
Lecture 5.

Addition and subtraction of rational expressions

Two rational expressions in general have different denominators, therefore if you want to
add or subtract them you need to equate the denominators first. The common denominator
with the smallest possible degree is the Least Common Multiple of the original ones. On this
lecture we will consider the procedure of finding the Least Common Multiple and solve some
examples on addition and subtraction of rational expressions.

5.1. Addition and subtraction of rational expressions

The rules for adding and subtracting rational expressions are the same as rules for
adding and subtracting fractions.

a

b
+
c

b
=
a+ c

b
,

a

b
− c

b
=
a− c
b

.

In this example both the denominators are equal and are not zero.

Example 5.1. (3.4 ex.13 )

x2

x2 + 4
− x2 + 1

x2 + 4
=
x2 − x2 − 1

x2 + 4
=

1

x2 + 4
.

(3.4 ex.16 )

4x+ 5

x− 4
− 2x+ 4

4− x
=

4x+ 5

x− 4
− 2x+ 4

−(x− 4)

=
4x+ 5

x− 4
+

2x+ 4

x− 4
=

6x+ 9

x− 4
.

If denominators of two rational expressions are not equal, we can use following general
rule for adding and subtracting quotients

a

b
+
c

d
=
ad+ bc

bd
, b 6= 0, d 6= 0.

Let us prove this formula

a

b
+
c

d
=
a

b
· d
d

+
c

d
· b
b

=
ad

bd
+
cb

db
=
ad+ cb

bd
.
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Similarly,
a

b
− c

d
=
ad− bc
bd

.

Example 5.2. (3.4 ex.22 )

x2

3
+

x

x+ 1
=
x2(x+ 1) + 3x

3(x+ 1)
=
x3 + x2 + 3x

3(x+ 1)
= x

(x2 + x+ 3

3(x+ 1)
.

(3.4 ex.36 )

2x− 1

x− 1
− 2x+ 1

x+ 1
=

(2x− 1)(x+ 1)− (x− 1)(2x+ 1)

(x− 1)(x+ 1)

=
2x2 − x+ 2x− 1− 2x2 + 2x− x+ 1

(x− 1)(x+ 1)

=
2x

(x− 1)(x+ 1)
.

(3.4 ex.41 )

x

x+ 1
+

(x− 2)

x− 1
+
x+ 1

x− 2

=
x(x− 1)(x− 2) + (x− 2)(x− 2)(x− 1) + (x+ 1)(x+ 1)(x− 1)

(x+ 1)(x− 1)

=
x(x2 − 3x+ 3) + (x+ 1)(x2 − 4x+ 4) + (x2 + 2x+ 1)(x− 1)

(x+ 1)(x− 1)(x− 2)

=
x3 − 3x2 + 3x+ x3 − 4x2 + 4x+ x2 − 4x+ 4 + x3 + 2x2 + x− x2 − 2x− 1

(x+ 1)(x− 1)(x− 2)

=
3x3 − 5x2 + 2x+ 3

(x+ 1)(x− 1)(x− 2)
=

(x− 1)x(3x− 2) + 3

(x+ 1)(x− 1)(x− 2)
.

One can check that there is no extra canceling by trying long division of the numerator
by the factors (x+ 1), (x− 1), and (x− 2) of the denominator.

5.2. Least common multiple

The general formula for summing up two rational expressions will work in every situa-
tion. But not in every situation the general formula is the best. Let us consider following
example

Example 5.3. (3.4 ex.69 )

x+ 4

x2 − x− 2
− 2x+ 3

x2 + 2x− 8
=

general

formula
=

(x+ 4)(x2 + 2x− 8)− (x2 − x− 2)(2x+ 3)

(x2 − x− 2)(x2 + 2x− 8)
.
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A little bit smarter way to do it is to factor the denominators, first:

(x+ 4)

(x− 2)(x+ 1)
− (2x+ 3)

(x+ 4)(x− 2)
.

Then, obviously, we can equate the denominators by multiplying the first rational expres-

sion by
(x+ 4)
(x+ 4)

and the second one by
(x+ 1)
(x+ 1)

:

(x+ 4)(x+ 4)− (2x+ 3)(x+ 1)

(x− 2)(x+ 1)(x+ 4)

=
x2 + 8x+ 16− 2x2 − 3x− 2x− 3

(x− 2)(x+ 1)(x+ 4)
=

−x2 + 3x− 13

(x− 2)(x+ 1)(x+ 4)
.

