribution fall below
- To say a score 53 is in the 75th percentile is to say that 75% of all scores are less than 53
- The percentile rank of a score indicates the percentage of scores in the distribution that fall at or below that score.
- Thus, for example, to say that the percentile rank of 53 is 75 , is to say that 75% of the scores on the exam are less than 53.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Detour: Percentile

aScores which divide distributions into specific proportions

- Percentiles = hundredths \qquad
P1, P2, P3, ... P97, P98, P99
- Quartiles = quarters \qquad
Q1, Q2, Q3
- Deciles = tenths

D1, D2, D3, D4, D5, D6, D7, D8, D9
\square Percentiles are the SCORES

Detour: Percentile Ranks

-What percent of the scores fall below a particular score?

$$
P R=\frac{(\text { Rank }-.5)}{\mathrm{N}} \times 100
$$

aPercentile Ranks are the

 Ranks not the scores
Detour: Percentile Rank

	Step 1	Step 2	Step 3	Step 4	
Data	Order	Number	Assign Midpoint to Ties	Percentile Rank (Apply Formula)	\square Steps to
9	1	1	1	2.381	Calculating
5	2	2	2	7.143	
2	3	4	4	16.667	Percentile
3	3	5	4	16.667	Ranks
4	4	6	7	30.952	Ranks
8	4	7	7	30.952	
9	4	8	7	30.952	
1	5	9	10	45.238	
7	5	10	10	45.238	
4	5	11	10	45.238	
8	6	12	12	54.762	
3	7	13	14	64.286	ㅁ Example:
7	7	14	14	64.286	
6 5	7	15	14 17.5	64.286 80.952	$P R_{3}=\frac{\left(\text { Rank }_{3}-.5\right)}{N} \times 100=$
7	8	17	17.5	80.952	N
4	8	18	17.5	80.952	(4-5)
8	8	19	17.5	80.952 95.238	$\frac{(4-.5)}{21} \times 100=16.667$
8	9	20	20.5 20.5	95.238 95.238	21×1

Detour: Finding a Percentile in a Distribution

$$
X_{P}=(p)(n+1)
$$

\square Where X_{p} is the score at the desired percentile, p is the desired percentile (a number between 0 and 1) and n is the number of scores)

- If the number is an integer, than the desired percentile is that number
- If the number is not an integer than you can either round or interpolate
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Detour: Interpolation Method Steps

\square Apply the formula $X_{P}=(p)(n+1)$

1. You'll get a number like 7.5 (think of it as place1.proportion)
2. Start with the value indicated by place1 (e.g. 7.5 , start with the value in the $7^{\text {th }}$ place)
3. Find place 2 which is the next highest place number (e.g. the $8^{\text {th }}$ place) and subtract the value in place 1 from the value in place2, this distance1
4. Multiple the proportion number by the distance1 value, this is distance 2
5. Add distance 2 to the value in place 1 and that ${ }_{13}$ is the interpolated value
```
Detour: Finding a Percentile in a
Distribution
    \square Interpolation Method Example:
    \square 25th percentile:
        {1, 4, 9, 16, 25, 36, 49, 64, 81}
\squareX }\mp@subsup{X}{25}{}=(.25)(9+1)=2.
    -place1 = 2, proportion = . }
    - Value in place1 = 4
    -Value in place2 = 9
    -distance1 = 9-4 = 5
    @ distance2 = 5* . 5 = 2.5
    ■ Interpolated value = 4 + 2.5 = 6.5
    \square.6.5 is the 25 th percentile
```

Detour: Finding a Percentile in a
Distribution
- Interpolation Method Example 2:

- $75^{\text {th }}$ percentile
$\{1,4,9,16,25,36,49,64,81\}$
$\square \mathrm{X}_{75}=(.75)(9+1)=7.5$
 - place1 = 7, proportion = . 5
-Value in place1 $=49$
 - Value in place2 $=64$
 - distance $1=64-49=15$
 - distance2 $=15 * .5=7.5$
 - Interpolated value $=49+7.5=56.5$
 - 56.5 is the $75^{\text {th }}$ percentile

Detour: Rounding Method Steps

- Apply the formula $X_{P}=(p)(n+1)$

1. You'll get a number like 7.5 (think of it as place1.proportion)
2. If the proportion value is any value other than exactly .5 round normally
3. If the proportion value is exactly . 5 - And the p value you're looking for is above .5 round down (e.g. if p is .75 and $X_{p}=7.5$ round down to 7)

- And the p value you're looking for is below .5 round up (e.g. if p is .25 and $X_{p}=2.5$ round up to 3)

