Growth of Sodium Dodecyl Sulfate Micelles with Detergent Concentration

Frank H. Quina
Instituto de Química, Universidade de São Paulo, CP 26.077, 05599-970 São Paulo, Brazil

Patricia M. Nassar and João B. S. Bonilha
Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, CEP 14040-901 Ribeirão Preto, Brazil

Barney L. Bales*†
Instituto de Física de São Carlos, Universidade de São Paulo, CEP 13560-970 São Carlos, Brazil

Received: July 8, 1995; In Final Form: August 21, 1995

Sodium alkyl sulfate micelles are predicted to grow as a power law of the total counterion salt concentration, Y_{eq}, in the aqueous phase as follows: $N_A = k_2(Y_{\text{eq}})^{y}$, where N_A is the micelle aggregation number and k_2 and y are constants which are estimated from the critical micelle concentration and the apparent degree of counterion attachment. For sodium dodecyl sulfate, $N_A = 162(Y_{\text{eq}})^{1/4}$ is predicted and is shown to be in good agreement with aggregation numbers measured by a number of techniques over a wide range of Y_{eq}, whether this quantity is varied by changing the concentrations of the detergent, the added counterion salt, or both. Values of k_2 and y are estimated for six members of the sodium alkyl sulfate family.

Introduction

It has been known for some time that sodium dodecyl sulfate (SDS) micelles grow slowly as a function of the detergent concentration. This growth has been observed by steady-state and time-resolved fluorescence quenching (TRFQ), stopped-flow experiments, and small-angle neutron scattering (SANS).

Similar growth has been observed in potassium octanoate and potassium dodecanoate by EPR and fluorescence quenching. A few years ago, SANS experiments suggested that, in the absence of added electrolyte, SDS micelles grow as [SDS]$^{1/4}$, where [SDS] is the total molar concentration of SDS. Denoting the total detergent concentration by C_T, the SANS results may be expressed as

$$N_A = k_2 (C_T)^{y}$$

(1)

where N_A is the aggregation number and k_2 is a constant. In the case of SDS, the SANS results yielded $y \approx 1/4$ and $k_2 \approx 200$ molecules/m$^{1/4}$, with a squared coefficient of correlation $r^2 = 0.991$. The absolute magnitude of k_2 is uncertain because absolute values of N_A derived from small-angle neutron diffraction measurements are dependent upon the model used and upon the normalization of the scattering intensity data. The value of k_2 quoted above was determined using the Gruinier and Porod approximations, which do not take into account the interparticle structure function $S(Q)$. Taking this factor into account by a mean spheres approximation reduces N_A by about one-half.

EPR experiments on SDS in the concentration range [SDS] = 25–200 mM showed that the average polarity sensed by a hydrophobic spin probe varied as (C_T)$^{1/4}$ with $r^2 = 0.997$ and $r^2 = 0.998$ in two separate experiments. The quantity measured in the EPR experiments is the nitrogen hyperfine coupling constant, which can be measured with a relative precision equivalent to a change of ±0.003 in (C_T)$^{1/4}$, corresponding to an average change in N_A of less than one molecule per micelle according to eq 1.

Recently, careful TRFQ measurements showed that the relative aggregation numbers of SDS micelles grew linearly with [SDS]$^{1/4}$ in the concentration range [SDS] = 25–200 mM, the fit of the data to eq 1 with $y = 1/4$ and $k_2 \approx 134$ molecules/m$^{1/4}$, yielding $r^2 = 0.922$. The absolute values of the aggregation numbers derived from TRFQ measurements depend somewhat upon the distribution of the quenchers among micelles; the above values were derived assuming a Poisson distribution in a series of measurements in which [SDS] was varied while maintaining a constant detergent/quencher ratio, thereby minimizing the effect of the quencher distribution on the relative aggregation numbers. Absolute determination of micelle sizes with the TRFQ technique depends somewhat upon the data reduction method, so k_2 could be in error by as much as 10–15%.

Each of these various techniques can be criticized for various reasons, but taken together they form a compelling description of the size dependence of SDS micelles as given by eq 1 with $y = 1/4$. Although Bezzobn8tov et al. have offered a heuristic derivation, there is as yet no theoretical reason to expect SDS micelles to grow as [SDS]$^{1/4}$. In the present work, we develop an explicit expression for the growth of sodium alkyl sulfate micelles which predicts that the controlling factor for such growth is the counterion concentration in the intermicellar aqueous phase. For the particular case of SDS in the absence of added salt, this expression simplifies to the observed [SDS]$^{1/4}$ dependent growth only at high [SDS].