Let us summarize what we did. We wanted to equate the denominators and we wanted
to keep our work simple. The work will be kept simple if a common denominator has the
smallest possible degree. In this example a polynomial (x−2)(x+1)(x+4) is the one and
it is called the Least Common Multiple of polynomials (9x− 2)(x− 1) and (x− 2)(x+ 4).

Definition 5.1. The polynomial P (x) is the least common multiple of polynomials
P1(x), · · ·Pn(x) if

a) each of pi is a factor of P (x);

b) there is no polynomial q(x) with degree less than degree of P (x) such that a) is
satisfied.

Remark 5.1. Part b) says that P (x) has the least possible degree for property a).

Question 5.1. Let P (x) be the least common multiple of polynomials P1(X), P2(X),
P3(x).

a) Consider
P (x)
P1(x)

, will P1(x) - cancel?

b) Consider
P (x)
P2(x)

, will P2(x) - cancel?

c) Consider
P (x)

P1(x)P2(x)
, will P1(x)P2(x) - cancel?

Let us discuss the process of finding the least common multiple of two or more poly-
nomials. The first step is to factor each polynomial completely. Then to construct the
least common multiple we successively combine prime factors of the original polynomials.
For each original polynomial we add only those of it’s factor which are missing in the
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least common multiple. In particular, let polynomials M(x), N(x) , P (x) have factoring,
correspondingly

M(x) = a(x)b(x)c(x), N(x) = b(x)c(x)d(x), P (x) = b(x)d(x)e(x),

then the least common multiple for M(x), N(x), and P (x) will be

LCM = a(x)b(x)c(x)d(x)b(x)e(x).

Here initially we added to LCM all factors from M(x) since LCM should have all factors
of M(x) and had nothing initially. On the second step we added d(x) from N(x) since
other two multipliers already were LCM . On the third step we added e(x) and b(x)
from P (x). Although LCM already had one b(x), still P (x) had two of them so one was
missing, thus, we added it.

Example 5.4. (3.4 ex.51 ) Find the LCM to x3 − x, x3 − 2x2 + x, and x3 − 1. First,
we will factor three polynomials

x3 − x = x(x+ 1)(x− 1),

x3 − 2x2 + x = x(x− 1)(x− 1),

x3 − 1 = (x− 1)(x2 + x+ 1).

The LCM is then given by

LCM = x(x+ 1)(x− 1)(x− 1)(x2 + x+ 1).

(3.4 ex.72 )

x

(x− 1)2
+

2

x
− x+ 1

x3 − x2

=
x

(x− 1)2
+

2

x
− x+ 1

x2(x− 1)

=
x · x2 + 2 · x · (x− 1)2 − (x+ 1)(x− 1)

(x− 1)2x2

= x3 + 2x3 − 4x2 + 2x− x2 + 1 =
3x3 − 5x2 + 2x+ 1

(x− 1)2x2
.

By doing long division of the numerator over the (x − 1) one can see that (x − 1) does
not cancels.



Lecture 6.

Mixed quotients

When the numerator or the denominator of a quotient contains combinations of rational func-
tions we call it a mixed quotient. On this lecture we will consider how to simplify mixed
quotients.

6.1. Mixed quotients

Definition 6.1. When sums and/or differences of rational expressions appear as the
numerator and/or denominator of a quotient, the quotient is called a mixed quotient.

To simplify a mixed quotient means to write it as a rational expression reduced to
lowest terms.

Example of Mixed Quotient

a

b
+
c

d
e

f
+
k

l

, where a, b, c, d, e, f, k, l are polynomials.

There are two favorite methods for simplifying mixed quotients. The first methods is to
simplify mixed quotient step by step by considering rational expressions is the numerator,
then in the denominator and, finally, the whole thing.

In the second approach you will need to compute the least common multiplied of the
denominators of all rational expressions entering the mixed quotient. Then the mixed
quotient is simplified in one step by multiplying both numerator and denominator with
the least common multiple.

We will consider some examples for each of two methods.