Detour: Finding a Percentile in a Distribution
\qquad
-Rounding Method Example:
$\square 25^{\text {th }}$ percentile $\{1,4,9,16,25,36,49,64,81\}$ $\square X_{25}=(.25)(9+1)=2.5$ (which \qquad becomes 3 after rounding up),
\square The $3^{\text {rd }}$ score is 9 , so 9 is the $25^{\text {th }}$ percentile

```
Detour: Finding a Percentile in a
Distribution
    \squareRounding Method Example 2:
    \square75th
    {1,4,9,16, 25, 36, 49, 64, 81}
\square\}\mp@subsup{X}{75}{}=(.75)(9+1)=7.5 whic
    becomes 7 after rounding down
\squareThe 7}\mp@subsup{}{}{\mathrm{ th }}\mathrm{ score is }49\mathrm{ so }49\mathrm{ is the
    75th}\mathrm{ percentile
```


Detour: Quartiles

-To calculate Quartiles you simply find the scores the correspond to the 25, 50 and 75 percentiles.
$-Q_{1}=P_{25}, Q_{2}=P_{50}, Q_{3}=P_{75}$

Back to Variability: IQR

aInterquartile Range

- = $\mathrm{P}_{75}-\mathrm{P}_{25}$ or $\mathrm{Q}_{3}-\mathrm{Q}_{1}$
- This helps to get a range that is not influenced by the extreme high and low scores
- Where the range is the spread across 100% of the scores, the IQR is the spread across the middle 50\%

Variability: SIQR

-Semi-interquartile range

- $=\left(\mathrm{P}_{75}-\mathrm{P}_{25}\right) / 2$ or $\left(\mathrm{Q}_{3}-\mathrm{Q}_{1}\right) / 2$
-IQR/2
- This is the spread of the middle \qquad 25% of the data
- The average distance of Q1 and Q3 from the median
- Better for skewed data

\qquad
\qquad

Average Absolute Deviation
-Average distance of all scores
\qquad from the mean disregarding direction.

$$
A A D=\frac{\sum\left|X_{i}-\bar{X}\right|}{N}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Average Absolute Deviation

- Advantages

- Uses all scores
- Calculations based on a measure of central tendency - the mean.
- Disadvantages
- Uses absolute values, disregards direction - Discards information
- Cannot be used for further calculations

Variance
-The average squared distance of
\qquad each score from the mean -Also known as the mean square
-Variance of a sample: s^{2} \qquad םVariance of a population: σ^{2}

Variance

םWhen calculated for a sample \qquad

$$
s^{2}=\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{N-1}
$$

aWhen calculated for the entire population

$$
\sigma^{2}=\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{N}
$$

Variance

-Variance Example

-Data set = \{8, 6, 4, 2\}

- Step 1: Find the Mean

$$
\bar{X}=\frac{-^{+} \ldots^{+} \ldots^{+}-}{-}=
$$

Variance
-Variance Example
\qquad

- Data set $=\{8,6,4,2\}$
- Step 2: Subtract mean from each value

Score	Deviation
8	$(8-\ldots)=$
6	$(6-\square)=$
4	$(4-\square)=$
2	$(2-\square)=$

Variance

-Variance Example

- Data set $=\{8,6,4,2\}$
-Step 3: Square each deviation

Score	Deviation	Squared
8	-	-
6	-	-
4	-	-
2	-	-

Variance

-Variance Example

- Data set $=\{8,6,4,2\}$
- Step 4: Add the squared deviations and divide by N - 1

$$
s^{2}=\frac{\mathcal{L}^{+} \ldots^{+}{ }^{+}}{}{ }^{+}=
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Standard Deviation

\qquad
aVariance is in squared units \qquad -What about regular old units口Standard Deviation = Square root of the variance
\qquad

$$
s=\sqrt{\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{N-1}}
$$

\qquad
\qquad

Standard Deviation

-Uses measure of central tendency (i.e. mean)
-Uses all data points

- Has a special relationship with the normal curve (we'll see this soon) \qquad
- Can be used in further calculations
\square Standard Deviation of Sample $=S D$ or s
- Standard Deviation of Population $=\sigma$
\qquad
\qquad
\qquad

Why N-1?

- When using a sample (which we always do) we want a statistic that is the best estimate of the parameter

$$
E\left(\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{N-1}\right)=\sigma^{2} \quad E\left(\sqrt{\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{N-1}}\right)=\sigma
$$

Degrees of Freedom

םUsually referred to as $d f$ aNumber of observations minus the number of restrictions

$$
{ }_{-}^{+}+__{+}+\ldots=10-4 \text { free spaces }
$$

$2+\ldots+\ldots+\ldots=10-3$ free spaces
$2+4+\ldots+\ldots=10-2$ free spaces
$2+4+3+\ldots=10$
Last space is not free!! Only 3 dfs.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Boxplots with Outliers

Computational Formulas

aAlgebraic Equivalents that are easier to calculate

$$
\begin{aligned}
& s^{2}=\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{N-1}=\frac{\sum X^{2}-\frac{\left(\sum x\right)^{2}}{N}}{N-1} \\
& s=\sqrt{\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{N-1}}=\sqrt{\frac{\sum X^{2}-\frac{\left(\sum x\right)^{2}}{N}}{N-1}}
\end{aligned}
$$

${ }^{38}$
\qquad