Empirical Expression for Micelle Size

In his classic light scattering experiments on a series of sodium alkyl sulfates, Huisman found an empirical relationship between the molecular weight of a micelle and the critical micelle concentration (cmc, in mol L$^{-1}$) independent of the
length of the alkyl chain and independent of the concentration of added univalent salts. Rewriting Huisman's equation10 in terms of the molecular weight, MW, of the detergent monomer yields the following relationship:

\[
\log(N_A) = -K_1 \log(\text{cmc}) - \log(\text{MW}) + K_2
\]

(2)

where \(K_1\) and \(K_2\) are constants. Fitting data at 21 °C for sodium dodecyl, undecyl, decyl, nonyl, and octyl sulfates yielded \(K_1 = 0.336\) and \(K_2 = 3.465\). It has been known for many years (see, for example, ref 11 and references therein) that the cmc in turn is related to the counterion concentration by

\[
\log(\text{cmc}) = -K_3 - K_4 \log(\text{Yad})
\]

(3)

where \(K_3\) and \(K_4\) are constants, and \(\text{Yad}\) is the concentration in mol L\(^{-1}\) of added common counterion. Sasaki et al.12 and Hall11 showed that an equation of the form of eq 3 is valid above the cmc and identified \(K_4\) as the degree of counterion attachment, \(\beta\), based upon activity measurements. For SDS at 25 °C, Sasaki et al.12 found \(\beta = 0.73\) in the range [SDS] = cmc to 80 mM. Fixing \(\beta\), the constant \(K_3\) may be found from eq 3 as follows:

\[
K_3 = -(1 + \beta) \log(\text{cmc}_0)
\]

(4)

where \(\text{cmc}_0\) is the value of the cmc in the absence of added salt, \(\text{Yad} = 0\).

Generalizing eq 3 to above the cmc by replacing cmc with the free monomer concentration, \(m_f\), and replacing the total counterion concentration at the cmc (\(\text{cmc} + \text{Yad}\)) with the counterion concentration in the aqueous phase above the cmc, \(\text{Yaq}\), yields

\[
\log(m_f) = -K_3 - \beta \log(\text{Yaq})
\]

(5)

Using the conventional pseudophase ion exchange mass balance relationship13-15

\[
\text{Yaq} = \alpha(\text{CT} - m_f) + m_f + \text{Yad}
\]

(6)

where \(\alpha = 1 - \beta\) is the apparent degree of counterion dissociation, yields upon substituting into eq 5

\[
\log(m_f) = -K_3 - \beta \log(\alpha(\text{CT} - m_f) + m_f + \text{Yad})
\]

(7)

Combining eq 7 with eq 2 (generalized to above the cmc by replacing cmc with \(m_f\)) yields

\[
\log(N_A) = -K_1 \{-K_3 - \beta \log(\alpha(\text{CT} - m_f) + m_f + \text{Yad})\} - \log(\text{MW}) + K_2
\]

(8)

Equation 8 may be written as

\[
N_A = \kappa_2(\alpha\text{CT} + \beta m_f + \text{Yad})^\gamma
\]

(9)

with

\[
\gamma = K_1 \beta
\]

(10)

and

\[
\kappa_2 = (1/\text{MW}) \times 10^{(K_1 K_2 + K_2)}
\]

(11)

For a given value of \(\text{CT}, m_f\) may be calculated iteratively from eq 7. In the absence of added salt (\(\text{Yad} = 0\)) at high detergent concentrations (\(\alpha\text{CT} \gg \beta m_f\), eq 9 is the same as eq 1 with \(\kappa_2 = \kappa_2 \alpha^2\):

\[
N_A = \kappa_2(\alpha\text{CT})^\gamma
\]

(1)

At lower detergent concentrations, the functional dependence of \(N_A\) upon the concentration is different in eqs 1 and 9.