6.2. Simplifying by parts

Method Summary: Consider numerator, simplify; consider denominator, simplify, etc.

a

b
+
c

d
e

f
+
k

l

=

ad+ bc

bd
el + kf

fl

=
(ad+ bc) · fl
(el + fk) · bd
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Example 6.1. (3.5 ex.1 )

x

x+ 1
+

4

x+ 1
x+ 4

2

=

x+ 4

x+ 1
x+ 4

2

=
2(x+ 4)

(x+ 1)(x+ 4)
=

2

x+ 1
.

6.3. Simplifying by one strike!

Method Summary: Take LCM of all “little” denominators (b d f e) and multiply both
the numerator and the denominator of the mixed quotient by LCM .

a

b
+
c

d
e

f
+
k

l

· LCM
LCM

=

a

b
· LCM +

c

d
· LCM

e

f
· LCM +

k

e
· LCM

.

Example 6.2. (3.5 ex.16 )

1− x

x+ 1

2− x− 1

x

LCM = (x+ 1)x,

Multiplying both the numerator and the denominator by LCM

1− x

x+ 1

2− x− 1

x

· (x+ 1)x

(x+ 1)x
=

(x+ 1)x− x2

2(x+ 1)x− 1(x− 1)(x+ 1)
=

x2 + x− x2

2x2 + 2x− x2 + 1
=

x

(x+ 1)2
.

(3.5 ex.22 )

(2x+ 5)

x
− x

x− 3
x2

x− 3
− (x+ 1)2

x+ 3

=

(2x+ 5)(x− 3)− x2

x(x− 3)

x2(x+ 3)− (x+ 1)2x− 3

(x− 3)(x+ 3)

=
((2x+ 5)(x− 3)− x2)(x− 3)(x+ 3)

x(x− 3)(x2(x+ 3)− (x+ 1)2(x− 3))

=
(2x2 + 5x− 6x− 15− x2)(x+ 3)

x(x3 + 3x2)− (x2 + 2x+ 1)(x− 3)
=

(x2 − x− 15)(x+ 3)

x(x3 + 3x2 − x3 − 2x2 − x+ 3x2 + 6x+ 3)

=
(x2 − x− 15)(x+ 3)

x(4x2 + 5x+ 3)
.
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(3.5 ex.27 )

1− 1

1− 1

x

= 1− 1
x− 1

x

= 1− x

x− 1
=
x− 1− x
x− 1

=
−1

x− 1
=

1

1− x
.

Solving the same example by the Method 2 looks a little more straightforward

1− 1

1− 1

x

= 1− 1

1− 1

x

· x
x

= 1− x

x− 1
=
x− 1− x
x− 1

=
1

1− x
.



Lecture 7.

Negative exponents.
Scientific notation. Square root

On this lecture we will discuss the negative exponents. Properties of negative exponent turn
out to be the same as that of usual positive exponent. Therefore, both negative and positive
exponents represent the same object. We will also consider the scientific notations and how to
convert numbers into scientific notation and will discuss properties of square root. In the end
of the lecture we will discuss rationalizing of mathematical expressions.

7.1. Negative exponents

Let us start from some simple remarks. If n is a counting number then a raised to the
power n is defined by

an = a · ... · a︸ ︷︷ ︸
n factors.

The number n is also can be referred as the exponents of a. Let us derive simple
properties for the exponents

an · am =

n+m︷ ︸︸ ︷
a · ... · a︸ ︷︷ ︸

n

· a · ... · a︸ ︷︷ ︸
m

= an+m ;

(ab)n = (ab)(ab) · ... · (ab)︸ ︷︷ ︸
n times

= anbn ;

(a
b

)n
=
(a
b

)
·
(a
b

)
· ... ·

(a
b

)
=
an

bn
;

(an)m =

n×m︷ ︸︸ ︷
(a · ... · a)︸ ︷︷ ︸

n

· (a · ... · a)︸ ︷︷ ︸
n

·... · (a · ... · a)︸ ︷︷ ︸
n︸ ︷︷ ︸

m

= an·m ;

an

am
=

n︷ ︸︸ ︷
a · ... · a
a · ... · a︸ ︷︷ ︸

m

= an−m , m < n .
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Let us take a better look at the last formula: m < n is an obvious the limitation for
it. The formula is not working for m ≥ n simply because it is undefined for that cases.
From the other side what if we could extend existing definitions to new cases? If this is
possible, we will improve the performance of our old formula.

