Comfort in the Outdoors

Introduction to Backcountry

Heat flow principle: hot to cold

- Hot air to colder body
- 98.6 degrees
- Air temps can exceed.
- Radiant temp transfers from sun higher than air temp
Heat transfer mechanisms

- Radiation
 - Transfer of heat in form of electromagnetic waves
- Conduction
 - From molecule to molecule in a solid substance
- Convection
 - Moving particles of a fluid or gas
- Evaporation
 - Heat carried away as liquid changes to gas

The fight against the heat

Strategy # 1 - Do something different

- Acclimatize when possible (slow adjustment)
- Maintain adequate hydration
- Limit physical activity (siesta)
- Seek shade
 - Hats/ tarps/ trees
- Remove insulators
 - Add wet materials if possible
Hyperthermia

Heat Stroke (a big problem/emergency)
- Symptoms: skin hot & dry, skin flushed, temp up
- Treatment: immediate cooling, hospital transfer

Heat Exhaustion (a problem)
- Symptoms: tired, headache, sweat, nausea, faint
- Treatment: shade, fluids, rest, slow down

Heat Exhaustion (a problem)
- Symptoms: tired, headache, sweat, nausea, faint
- Treatment: shade, fluids, rest, slow down

Heat Stroke (an emergency)
- Symptoms: skin hot & dry, skin flushed, temp up
- Treatment: immediate cooling, hospital transfer

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>Relative Humidity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°F - 94°F</td>
<td>70%</td>
</tr>
<tr>
<td>95°F - 99°F</td>
<td>60%</td>
</tr>
<tr>
<td>100°F - 104°F</td>
<td>50%</td>
</tr>
<tr>
<td>105°F - 109°F</td>
<td>40%</td>
</tr>
<tr>
<td>110°F - 114°F</td>
<td>30%</td>
</tr>
<tr>
<td>115°F - 119°F</td>
<td>20%</td>
</tr>
<tr>
<td>120°F - 124°F</td>
<td>10%</td>
</tr>
</tbody>
</table>

Possible heat disorder
- Faint, giddiness, headache, and heat exhaustion likely possible
- Sunstroke, heat cramps, and heat exhaustion possible
- Heat stroke highly likely with continued exposure

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>Relative Humidity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°F - 94°F</td>
<td>70%</td>
</tr>
<tr>
<td>95°F - 99°F</td>
<td>60%</td>
</tr>
<tr>
<td>100°F - 104°F</td>
<td>50%</td>
</tr>
<tr>
<td>105°F - 109°F</td>
<td>40%</td>
</tr>
<tr>
<td>110°F - 114°F</td>
<td>30%</td>
</tr>
<tr>
<td>115°F - 119°F</td>
<td>20%</td>
</tr>
<tr>
<td>120°F - 124°F</td>
<td>10%</td>
</tr>
</tbody>
</table>
Key questions

- What are the symptoms of hyperthermia and why is this an issue of immediacy?
- What air temperature does the danger of hyperthermia significantly increase?
- What are the responses or treatments for both heat exhaustion and heat stroke?