Experimental Section

Materials. SDS (Merck, for biochemical use) was purified by recrystallization from absolute ethanol. Purity was checked by surface tensiometric determination of the critical micelle concentration (cmc) in the usual manner. Tris(bipyridine)-ruthenium(II) chloride (Ru(bpy)\(_3\))\(^{2+}\); Aldrich) and analytical reagent grade NaCl (Merck) were used as received; 9-methylanthracene (Aldrich) was purified by sublimation. All solutions were prepared in distilled, freshly deionized water.

Methods. All measurements were performed at 30 °C. Apparent surface tensions were determined with a DeNouy tensiometer equipped with a Pt ring. Emission measurements were performed with a Perkin-Elmer LS-5B fluorescence spectrometer on air-equilibrated solutions contained in Teflon-stoppered 1 cm path length fluorescence cuvettes (Hellma). Aggregation numbers were determined by the method of Turro and Yekta.16 Successive aliquots of a concentrated (0.2 M) stock solution of 9-methylanthracene in spectroquality acetonitrile were added to aqueous solutions containing the emissive probe Ru(bpy)\(_3\)\(^{2+}\) (7 × 10\(^{-5}\) M), NaCl, and SDS, and the emission intensity (excitation/emission 450/627 nm) was recorded following each addition. Aggregation numbers were obtained from the slopes of linear plots of ln(I(0)/I) versus [9-methylanthracene] as described,16 where I(0) and I are the corresponding probe emission intensities in the absence and presence of 9-methylanthracene.

Results

In the case of SDS, MW = 288. Taking \(K_1 = 0.336\), \(K_2 = 3.465\) from Huisman's9 results and \(\beta = 0.73\) (\(\alpha = 0.27\)) from Sasaki's12 yields the exponent \(\gamma = 0.25\). Taking cmc\(_0\) = 8.3 mM yields \(K_3 = 3.6\) and the coefficient \(\kappa_2 = 164\). Thus, for SDS in the absence of added salt (\(\text{Yad} = 0\)), eq 9 gives

\[
N_A = 164(0.27\text{CT} + 0.73m_f)^{1/4}\]

(12)

Thus, both eqs 12 and 1 predict that the growth of sodium dodecyl sulfate micelles is governed by a power law with \(\gamma = 1/4\), however with the argument \(\alpha\text{CT} + \beta m_f\) in eq 12 rather than the argument \(\alpha\text{CT}\) in eq 1. Figure 1 shows results from TRFQ measurements taken from Figure 7 of ref 7 plotted as a function of the arguments of eq 9 (lower scale) and eq 1 (upper scale). Note that the lower scale is linear, while the upper is not. The solid line is the linear least-squares fit of the data to eq 12, and the dashed line is the linear fit to eq 1. The fit to eq 12, with a squared correlation coefficient of \(r^2 = 0.997\), is a significant improvement over the fit to eq 1 (\(r^2 = 0.922\)) and has removed the previous7 need, ad hoc, to add a constant term to eq 1 to improve the fit.

Equation 9 describes TRFQ results upon varying [SDS] very well, and its derivation shows that it ought to describe the results of adding common counterion as well. Thus, eq 9 predicts that sodium alkyl sulfate micelles ought to grow as the \(\gamma\th\) power of \(\text{Yaq}\) whether \(\text{Yaq}\) is varied with detergent or the added common counterion or both. In particular, for SDS micelles, we have

\[
N_A = 164(0.27\text{CT} + 0.73m_f + \text{Yad})^{1/4}\]

(13)
Further, despite the fact eq 9 was derived on the basis of the constancy of γ in the absence of criteria to weight the data. Remarkably, for these two sets, the fit of eq 9 is excellent up to Y_{aq} = 0.28 at rad, as open symbols. For clarity, these results from a least-squares fit to eq 12 referred to the lower scale, and the dashed line is a linear least-squares fit to eq 1 referred to the upper scale. The upper scale is not linear, so the dashed line is curved. The error bars are standard deviations in measurements using three sources of SDS. The units of CT_1 and m_T are mol L$^{-1}$.