The first bad case is m = n for which a0 is undefined. Obviously, the case m = n can
be captured by defining

a0 = 1.

You can check that the whole set of five formulas will still fit together.

Similarly, to make the last formula meaningful for m > n we need to define

a−1 =
1

a
, a−2 =

1

a2
, a−3 =

1

a3
, etc.

Eventually, we arrive to the definition of the negative exponent

a−n =
1

an
.

It is easy do check that properties of exponents are the same for negative exponents and
we can improve the last formula:

am

an
= am · a−n = am+(−n) = am−n for any numbers m and n.

Example 7.1.
(4.1 ex.11 )

3−6 · 34 = 3−6+4 = 3−2 =
1

9
.

(4.1 ex.13 )
82

23
=

82

8
= 82 · 8−1 = 82−1 = 8.

As an exercise, let us derive one more property of the exponents(a
b

)−n
=

1(a
b

)n =
1
an

bn

=
bn

an
=
( b
a

)n
(4.1 ex.44 )

4x−2(yz)−1

(−5)2x4y2z−2
= 4 · (−5)−2x−2y−1z−1x−4y−2z−2 = 4(−5)−2x−6y−3x−1 =

4z

25x6y3
.

(4.1 ex.52 )
(3xy−1)2

(2x−1y)3
=

32x2y−2

23x−3y3
=

32x2x3

23y3y2
=

32x5

23y5
.
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7.2. Scientific Notation

Numbers you meet in applications may very from very large to very small. As an
example let us take

1378000000000000 or 0.00000000000000013

these numbers are tedious to write and difficult to read. Therefore people use exponents
to make a better representation of such numbers.

Recall if you have some number in decimals

t t . t tt

the multiplication by 10 will move the point to the right and division by 10 will move
comma to the left. Therefore,

t.tttt×10 = (tt.ttt× 1

10
)×10 = tt.ttt×10

10
= (tt.ttt×10)× 1

10
= ttt.tt×10−1

Definition 7.1. When a number has been written as a product of

a× 10S , 1 ≤ a ≤ 10

it is said to be written in scientific notation.

Example 7.2. (4.1 ex.69 ) Write in scientific notation:

454.2 = 4.542× 102 .

(4.1 ex.81 ) Write as decimal

1.1× 188 = 110000000 .

Question 7.1. Try to put the following number in any readable form:

318 000 000 000 001.

7.3. Square roots

A real number is said to be squared when it is raised to the power 2. Taking square
root is the operation inverse to squaring.

Definition 7.2. The square root of a number a is number b such that

b2 = a
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Question 7.2. If b is a square root of a, what could be said about −b? How many
roots has a if a is negative?

Let us list some properties of square root

if a > 0 there exist two square roots;

if a = 0 the square root of 0 is 0;

if a < 0 there are no square roots.

The positive square root is called the Principal square root and the symbol
√
· called

radical sign is used to denote the principle (or non-negative) square root. So,
√
a > 0;

another square root is given by −
√
a.

Definition 7.3. In some cases an expression can be presented as a square of something
not ended with the radical sign. Such expression are called perfect squares. Examples:

(a+ x)2 , (
√
x+ a)2 are perfect squares,

(
√

3)2 is not a perfect square.

Remark 7.1. Taking square root or perfect squares is easy and pleasant. Note
nevertheless, that some care still should be taken. You should keep in mind that

√
a2 = |a|.

As an exercise, try to prove why absolute value is need to be putted.

Example 7.3. (4.2 ex.6 ) Evaluate

√
9 +
√

16 =
√

32 +
√

42 = 3 + 4.

Some more properties of square roots

√
ab =

√
a
√
b,

√
a

b
=

√
a√
b

to prove the above identities we need to recall the definition of square root. The definition

says that
√
a
√
b =
√
ab if and only if

(√
a
√
b
)2

= ab. Let us check it

(√
a
√
b
)2

=
(√

a
)2(√

b
)2

= ab .

Example 7.4. (4.2 ex.16 ) √
25

4
=

√
25√
4

=
5

2
.



