29. \(\frac{dy}{dx} = ye^{-x^2} \), \(y(4) = 1 \)

i) The DE is separable: \(\frac{dy}{y} = e^{-x^2} \, dx \)

\[\Rightarrow \int \frac{dy}{y} = \int e^{-x^2} \, dx + C \]

\[\Rightarrow \ln|y| = \int e^{-x^2} \, dx + C \]

ii) Note that we cannot get an antiderivative for the right-hand-side, and hence we leave it in integral form.

iii) In order to find \(C \) so that the IC is satisfied, we proceed as follows:

\[\ln|y| = \int_{4}^{x} e^{-t^2} \, dt + C \]

\[\ln(1) = \int_{4}^{1} e^{-t^2} \, dt + C \]

\[0 = 0 + C \quad \Rightarrow \quad C = 0 \]

\[\therefore \ln|y| = \int_{4}^{x} e^{-t^2} \, dt \]

iv) \(\therefore \) Soln. to the IVP is:

\[y(x) = e^{\int_{4}^{x} e^{-t^2} \, dt} \]