Table 1: Aggregation Numbers of SDS Micelles

(T = 30 °C)

<table>
<thead>
<tr>
<th>[SDS], mM</th>
<th>[NaCl], mM</th>
<th>[SDS]$_I$, mM*</th>
<th>Y_{aq}, mM</th>
<th>N_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>20</td>
<td>2.9</td>
<td>35.6</td>
<td>71</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>1.9</td>
<td>64.9</td>
<td>87</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
<td>1.5</td>
<td>89.6</td>
<td>91</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>1.2</td>
<td>114.9</td>
<td>92</td>
</tr>
<tr>
<td>50</td>
<td>250</td>
<td>0.7</td>
<td>264.0</td>
<td>104</td>
</tr>
<tr>
<td>50</td>
<td>325</td>
<td>0.6</td>
<td>339.0</td>
<td>111</td>
</tr>
<tr>
<td>50</td>
<td>400</td>
<td>0.5</td>
<td>414.1</td>
<td>117</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>7.0</td>
<td>10.5</td>
<td>55</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>6.1</td>
<td>12.6</td>
<td>59</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>5.5</td>
<td>14.8</td>
<td>64</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>4.9</td>
<td>17.1</td>
<td>64</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>4.5</td>
<td>19.5</td>
<td>68</td>
</tr>
<tr>
<td>70</td>
<td>0</td>
<td>4.1</td>
<td>21.9</td>
<td>68</td>
</tr>
<tr>
<td>80</td>
<td>0</td>
<td>3.8</td>
<td>24.4</td>
<td>71</td>
</tr>
</tbody>
</table>

* Computed from an iterative solution of eq 5 with $\alpha = 0.27$.

Table 1 shows the results of experiments in which both [SDS] and Y_{aq} have been varied. Table 2 shows the results of least-squares fits to eq 9 (by varying γ and k_3) of the data in Table 1 plus literature data.

SDS micelles become polydisperse at higher concentrations of salt: for example, Siemiarczuk, Ware, and Liu2 quote a size dispersion of $\sigma \approx 20$ at Y_{aq} = 0.4 M and $\sigma \approx 140$ at Y_{aq} = 0.5 M. Furthermore, at the latter concentration, the size distribution becomes bimodal.3 Thus, it would seem prudent to consider only literature data up to, say, Y_{aq} = 0.3; however, doing so would eliminate two of the light scattering data sets.17,18 Remarkably, for these two sets, the fit of eq 9 is excellent up to Y_{aq} = 0.5 M, so all three data points in each set were retained. For the rest of the data, fits were limited to values of $Y_{aq} < 0.5$ M. The literature data encompass a number of techniques as listed in the first column of Table 2. The values of γ for all of the techniques are remarkably near $\gamma = 0.25$ predicted by eq 9, except for those listed in Table 2, which was only demonstrated12 up to [SDS] = 80 mM ($Y_{aq} = 24.4$ mM). The unweighted average and standard deviation of all of the values of γ gives $\gamma = 0.24 \pm 0.05$, although the significance of this average is difficult to assess in the absence of criteria to weight the data.

The values of k_3 are scattered for reasons discussed above. Further, k_3 depends upon temperature,19,20 so the data from various experiments in Table 2 would be altered somewhat when adjusted to a common temperature. Taking the average of TRFQ15 and SANS3 results, adjustment to 25 °C would amount to a decrease in k_3 of about 3% for Husiman's data9 and an increase in k_3 of about 4% for the data of Table 1. The data taken from ref 20 are quoted to be at $T = 25 \pm 5$ °C, so there would be comparable small corrections to those data. There are probably other minor difficulties in the the determination of k_3 as well.20 To focus attention on the functional dependence of SDS micelle size versus Y_{aq}, we have maintained the original aggregation numbers and have calculated a normalizing factor, Ω_A, such that $\Omega_A Y_{aq}$ is the same for all techniques at one value of Y_{aq}; 50 mM SDS in the absence of added salt was chosen as the common point because it falls within the range of all of the experiments. At $CT_1 = 50$ M, an iterative solution of eq 5 with $\alpha = 1 - \beta = 0.27$ yields $m_T = 4.9$ M. Substituting these values into eq 13 gives $Y_{aq} = 17.1$ M and $N_A = 59.3$. For each technique, N_A, at $Y_{aq} = 17.1$ M was calculated from the best fit to eq 9 and $\Omega_A Y_{aq}$ was set equal to 59.3. The renormalization factors Ω_A appear in the final column of Table 2, and except for the last row, referring to the SANS results already discussed in the Introduction, these factors are remarkably near unity considering the various uncertainties in the differing methods. Figure 2 shows a plot of $\Omega_A Y_{aq}$ versus (Y_{aq})$^{1/4}$.