Lecture 7. Negative exponents. Scientific notation. Square root 33

Next we will consider some examples on sums and differences of square roots. The
idea is to combine the like terms.
(4.2. ex.27 )

2
√

12− 3
√

6 + 5
√

27

= 2
√

4 · 3− 3
√

3 · 2 + 5
√

9 · 3 = 2
√

4
√

3− 3
√

3 ·
√

2 + 5
√

9 ·
√

3

=
√

3(2
√

4− 3
√

2 + 5
√

9) =
√

3(2 · 2− 3
√

2 + 5 · 3) =
√

3(19− 3
√

2).

(4.2. ex.36 )
(3−

√
2)(3 +

√
2) = 32 − (

√
2)2 = 9− 2 = 7.

7.4. Rationalizing

There are several conventions in mathematics describing how to write mathematical
expressions. In particular, there is a rule saying that the denominator of a quotient should
not contain radicals. The process of removing the radicals from the denominator is called
rationalizing.

Example 7.5. Rationalize the following expressions. (4.2. ex.43 )

1√
2

=
1√
2
·
√

2√
2

=

√
2

2
;

(4.2. ex.56 )

2√
5 +
√

3
=

2√
5 +
√

3
·
√

5−
√

3√
5−
√

3
=

2(
√

5−
√

3)

5− 3
=
√

5−
√

3;

(4.2. ex.62 )

1√
x+ h

− 1√
x

h
=

√
x−
√
x+ h√

x+ h
√
x

h
=
h(
√
x−
√
x+ h)√

x+ h
√
x

=
h
√
x+ h

√
x(
√
x−
√
x+ h)h

(x+ h)x

=
h(x
√
x+ h− (x+ h)

√
x)

(x+ h)x
= h

(x
√
x+ h− (x+ h)

√
x)

(x+ h)x

= h
(√x+ h

x+ h
−
√
x

x

)
;

Solution 2:

1√
x+ h

− 1√
x

h
=

1√
x+ h
h

−

1√
x

h
=

h√
x+ h

− h√
x

= h

(√
x+ h

(x+ h)
−
√
x

x

)
.

Let us discuss the properties of the n-th root. It will take some advanced analysis to
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First, let us summarize some facts about the exponents

bn is


> 0, if b > 0 and n is even

> 0, if b < 0 and n is even

> 0, if b > 0 and n is odd

< 0, if b < 0 and n is odd



Lecture 8.

Radicals

On this lecture we will define root of degree n and discuss it’s properties. In the end we
will add some review examples on square roots since techniques for working with n-th roots and
with square roots are very similar.

8.1. Radicals

Definition 8.1. An n-th root of a number a is a number b such that bn = a.

n
√
a = b ⇔ bn = a.

Note, that the square root is a special case of this definition.

Let us discuss the properties of the n-th root. By doing some not very advanced
analysis one can prove that there exists at least one n-th root of a if a > 0. Here we will
accept this fact without a proof and will summarize other information which is available
for radicals.

First, if the number n is even then with any root b there will be a root −b since

(−b)n = (b)n = a, if n is even.

Second, if the number n is odd then if a is negative then its n-th root will be negative
and if a is positive then its n-th root will be positive. We summarize this information in
the next table

the number of n-th roots of a is exactly


two, > 0, < 0 if a > 0 and n is even

none, if a < 0 and n is even

one, > 0 if a > 0 and n is odd

one, < 0 if a < 0 and n is odd

Definition 8.2. The principal n-th root of a number a denoted by the radical sign√
· is

n
√
a =

{
positive n-th root if n is even,

n-th root if n is odd.
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Example 8.1. (4.3 ex.1 )
4
√

16 =
4
√

24 = 2.

(4.3 ex.2 )
4
√

1 = 1.

(4.3 ex.4 )
3
√

125 =
3
√

5 · 25 =
3
√

5 · 5 · 5 =
3
√

53 = 5.

(4.3 ex.10 )
3
√

27x6 = 3
√

33(x2)3 = 3
√

(3x2)3 = 3x2.

8.2. Properties of radicals

The first property follows from the definition of radicals and the definition of the
principal root

n
√
an =

{
a if n is odd

|a| if n is even

Example 8.2.
3
√

(−3)3 = −3, 2
√

(−2)2 = 2 = | − 2|
Another properties follow from the definition of radicals and properties of exponents

n
√
ab = n

√
a
n
√
b,

n

√
a

b
=

n
√
a

n
√
b
,

n
√
am =

(
n
√
a
)m
,

m

√
n
√
a = mn

√
a.

