Measures of Variability Descriptive Statistics Part 2

Cal State Northridge ¥320 Andrew Ainsworth PhD

Reducing Distributions

Regardless of numbers of scores, distributions can be described with three pieces of info:

■Shape (Normal, Skewed, etc.)

Psy 320 - Cal State Northridge

- Central Tendency
- Variability

How do scores spread out?

Dariability

- Tell us how far scores spread out
- Tells us how the degree to which scores deviate from the central tendency

Psy 320 - Cal State Northridge

	Measure of V	ariability		
L	Measure	Definition	Related to:	
⊢	Range	Largest - Smallest	Mode	
	Interquartile Range Semi-Interquartile Range	X ₇₅ - X ₂₅ (X ₇₅ - X ₂₅)/2	Median	
	Average Absolute Deviation	$\frac{\sum X_i - \overline{X} }{N}$		
	Variance	$\frac{\sum_{i=1}^{N} (X_i - \overline{X})^2}{N - 1}$	Mean	
	Standard Deviation	$\sqrt{\frac{\sum\limits_{i=1}^{N} \left(X_{i} - \overline{X}\right)^{2}}{N-1}}$		
	Psy 320 - Cal State Northridge			

The Range

■The simplest measure of variability ■Range (R) = X_{highest} - X_{lowest}

Advantage – Easy to Calculate

Disadvantages

 $\ensuremath{\square}\xspace{\ensuremath{\mathsf{Like}}}$ Median, only dependent on two scores \rightarrow unstable

{0, 8, 9, 9, 11, 53} Range = 53

{0, 8, 9, 9, 11, 11} Range = 11

Does not reflect all scores

Detour: Percentile

- A percentile is the score at which a specified percentage of scores in a distribution fall below
 - To say a score 53 is in the 75th percentile is to say that 75% of all scores are less than 53
- The **percentile rank** of a score indicates the percentage of scores in the distribution that fall at or below that score.
 - Thus, for example, to say that the percentile rank of 53 is 75, is to say that 75% of the scores on the exam are less than 53.

Psy 320 - Cal State Northridge

Detour: Percentile

Scores which divide distributions into specific proportions

- Percentiles = hundredths P1, P2, P3, ... P97, P98, P99
- Quartiles = quarters
 - Q1, Q2, Q3
- Deciles = tenths D1, D2, D3, D4, D5, D6, D7, D8, D9

Percentiles are the SCORES

Psy 320 - Cal State Northridge

Detour: Percentile Ranks

What percent of the scores fall below a particular score?

$$PR = \frac{(Rank - .5)}{N} \times 100$$

Psy 320 - Cal State Northridge

Percentile Ranks are the Ranks not the scores

Det	oui	c: P	erc	ent	ile	Rai	nk	
∎Ran	king	g no	ties	5 – ju	st nu	mbei	r the	n
Score: Rank:	1	3	4	5	6	7	8	10
Rank:	1	2	3	4	5	6	7	8
Ranking with ties - assign midpoint to ties								
Score: Rank:	1	3	4	6	6	8	8	8
Rank:	1	2	3	4.5	4.5	7	7	7
			Psy 320 - C	al State Northr	idge			10

	Step 1	Step 2	Step 3	Step 4	
Data	Order	Number	Assign Midpoint to Ties	Percentile Rank (Apply Formula)	■Steps to
9	1	1	1	2.381	Calculating
5	2	2	2	7.143	•
2	3	3	4	16.667	Percentile
3	3	4	4	16.667	
3	3	5	4	16.667	Ranks
4	4	6	7	30.952	Ranks
8	4		7	30.952	
9	4	8	7	30.952	
1	5	9	10	45.238	
7	5	10	10	45.238	
4	5	11	10	45.238	
8	6	12	12	54.762	- Evampla
3	7	13	14	64.286	Example:
7	7	14	14	64.286	(D 1 5)
6	7	15	14	64.286	$PR_3 = \frac{(Rank_35)}{N} \times 100$
5	8	16	17.5	80.952	$PK_3 \equiv \times 100$
7	8	17	17.5	80.952	IN
4 5	8	18	17.5	80.952	
	8	19	17.5	80.952	$\frac{(45)}{100} \times 100 = 16.667$
8	9	20	20.5	95.238	21
8	9	21	20.5	95.238	21 11