Table 2: Least-Squares Fits to Eq 9 Varying γ and k_3 ($N_A = k_3 Y_{aq}^3$, $T = 25 \pm 5$ °C)

<table>
<thead>
<tr>
<th>Technique*</th>
<th>Ref</th>
<th>Vary</th>
<th>Y_{aq}, M</th>
<th>k_3</th>
<th>g</th>
<th>γ</th>
<th>Ω_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>eq 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.S. (3)</td>
<td>17F</td>
<td>NaCl</td>
<td>1–500</td>
<td>160</td>
<td>0.185</td>
<td>0.987</td>
<td>0.745</td>
</tr>
<tr>
<td>L.S. (3)</td>
<td>18F</td>
<td>NaCl</td>
<td>52–510</td>
<td>140</td>
<td>0.179</td>
<td>1.000</td>
<td>0.832</td>
</tr>
<tr>
<td>L.S. (5)</td>
<td>19F</td>
<td>NaCl</td>
<td>8–300</td>
<td>160</td>
<td>0.212</td>
<td>0.993</td>
<td>0.909</td>
</tr>
<tr>
<td>E.U. (3)</td>
<td>20F</td>
<td>NaCl</td>
<td>100–300</td>
<td>160</td>
<td>0.232</td>
<td>0.991</td>
<td>0.948</td>
</tr>
<tr>
<td>SSFQ (7)</td>
<td>21F</td>
<td>NaCl</td>
<td>160–470</td>
<td>150</td>
<td>0.238</td>
<td>0.926</td>
<td>1.00</td>
</tr>
<tr>
<td>SSFQ (2)</td>
<td>22F</td>
<td>NaCl</td>
<td>17–280</td>
<td>150</td>
<td>0.237</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>SSFQ (8)</td>
<td>23F</td>
<td>NaCl</td>
<td>17–410</td>
<td>140</td>
<td>0.185</td>
<td>0.989</td>
<td>0.885</td>
</tr>
</tbody>
</table>

* L.S., light scattering; E.U., equilibrium ultracentrifugation; SSFQ, steady-state fluorescence quenching; TRFQ, time-resolved fluorescence quenching; SANS, small-angle neutron scattering. * Correlation coefficient. * Multiplicative factor normalizing aggregation numbers at $Y_{aq} = 17.1$ M, used to prepare Figure 2. * Range of validity of eq 5.12 * Equations 10 and 11 with $K_3 = 3.60$ (eq 4: $c_{NaCl} = 8.3$ M, $\beta = 0.73$), $K_3 = 0.336$, and $K_3 = 3.465$. * As cited in ref 20. * After recalculating the aggregation numbers using m_T rather than c_{NaCl}, to calculate the concentration of micellized SDS. * Using a Poisson distribution of the quencher, Cu$^{2+}$.
Growth of Sodium Dodecyl Sulfate Micelles

Figure 2. Aggregation numbers from Table 1 (Y, y) and from the literature versus $[\text{SDS}]^{1/4}$. The sources of the literature data are given in Table 2. For clarity, the data are grouped together as follows: light scattering,25,18 equilibrium ultracentrifugation,27 fluorescence quenching;16,28 time-resolved fluorescence quenching;26,29 small-angle neutron scattering (\bigcirc, \bullet). Filled symbols represent data obtained by varying [SDS]; others, by varying [NaCl].

Conclusions

An equation predicting the sizes of sodium alkyl sulfate micelles as a function of either detergent or added counterion salt concentrations has been derived. When applied to SDS, the micelles are predicted to vary as the one-fourth power of the total common counterion concentration in the aqueous phase, in excellent agreement with recent TRPQ measurements28 and good agreement with measurements using a wide range of techniques. The behavior of sizes of other sodium alkyl sulfates is predicted.

Acknowledgment. This work was supported by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP Thematic Project 91/0480-1) and PADCCT-FINEP (Project No. 65-92-0063-00) and by fellowships from FAPESP (P.M.N., Proc. No. 91/4358-6) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). A grant allowing B.B. to work in Brazil, provided by FAPESP (Project 94/1111-8), is gratefully acknowledged.

References and Notes