Remark 8.1. Note that these identities are only well-defined when both a and b are
positive. For example, the first one is meaningless for a < 0, b < 0, and n even.

Question 8.1. How to prove these identities?

Let us prove the last one. When we raise both sides to degree nm. Using the properties
of integer exponents and the definition of radicals we rewrite the left as(

m

√
n
√
a
)m·n

=
((

m

√
n
√
a
)m)n

=
(

n
√
a
)n

= a.

At the same time, according to the definition of the n-th root the right side is(
nm
√
a
)mn

= a.

The identity is proved.
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Example 8.3. (4.3 ex.27 )
√

3x2
√

12x =
√

3|x|
√

12 = 2
√

3
√

3|x|
√
x = 6|x|

√
x

(4.3 ex.31 ) √
4

9x2y4
=

√
4

√
9
√
x2
√
y4

=
2

3|x|y2
.

(4.3 ex.30 )
3
√
x2y

3
√

125x3

3
√

8x3y4
=

3
√

53x5y
3
√

23x3y4
=

5x
3
√
x2 3
√
y

2xy 3
√
y

=
5

3
√
x2

2y
.

(4.3 ex.47 )
√

8x3 − 3
√

50x+
√

2x5 = 2|x|
√

2x− 3 · 5
√

2x− x2
√

2x = (2|x| − 15− x2)
√

2x.

(4.3 ex.51 )

(3
3
√

6)(2
3
√

9) = 3(
3
√

3 · 2)2(
3
√

3 · 3) = 6
3
√

33 3
√

2 = 18
3
√

2.

(4.3 ex.54 )

(
4
√

4− 2)(
4
√

4 + 2) = (
4
√

4)2 − (2)2 =
4
√

16− 4 = 2− 4 = −2.

8.3. Review examples

Rationalize the denominator in each expression
(4.2 ex.55 )

3√
3−
√

2
=

3√
3−
√

2
·
√

3 +
√

2√
3 +
√

2
=

3(
√

3 +
√

2)

3− 2
= 3(
√

3 +
√

2).

(4.2 ex.57 )
√

3−
√

2

2
√

5−
√

7
=

(
√

3−
√

2)(2
√

5 +
√

7)

4 · 5− 7
=

2
√

15− 2
√

10 +
√

21−
√

14

13
.

Rationalize the numerator: (4.2 ex.59 )

2−
√

5

3 + 2
√

5
=

(2−
√

5)(2 +
√

5)

(3− 2
√

5)(2 +
√

5)
=

1− 5

6− 4
√

5 + 3
√

5− 2 · 5
=

−1

−4−
√

5
=

1

4 +
√

5

Solve equation
√
x+ 3−

√
2x− 5 = 0,√

x+ 3 =
√

2x− 5,

x+ 3 = 2x− 5,

x = 8.



Lecture 9.

Rational exponents

On this lecture we will give the definition of rational exponent and will discuss its properties
which are, in fact, similar to the properties of integer exponent.

9.1. Rational exponents

Let us compare two identifies, one for exponents and one for radicals

(am)n = amn
m

√
n
√
a = mn

√
a

Since the similarity is obvious it give us a hope that both the natural exponents and
radicals represent the same but more general object. The relation is even more obvious if
we consider the following identity for radicals(

n
√
a
)n

= a = a( 1
n ·n) = a(n· 1n) = a =

(
n
√
an
)

Finally, the gap between integer exponents and radicals will be eliminated if we define

a
1
n = n
√
a ,

or, more general, for any rational number m
n
, n > 0 define

a
m
n =

(
n
√
a
)m

Example 9.1. (4.4 ex.6 )

(64)
3
2 = (4 · 16)

3
2 = (26)

3
2 = 2

√
(26)3 =

2
√

218 = 29.

(4.4 ex.8 )

(25)
−5
2 = (52)

−5
2 = 2

√
(52)−5 =

1
2
√

(52)5
=

1

55
.
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Let us list basic identifies for the rational exponents. These identifies will combine
together properties of integer exponents and radicals.

aras = ar+s,

(ar)s = ars,

(ab)r = arbr,(a
b

)r
=
ar

br
,

a−r =
1

ar
,

ar

as
= ar−s.