Detour: Finding a Percentile in a Distribution

$$X_p = (p)(n+1)$$

- Where X_p is the score at the desired percentile, p is the desired percentile (a number between 0 and 1) and n is the number of scores)
- **u** If the number is an integer, than the desired percentile is that number
- **u** If the number is not an integer than you can either round or interpolate

Detour: Interpolation Method Steps

\square Apply the formula $X_p = (p)(n+1)$

- 1. You'll get a number like 7.5 (think of it as *place1.proportion*)
- Start with the value indicated by *place1* (e.g. 7.5, start with the <u>value</u> in the 7th place)
- Find place2 which is the next highest place number (e.g. the 8th place) and subtract the value in place1 from the value in place2, this distance1
- 4. Multiple the *proportion* number by the *distance1* value, this is *distance2*
- 5. Add *distance2* to the value in *place1* and that is the *interpolated value*

Detour: Finding a Percentile in a
Distribution
□ Interpolation Method Example 2:
D 75 th percentile {1, 4, 9, 16, 25, 36, 49, 64, 81}
$\square X_{75} = (.75)(9+1) = 7.5$
 ■ place1 = 7, proportion = .5 ■ Value in place1 = 49
■ Value in <i>place2</i> = 64
■ distance1 = 64 - 49 = 15 ■ distance2 = 15 * .5 = 7.5
■ Interpolated value = 49 + 7.5 = 56.5
■ 56.5 is the 75 th percentile

Detour: Finding a Percentile in a
Distribution
Rounding Method Example 2:
■75 th percentile
{1, 4, 9, 16, 25, 36, 49, 64, 81}
$\square X_{75} = (.75)(9+1) = 7.5$ which becomes 7 after rounding down
The 7 th score is 49 so 49 is the 75 th percentile
Psy 320 - Cal State Northridge

Detour: Quartiles

To calculate Quartiles you simply find the scores the correspond to the 25, 50 and 75 percentiles.

Psy 320 - Cal State Northridge

19

20

 $\Box Q_1 = P_{25}, Q_2 = P_{50}, Q_3 = P_{75}$

Back to Variability: IQR

Interquartile Range

- $\blacksquare = P_{75} P_{25} \text{ or } Q_3 Q_1$
- This helps to get a range that is not influenced by the extreme high and low scores
- Where the range is the spread across 100% of the scores, the IQR is the spread across the middle 50%

Psy 320 - Cal State Northridge

Variability: SIQR

■Semi-interquartile range

- $=(P_{75} P_{25})/2 \text{ or } (Q_3 Q_1)/2$
- ∎IQR/2
- This is the spread of the middle 25% of the data
- The average distance of Q1 and Q3 from the median

```
Better for skewed data
Psy 320 - Cal State Northridge
```


The average squared distance of each score from the mean
 Also known as the mean square
 Variance of a sample: s²
 Variance of a population: σ²

Psy 320 - Cal State Northridge

Variance

- ■Variance Example
 - ■Data set = {8, 6, 4, 2}
 - Step 3: Square each deviation

■Variance Example

- ■Data set = {8, 6, 4, 2}
- Step 4: Add the squared deviations and divide by N - 1

Standard Deviation

When using a sample (which we always do) we want a statistic that is the best estimate of the parameter

$$E\left(\frac{\sum (X_i - \overline{X})^2}{N - 1}\right) = \sigma^2 \qquad E\left(\sqrt{\frac{\sum (X_i - \overline{X})^2}{N - 1}}\right) = \sigma$$
Ply 320 - Cal State Northridge 34