As an exercise let us check the second one

aras = a
m
n a

p
q =

(
n
√
a
)m(

q
√
a
)p

=
(

n

√
( q
√
a)q
)m(

q

√
( n
√
a)n
)p

=
(

n

√
q
√
a
)qm(

q

√
n
√
a
)pn

=
(

nq
√
a
)qm(

nq
√
a
)pn

=
(

nq
√
a
)qm+pn

= a
qm+pn
nq = ar+s.

Again, the identifies are well-defined only for positive a and b. When a and b are
negative some identifies will fail.

Example 9.2. (4.4 ex.32 )(x−3
2

y
5
2

) 4
3
(x 1

3

y
1
3

)−3

=
(x−3

2
· 4
3

y
5
2
· 4
3

)(x 1
3

(−3)

y
1
3

(−3)

)
=
x−2

y
10
3

· x
−1

y−1
=

1

x3y
7
3

=
1

x3 3
√
y7
.

(4.4 ex.16 ) (1

9

)1.5

=
(1

9

) 15
10

=
(1

9

) 3
2

=
2

√(1

9

)3

=
(1

3

)3

=
1

27
.

(4.4 ex.28 ) (
4x−1y

1
3

) 3
2

= 4
3
2 (x−1)

3
2

(
y

1
3

) 3
2

= 8x
−3
2 y

1
2 = 8

√
y

x3

Question 9.1. What
(x2)

3
2

is equal to? Answer:
(x2)

3
2 = |x|3



Lecture 10.

Geometry topics

On this lecture we will consider some area formulas, prove the Pythagorean theorem, and
state some extra formulas which will be used later.

10.1.Area formulas

For a rectangle of a length l and width w area is defined to be

Area = lw.

For the right triangle with the base l and altitude the area according to the picture
will be

Area =
1

2
lh.

For an arbitrary triangle:

Area =
1

2
l1h+

1

2
l2h =

1

2
lh.

Let us use area formulas to prove the Pythagorean Theorem.

10.2.The Pythagorean theorem
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Definition 10.1. A right triangle is one that contains a right angle - that is, an
angle of 90◦. The side of the triangle opposite to 90◦ angle is called the hypotenuse; the
remaining two sides are called legs.

Theorem 10.1. Pythagorean Theorem. In a right triangle, the square of the
length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.

c2 = a2 + b2

Proof. The side of the big square is a + b. Note that all four triangles are right and
congruent. The inside figure is square with the side c. Obviously, the area of the big
square equals to the sum of areas of triangle and the small square.

(a+ b)2 = 4
(1

2

)
ab+ c2

a2 + 2ab+ b2 = 2ab+ c2

a2 + b2 = c2

the Pythagorean Theorem is proved.

Example 10.1. (4.6 ex.34 ) The area of square ABCD is SABCD = 100 square feet,
the area of square BEFG is SBEFG = 16 square feet What is the area of the triangle
CGF .

Solution. Since SABCD = 100 then side BC = 10. Since SBEFG = 16 then side
BG = GF = 4, therefore GC = BC −BG = 6 and

SCGF =
1

2
6 · 4 = 12.

(4.6 ex.8 ) Check if the triangle with the sides below is a right one:

6, 8, 10.

Take a = 6, b = 8, and c = 10, then

a2 + b2 = 36 + 64 = 100 = c2.
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Answer: the triangle is right.
(4.6 ex.14 ) Check if the triangle with the sides below is a right one:

5, 4, 7.

Take a = 5, b = 4, and c = 7, then

a2 + b2 = 25 + 16 6= 49 = c2.

Answer: the triangle is not right.

Question 10.1. Why the hypotenuse is always the longest side of the triangle. Prove
using Pythagorean theorem.

10.3.Some more geometrical formulas

Volume of a rectangular box of length l, width w, and height h:

Volume = lwh

For the circle with radius r (diameter d = 2r)

Area = πr2, Circumference = 2πr = πd

Perimeter of a rectangular of length l and width w is given by

Perimeter = 2l + 2w.

Example 10.2. (4.6 ex.38 ) How far a person can see.
R is the radius of the Earth.
h is the height of a tower.
d is the distance the person can see.
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According to Pythagorean theorem d2 +R2 = (R + h)2 or d =
√

(R + h)2 −R2.


